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Continue on the problem of circular hole under uniaxial tension (remote).  
 

Stress concentration occurs at ar = , 
2
πθ = . 

T
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Governing equation is:  022 =∇∇ φ

 
The stress components in polar coordinates are: 
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Boundary conditions are: 

@ ar = , 0== θσσ rrr  

@ ∞=r , 11 eeT vv ⊗=σ  
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Therefore, the boundary condition at infinity can be decomposed into two parts. 
 
Part I: 
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@ ∞=r , 
2
T

rr == θθσσ . For this part, we have previously obtained the solution as 
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Part II: 

@ ∞=r , θσ 2cos
2
T

rr = , θσθθ 2cos
2
T

−= , θσ θ 2sin
2
T

r −=  

These expressions suggests ( ) θφ 2cosrf= . Inserting it into  gives 022 =∇∇ φ
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Assume: ( ) ( )( )( ) 4,2,2,00224 −=⇒=+−−⇒= λλλλλλrrf  
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Using boundary conditions: 

@ ar = , 0== θσσ rrr  

@ ∞=r , θσ 2cos
2
T

rr = , θσ θ 2sin
2
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We can determine the constant coefficients as 
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Adding the solution to part I, the complete solutions of stress components are: 
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The hoop stress @ ar =  

( )θσθθ 2cos21−= T  

has the maximum at 
2
πθ = . 
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For an elliptic hole, 
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Radius of curvature at the end of semi-major axis is: 
b
a2

=ρ . We can rewrite this solution as 
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If b=ρ , T3max =σ , the result reduces to the case of circular hole. The above behavior is 

fairly typical of stress near a groove or hole. For example, consider the stress concentration at a 
slightly wavy surface under tension. 
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The surface has a profile of 
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The local curvature at a surface valley is 
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Recalling the result for the maximum stress at the valley, we can write 
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This has the same form as that near an elliptical hole. These results suggest that stress 
concentration occurs at places with negative curvature (concave spots of a material/structure). For 
a general crack/notch under tension,  
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the maximum stress occurs at the crack/notch tip can be expressed as 
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where ρ  is the radius of curvature at the tip,  is the depth of the notch, and h α  is a 

geometric factor (equal to 2 for an elliptical hole). 
 
Remark: 
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We note that for crack-like flaws, ∞→maxσ  when 0→ρ , which presents a challenge for 

failure analysis. Fracture mechanics developed in the mid-20th century shows that elasticity 

solutions for such flaws generally have the form of ( )θσ Θ=
−

2
1

Kr . 

( )θφ λ fr 2~ +  
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0
2
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The coefficient K  is called the stress intensity factor. For such sharp cracks/notches, stress itself 
is no longer a useful criterion, rather the coefficient of the singularity, K , turns out to be the 
appropriate quantity for the behavior of cracks/notches.  

Failure criterion: CKK ≤ , where  is a material property called fracture toughness. CK

In contrast, the classical failure criterion based on strength of material has the form Cσσ ≤ , 

which is clearly inappropriate as it predicts materials have no resistance to sharp cracks. 
 
 
Chap. 7  Variational/energy methods in elastic solids 
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Principle of virtual work 
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Here  is the total potential energy of the system. The first 

term is the strain energy stored in the elastic body, 
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Principle of virtual work shows that V  is stationary. In fact,  is minimum with respect to 

variational displacement. If  is the actual displacement field, then  would 

always increase . 
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Proof of the principle of minimum potential energy: 

Consider a kinematically admissible displacement field   (a field satisfying all 

displacement BCs but not necessarily the actual solution). 
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(The second term is always positive due to the positive definiteness of elastic modulus). 
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Simple 1D analog: 
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Consider a 1D linear spring under applied force, the potential energy of the system is 
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Minimum potential energy requires that 
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Example: Pressurized hole in an infinite elastic body 

p
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The pressurized hole should not disturb material at infinity. Take the simplest decay function about 
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the displacement, 

r
ur

1* α=  

 
Based on the assumed displacement field, the strain components are  
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Using Hooke’s law, the stresses are 
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The strain energy density can thus be calculated as 
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The potential energy of the system is 
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To minimize ( )αV , we must have 
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Once the parameter α  is determined, we can write out the complete solution of the problem: 
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It happens that our simple guess about displacement hits the exact solution of the present problem. 
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