1. (a) $P<Q$ only
$Q_{1} Q_{0}$

	00	01	11	10
00	0	0	0	0
01	1	0	0	0
11	1	1	0	1
10	1	1	0	0

$$
\text { out }=\bar{P}_{1} \bar{P}_{0} Q_{0}+\bar{P}_{0} Q_{1} Q_{0}+\bar{P}_{1} Q_{1}
$$

(1). (2). (3) are the prime implicants and the essential prime implicants.
(b) $P<Q$ w/ $P=Q$ don't care

$$
P_{1} P_{0}
$$

(3) $Q_{1} Q_{0}$| | 00 | 01 | 11 | 10 |
| :---: | :---: | :---: | :---: | :---: |
| 00 | X | 0 | 0 | 0 |
| 01 | 1 | x | 0 | 0 |
| 11 | 1 | 1 | \times | 1 |
| 10 | 1 | 1 | 0 | x |

(1). (2).(3).(4).(5) are prime implicants.
possible solutions: (any of the three are correct)
(A) if out $=Q_{1} Q_{0}+\bar{P}_{1} \bar{P}_{0}+\bar{P}_{1} Q_{1}$
(1).(2).(4) are the essential prime implicants.
(B) if out $=Q_{1} Q_{0}+\bar{P}_{1} Q_{0}+\bar{P}_{1} Q_{1}$
(1),(3).(4) are the essential prime implicants.
(C) If out $=\bar{P}_{1} Q_{0}+\bar{P}_{1} Q_{1}+\bar{P}_{0} Q_{1}$
(3).(4).(5) are the essential prime implicants.
2. (a) $F=W X+\bar{W} \bar{Y}+X \bar{Y}$

There is a potential timing hazard when $x=1 . y=0$. and w switches from $1 \rightarrow 0$.
need to add the blue term to remove hazards.
(b) $F=w \bar{X} \bar{Y}+X \bar{Y} Z+X Y+w \bar{Y} z$

$W Z$| | 00 | 01 | 11 | 10 |
| :---: | :---: | :---: | :---: | :---: |
| 00 | 0 | 0 | 1 | 0 |
| 01 | 0 | 0 | 1 | 1 |
| 11 | 1 | 0 | 1 | 1 |
| 10 | 1 | 0 | 1 | 0 |

There is a potential timing hazard when
$w=1, y=0, z=1$, and x switches from $1 \rightarrow 0$.
Need to add the blue term to remove hazards.
(c) $F=W Y+\bar{W} \bar{Z}+X \bar{Y} Z+\bar{W} X \bar{Y}+w X Z+Y \bar{Z}$

az		$x y$			
00	1	1	1	1	
01	0	0	0	1	
11	0	1	1	1	
10	0	1	1	0	

There are multiple timing hazards in this circuit:
(1) when $x=1, y=0, w=0$, and z switches from $1 \rightarrow 0$.
(2) when $X=1, W=1, Z=1$. and Y switches from $1 \rightarrow 0$.
(3) when $y=1, z=0$. (x can be anything) and W switches from $1 \rightarrow 0$

Need to add all blue terms to remove all three timing hazards.
3. (a) when T is low, the T flip-flop stores the value Q. When T is high, the T flip-flop toggles the value of Q at every positive clock edge.
(b) $Q_{\text {next }}=\bar{T} Q+T \bar{Q}=T \oplus Q \quad(\Theta: X O R)$

(c) D-flip flop symbol:

T-fiip flop:

* Note: NMOS transistor

when $g=0\left(V_{g s}<V_{t h}\right)$ no current flows, when $g=1 \quad\left(V_{g s} \geqq V_{\text {th }}\right)$ current flows.
(a) current will flow when $a=1$ AND $(b=1 \quad O R \quad c d=1)$ (out $=0$ when current flows, otherwise 1)

$$
\text { out }=\overline{a(b+c d)}
$$

(b) *Note: lIst order approximation $t_{\text {pL }}=0.69 R_{n} \cdot C_{L}$

* Note, resistance of NMOS $R_{n} \propto \frac{L}{\mu_{n} W}$
$t_{p H i}$ depends on total resistance to drain.
resistance of gates depends on L / w.
longest path in given circuit - when $a=c=d=1$

$$
t_{\text {PHI }}=\frac{\underbrace{\alpha \frac{L_{\text {min }}}{W_{\text {min }}}}_{\uparrow}=\alpha\left(\frac{L_{a}}{W_{a}}+\frac{L_{c}}{W_{c}}+\frac{L_{d}}{W_{d}}\right) \text { for min. STe inverter }}{}
$$

Note: need to reduce resistance late but cannot reduce length beyond minimum size \Rightarrow increase width
assuming gates $a_{1} C_{1} d$ are same size.

$$
L_{a}=L_{c}=L_{d}=50 \mathrm{~nm} . \quad W_{a}=W_{c}=W_{d}=450 \mathrm{~nm}
$$

when $a=b=1$.

