
 

1 8 bit ripple carry adder FA
Full Adder

Qnbn Abbf Qi b ao bo

cont E EE E EEIE.it a.ean o7 6 I O

t k t d
Sn 56 S So

worst case path in ripple carry adder

inputs to FAo propagating all the way to FAn
as the carry bit

full adder 3 3
AB DTD s written in blue

are delays forCin
z each gate

AB

DZ courtA 2

Cin D
BIDICTh

In each full adder the worst case path goes through
the AND gate and the 012gate the circuit that computes
the carry out bit The delay in this path is

2 12 4 1

But in FAN the full adder that computes the
most significant bit the worst case path to the

sum output Sm will go through only an XOR gate

Since there are 8 full adders in an 8 bit ripplecarry
adder the worst case delay for any sum output would be



4 7 3
x

T L
pathto carry out Cin XORed to compute sum

The worst case delay for the carry out would be 4 8 320

2 8 bit carry lookahead adder w 4 bit ripple carry

bn4 amif

I b3O 1 f 003O

1T
lA V CLAD

cout u.ae 4gFoaIf an

53O 53O

4 bit CLA block 4 bit ripple
carry adder

carry lookahead

logic
computes C4
faster

worst case
delay

so that the next
CLA block can

for carry
bit Th

generate its
4 bit

CLAblock
output faster

Gi G
Qi

addingbi Gi Qi bi bits a b generate a new carry

Pi Qb Pi ai bi adding bits a b will propagate the
carry in bit the addition receives



In the Figure above that connects the two 4 bit

CLA blocks I denoted the CLA block for least

significant 4 bits as CLAD and the CLA block

for most significant 4 bits as CLA

worst case delay for car ry bit in 8 bit CLA

worst case delay for carry bit in CLA D

tanbt top in CLA

txoR t 3 tamp 14 top tamp top

3 16 8 21 2 210

worst case delay for gum bit Th 8 bit C.LA

worst case delay for carry bit in CLA

delay from Co to S3 Tn CLA

txort 3 tamp 14 tor t 3 HAND tor txor

3 6 8 1 12 13 320

3 The ripple carry adder will be advantageous when

the number of bits being added together is so small

that there is no advantage in the extra logic to

compute carry out bits faster

the goal is to minimize chip area and don't care
about delay



4 4x4 multiplier using ROM

The address input would be 8 bits with the

4 most significant bits being the multiplicand and
the 4 least significant bits being the multiplier

couldbe vice versa

There will be 28 256 in this ROM

The word activated by the input address would store

the multiplication result

Each word would be 8 bits long

The size of the ROM array would be
256 8 2048 bits

5 4x4 carry save multiplier
Let the two values being multiplied be denoted as

A Q3QzQiQo multiplicand and B bzbzb bo multiplier

The multiplication result can be thought of as

bo X Q3QzQiQo
Q3QzQ Ao Ob X

b z X013Q2 Qiao 00
b z X 03Q2 Q Qo O 00

instead of using a ripple carry adder
for this sum or other fast adder

the carry save multiplier uses the

carry save adder



carry save
multiplierdesign a bo Q2bo Albo Qobo

AzO X133O RnO
Q3bl O Q2b1 Albi Kobi

carry save
adders

µ

I
Q3b3 02h3 04h3 Qob3

it
The critical path is through the shaded half adders and
full adders propagated carry outs that affect rn

The worst case delay in this would be

delay of AND gate
delay in generating carry out in HA X 2

delay in generating carry out in FA x 4

delay in generating sum in HA

to 12 to 14 2 to 1 to 12



6 As the number of bits in the multiplicand and

multiplier increase the critical path delay in the

carry save multiplier will increase

If the decoder logic for ROM addressing has smaller

worst case delay the ROM based multiplier could be faster

However the ROM based multiplier will require much more

transistors to implement proportional to array size

7 a 10112

Unsigned 23 2 120 11

Is complement l x 100 4
2 s complement 23 2 120 5

b 11002
unsigned i 23122 12

1S complement i l x 011 z 3

2 s complement 23 22 4

c 1011001002

Unsigned 2 125 122 164
1 s complement l x 101101 1 z Q1
2 s complement 27 25 22 92

d 100111102
unsigned i 2 124 23 22 2 158
Is complement 1 x 1100001 z 97
2 s complement 2 124 23 22 2 98



e 0100100 I z

Unsigned i 26 123 120 173

Is complement 2 s complement are the same as

unsigned for positive numbers


