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Remarks on plastic material behavior 
 
1) Yield surfaces (a surface in the stress space representing the condition/criterion whether the 
solid responds elastically or plastically to the applied load) 
 
The von Mises and Tresca yield conditions are represented by the following yield surfaces in the 

stress space (view long the ( 1,1,1
3

1 )  direction). 
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2) The strain can be decomposed into elastic and plastic parts. In incremental form, 

PE εεε ddd +=  

The elastic part is related to stress via the usual linear elastic equations. The plastic part of strain in 
incremental form can be written as   
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Based on the above relations, the plastic strain can be rewritten in term of  as 2J
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3) Normality rule 
 
Yield stress: 

( ) YijYijije f σσσσσσ =⇒== '''
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where ( )'
ijf σ  represents a general yield surface. 

Differentiate the equation 2''
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The plastic strain for a general yield condition ( )'
ijf σ  can be written as 
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which also indicates Pεd  is normal to the yield surfaces. 

 
4) Convexity rule 
 
The yield surface must be convex for plastically stable solids. One cannot have a nonconvex yield 
surface such as the figure below.  
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Nonconvex
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The convexity rule can be related to principle of maximum plastic resistance. 
 

5) Limitations of von Mises law Ye σσ =  

 
Cyclic loading: 

t

σ

 

The εσ =  curve under a cyclic loading is illustrated below. 
 

ε

σ

 

The isotropic hardening as implied by von Mises condition ( Yijij σσσ =''

2
3

) is generally not 

valid in case of cyclic loading. The so-called Bauschinger effect indicates that, if the solid first 
undergoes plastic deformation in tension and then loaded in compression, the yield stress in 

3 



EN0175                                                                            11 / 02 / 06 

compression would generally become smaller. Alternatively, deforming the material in 
compression also tends to soften the material in tension. To account for this, kinematic hardening 
laws have been proposed to allow the yield surface to translate, without changing its shape, in 
stress space.  
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To account for the fact that yield surface translate without changing its shape in cyclic loading, the 
von Mises yield condition can be modified as 

( ) ( )( ) Yijijijijijf σασασσ =−−= '''
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6) - deformation theory 2J

If there is no unloading and the stresses increase proportionally to each other. The - flow 

theory can be integrated to give the so-called - deformation theory of plasticity. 
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7) Single crystal plasticity (1970s-) 
 
Modeling plastic deformation by considering slip along discrete crystal planes and orientations. 
 
e.g. Cu: FCC crystal, 12 slip systems: 4 (111) planes time 3 [110] directions. 
 

 
 
 
Viscoelasticity 
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For a constant loading 0σ  acting from time 0 to , the strain responses of elastic materials and 

viscoelastic materials are illustrated in the figures below. 

T
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Mathematical tools 

Spring: 
E

E σεεσ =⇒=    
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Dash pot: 
η
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Basic viscoelastic models: 
 
Maxwell model: 
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The strain response of Maxwell model to a constant loading 0σ  acting from time 0 to  is T

T t

ε

 
 
Kevin model: 
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The strain response of Kevin model to a constant loading 0σ  acting from time 0 to  is T
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Standard linear solid model: 
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The strain response of standard linear solid model to a constant loading 0σ  acting from time 0 to 

 is T

T t

ε

 
 
More sophisticated models (e.g., for biological systems) 
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General mathematical structure of viscoelstic models: 
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( )εσ EQP =  

Sometimes fractional derivatives (like 21

21

t∂
∂

) have also been used to describe the stress-strain 

relations of complex viscoelastic responses. 
 
Generalize to 3D, 
 

Linear elastic: εσ E=  is generalized to , '' 2 ijij μεσ = kkkk Kεσ 3=  

Viscoelastic: ( )εσ EQP =  can be likewise generalized to ( )'' 2 ijij QP μεσ = , 

( )kkkk KQP εσ 3=  

 
Additional remarks on viscoelasticity: 
 

σ
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1) Creep modulus: the strain response to a unit constant stress. 
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Relaxation modulus: the stress response to a unit constant strain. 
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2) Storage & loss modulus 

t
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Elastic case: tωσσ sin0= , tt
E

ωεωσε sinsin 0
0 ==  (no delay for strain response) 

Viscoelastic case: ( ) ttt ωδεωδεδωεε cossinsincossin 000 −=−=  
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