$$
\begin{aligned}
a=b & =1 \\
t_{\text {pHI }} & =\alpha \frac{L_{\min }}{W_{\min }}=\alpha\left(\frac{L_{a}}{W_{a}}+\frac{L_{b}}{W_{b}}\right)=\alpha\left(\frac{L_{\min }}{3 W_{\min }}+\frac{L_{b}}{W_{b}}\right) \\
L_{b} & =50 \mathrm{~nm}, W_{b}=225 \mathrm{~nm}
\end{aligned}
$$

(c) fully - complementary CMOS gate

*Note: PMOS transistor

when g is high ($\left.\left|V_{g s}\right|<\left|v_{t h}\right|\right)$ no current flows.
when g is low $\left(\left|V_{g s}\right| \geqslant\left|V_{\text {th }}\right|\right)$ current flows.

$$
\begin{aligned}
& t_{p L H}=0.69 R_{p} \cdot C_{L} \\
& R_{p} \propto \frac{L}{\mu_{p} W} \\
& \frac{L}{\mu_{p} W}=\frac{2.5 L}{\mu_{n} W}
\end{aligned}
$$

worst-case path: $c=b=0$

$$
\begin{aligned}
& t_{\text {PAL }}=\alpha \frac{L_{\text {min }}}{W_{\text {min }}} \\
& t_{\text {LH }}(\text { for this circuit })=\alpha \cdot 2.5 \cdot\left(\frac{L_{b}}{W_{b}}+\frac{L_{c}}{W_{c}}\right)=\alpha \frac{L_{\text {min }}}{W_{\min }} \\
& \qquad \frac{L_{b}}{W_{b}}+\frac{L_{c}}{W_{c}}=\frac{1}{2.5} \times \frac{L_{\text {min }}}{W_{\text {min }}}
\end{aligned}
$$

assuming PMOS gates $b_{1} c$ are the same size,

$$
L_{b}=L_{c}=50 \mathrm{~nm}, \quad W_{b}=W_{c}=2 \cdot 2.5 \cdot W_{\min }=750 \mathrm{~nm}
$$

PMOS gate d should be the same size as PMOS gate $c \quad($ for $b=d=0$)

$$
L_{d}=50 \mathrm{~nm}, \quad W_{d}=750 \mathrm{~nm}
$$

if $a=0$

$$
\begin{aligned}
t_{p L H}=\alpha \cdot 2.5 \cdot \frac{L_{a}}{W_{a}} & =\alpha \cdot \frac{L_{\min }}{W_{\min }} \\
\frac{L_{a}}{W_{a}} & =\frac{L_{\min }}{2.5 W_{\min }}
\end{aligned}
$$

$L_{a}=50 \mathrm{~nm}, \quad W_{a}=375 \mathrm{~nm}$
(d) $(a, b, c, d)=(1,0,1,1)$ causes worst-case fall delay. $t_{\text {pHi }} \propto R_{n}$. where R_{n} is the effective drain resistance. $(a, b, c, d)=(1,0,1,1)$ is when the drain path has highest resistance.
(e)

$$
\begin{aligned}
& R_{\text {min }}=5 \mathrm{k} \Omega=K_{i}^{K} \frac{L_{\text {min }}}{W_{\text {min }}} \\
& C_{L}=50 \mathrm{fF}\left(=50 \times 10^{-15} \mathrm{~F}\right) \quad R_{a}=R_{C}=R_{d} \\
&\text { worst -case including } \left.\mu_{n}\right) \\
&=k \cdot \frac{L_{\text {min }}}{3 W_{\min }} \\
&=0.69 \cdot\left(R_{a}+R_{c}+R_{d}\right) \cdot C_{L} \quad=0.69 \cdot\left(3 \times \frac{5}{3} \times 10^{3} \Omega\right) \cdot 50 \times 10^{-15} \mathrm{~F} \quad=\frac{5}{3} \mathrm{k} \Omega \\
&=172.5 \times 10^{-12} \operatorname{second} \mathrm{~s} \quad(1 \mathrm{~F} \approx 1 \text { second } / \Omega)
\end{aligned}
$$

(f) pull-down path _NMOS circuit

$$
\begin{aligned}
& w_{a}=w_{c}=w_{d}=3 w_{\min } \\
& w_{b}=1.5 w_{\min }
\end{aligned}
$$

Cint1 - connected to source of c and drain of d.

$$
C_{\text {int }}=3 \cdot c_{\text {din }}+3 c_{\text {din }}=6 \cdot C_{\text {din }}=3 \mathrm{fF}
$$

$C_{i n+2}$ connected to source of a and drain of $b . c$

$$
C_{\text {int }}=3 C_{\text {din }}+1.5 C_{\text {din }}+3 C_{\text {admin }}=7.5 C_{\text {din }}=3.75 \mathrm{fF}
$$

(g)

$$
\begin{aligned}
& \text { (using input vector } \\
& \text { from part (c), } \\
& \text { transistor } b \text { is off) } \\
& t_{\text {PaL }}=0.69 .\left(3 \mathrm{fF} \times \frac{5}{3} k \Omega+3.75 \mathrm{fF} \times \frac{10}{3} k \Omega+50 \mathrm{fF} \times \frac{15}{3} k \Omega\right) \\
& =0.69 \times(5+12.5+250) \times 10^{-15} \times 10^{3} \text { seconds } \\
& =184.575 \times 10^{-12} \text { seconds }
\end{aligned}
$$

