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Announcements:

Mid-term (Tuesday, Oct 31) (1 page double sided notes allowed)

Proposal/team for ABAQUS project (Thursday, Nov 9)

Review of strain concepts

34

deform

y= y(x,t), Yi = yi(X1’X2’X3't): X +U;

Deformation gradient: dy = FdX, F; = N
OX;
Cauchy-Green strains:
QZETEy Cij = Fkiij
B=FF', B;=FF,
Stretch tensors: U = \/E V= \/E
A 0 0 A
C=|0 Z 0] U=0
0 0 24, 0

Polar decomposition:

F=RU=VR
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Let us see how the principal values/directions of C-G strains are related:

The principal values/directionsof C and U are
Um=A,m, Cm=Am
Multiply the above equationby R,
RUM = 4, RM

Since RU =V R =F , we have

Comparing this with the principal value equations for V. and B,
Vi =A,0 (and Bi =A.n)
we can see that

Jy=A, =4, A=Rm

Therefore, we have one set of principle values (/1, Ay A ) and two sets of principle

directions, (m,,m,,m,,) for C, U and (f,,f,,f, )=R(m,, m,, m,) for V and

B.

Volume change

4
/

T

dv . _ . .
—— ratio of volume change (dilation) during deformation
0
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dv = (dyl X dyz)' dy, = & dydy;dy,
= &y Fp Fig P dX,dx, dX,

€ pqr det(F Jdx dx,dx,
—det( )av,

Therefore: STV:det( )= det(U) = det(v )= /det(B) = /det(C) =

0

J is called the Jacobian of deformation.

a)/1/8)(1 a)/1/8)(2 ayl/axa
J= aYZ/axl 8y2/5X2 a}/2/6)(3
ays / axl 5}/3 / aXz 8y3 / 5X3

Engineering concepts of strain

A
v

8(1)=£=I_|0=/1_1
b 1

€(2) :i£= Sl =1-1"
|2—|02 1/,

&) = =—\A -1

12—12 1 _
&) = 2|20 25(1—/12)

For 3D, we can genenalize the corresponding definition as

®: U-1)
@: (1-V)
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@y%@—n
(@:%Q—El)

Among them,
E= E(Q —l) is called the Lagrangian strain tensor.

* 1 -
E = E(I__E 1) is called the Eulerian strain tensor.

Example 1: Pure dilation (no shear)

c=21
F=RU=/R
B=FF' =71
V=21
E-S(-h-E
dTV:J =det(F)= 4’

Example 2: Uniaxial stretch (stretch along 1-direction first, then rotate 90° about 2-axis)
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1 L 0 0O
E==(-8%)=2l0o 0 0
2 2
0 0 3
LA
av,

If rotated 45" about 2-axis,

2 00
U=/0 1 0
0 01
cos45’ —sin45’
R=|sin45" cos45’
0 0

The other tensors can be worked out by

F=RU, VR=RU

0

Example 3: Simple shear

Y, =X +X, tané
Y2 =%

Y;=X%5

/S

4
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1 tanfd O

F=Y_lo 1 o
X .

10 0 1

0 Of|1 tan@ O 1 tan@ 0
C=F'F=|tand 1 0||[0 1 O|=|tand 1+tan’d O
0 1(l0 0 1 0 0 1

Small strain & small rotation theory

Assumption: displacements in solids are usually small compared to relevant structure sizes, i.e.

ou, [uj
| =<1
OX; L

. . L . ou.
In this case, it proves to be useful to Linearize all equations about —-,

8xj

F %: 5“.+% =0, +U;; (because Yy, =X +U;)
OX. OX; ’

]

C=FRF;= (5ki +Uk,i)(5k,— +uk]j): Oy +U;j+U;; +U U =6, +U +U
1
JC =4, +§(Ui,,- +“j,i)
l -1 =l U, +U.; J=¢&; (smallstrain tensor)
2 0] In ]

2
B=FFy :(5'k +ui,kX5jk +uj,k);5ij +U;jtU;;

U

E

@)

1
V =4 +E(Ui,j Jruj,i)

]

*

E =%Q_§l):%(ui,j +U,-,i)=€i,- =E

For small strain & small rotation, there is no longer a need to distinguish between Lagrangian and
Eulerian strain tensors. Basically, all strain tensors become reduced to one

1
&ij :E(u” + U,—,i)

This greatly simplifies the mathematical problem.



