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1.2 Introduction to FEM

Finite element method is a very powerful tool for numerical analysis in solid and structural
mechanics as well as in many other engineering disciplines. Here we present an introduction to the
basic concepts of FEM in the simplest context of a one dimensional elasticity of a bar.

In lecture 1, we have derived the governing equation for 1D elasticity of a bar as,
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We can consider two simple problems, one with traction BC and one with displacement BC.

P1:

(1111111 U(O)= 0
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P2:

(1111111 U(O): 0

pa)

77777777 U(L)z 0

{Eu"+pg =0
u(0)=u(L)=0
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General solution for Eu + pg =0:

0
u :—§—§x2+clx+/2?

i) Solution for specified boundary conditions of P1:

u=-29 +Ex+p?gl'x

2E E
o=Eu =P+ pg(L-x)

Actually, we can simply get this solution by considering the equilibrium below

ii) Solution for specified boundary conditions of P2:

u=-2952, Py _PIy(_x)
2E 2E 2E

o=Eu =29 (L-2x)

2
1111
o>0
0
o<0
T

How to use FEM to solve the same problems? (Discretization)
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elements nodes

1) Nodal displacement

Uy, Uy, -+, Uy or u; (j=1,2,-+,n)
U(Xj):“j

2) Use interpolation to represent u(x) interms of U,

u(x) = i u, W, (x) where W, (X) is a function based on element type.
k=1

For linear element:

w, (x)
0 k L
1j=k
Wk(x"):{o j £k

(More elements lead to more accuracy)
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Original problem: to solve u(x) (infinite DOE)

FEM problem: to solve U, (j =12,--, n)

Eu +f =0 (strong form)

L "
JO (E u+f )\N(x)dx =0 (weak form)
The discrete formula of the weak form is

[FEu+ fw(x)dx=0, (j=12,n)

X=X
X =X

X ., —X
Wk(x): ﬁ' ke [Xk7xk+l]

ke [Xk—l’ Xk]

0, otherwise

(N algebraic equations to be solved for N unknowns u;)

z u Wk Iet us calculate the equation in parts.

.[OL Eu'w,(x)dx = Eu'w, (x)(é —I ] Eu'w, (x)dx
=—I EZWk (xw; (x)dx u,
= _Z K i Ux
k=1
L . .
where K = IO Ew, (X)Wj(x)dx which is called Stiffness Matrix. (It turns out this is still

correct even if Young’s modulus varies along the length of the bar, i.e. E=E(X). Can u

explains why?).

I fW dx—F (nodal force)

Therefore, we have

> Ky =F,
k=1

which can be written in matrix form as
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KU=F
k11 k12 kln U, Fl
k u F
where K = 21 22 2n , U= 2 , F= 2
knl kn2 knn un I:n
Remarks:

1) Ky =Ky (symmetric matrix)

2) K, =0,if [j—k/>1

0

K is a sparse matrix. (there is very efficient numerical solver for such a property)

What if u(L)=u,_ #0?
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.[OL Eu'w,(x)dx = Eu'w, (xjg —j - Eu'w, (x)dx
:—ZK u,—u I Ew,,, (x)w; (x)dx
(] =12,...,n). If we define the nodal forces as

Fj:J.Owa )dx — uj Ew,., (x)w) (x)dx

n
The same form Z KU, =F; is obtained.

What if we have tractionBC oc=P@ x=L"?
In this case, the nodal displacement at the boundary node X = L is unknown. We need to solve

u; for j=12,.,n,n+1.

Consider
SR
jLEu"W (x)dx = Eu'w, (x )1 I Eu'w, (x)dx
= X,.1) fj. Ew, (x)w' (x)dx u,
)= 2K
Therefore:

n+l

ZK]kuk_PW ) jfw x)dx = F,

2
What if we are dealing with dynamic problem, i.e. Eu + f = pli (Eg—+ f= 2tl:)?
X

0=JOL(EU"+ f— piijw, (x)dx

n+1

E u'w, (x)dx = P(t)w, (x,.,)- ZIOL Ew, (x)w) (x)dx u, (t)

0
k=1

L
The term JO fw, (x)dx remains the same as in static case. In the dynamic case, we will have
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the additional term:
L n+1 L
- J.o pUw; (x)dx = _kZL, .[o o (xw; (x)dx d, (t)

n+1

= _kZ:;,M ik Uk(t)

L
where M =IO W, (X)Wj (x)dx is called the Mass Matrix. (The density should be kept

inside the integral if the density varies along the length of the bar, i.e. p = p(X).)

Therefore we can write:

n+1 n+1

kZ:; M, U, (t)+k2:;‘ Ky = POW, (x,.0)+ [ F w;(x)dx = F (t)
In matrix form
MU +KU =F
Remarks:

DM =M.

2) My =0,if |j—k>1

M]=
0

Similar to the stiffness matrix, M is also a symmetric and sparse matrix.



