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9. Boundary value problems in plasticity 
 
Slip line theory 
 
An important theory in the plane problems of plasticity is the slip line theory. This theory 
simplifies the governing equations for plastic deformation by making several assumptions: 
 
1) rigid-plastic material response (see explanations below). 
2) plane strain deformation; 
3) quasi-static loading; 
4) no temperature change and no body force; 
5) isotropic material 
6) no Baushinger effect 
7) No work hardening 
 
Typical experimental stress-strain relation on plastic material behavior has the form: 
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As an idealized model, rigid-plastic model simplifies the above elastic-plastic stress-strain relation 
to a much simpler form described in the figure below: 
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This indicates that the von Mises stress shall be kept constant at the yield stress 
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Ye σσ = , where ''
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once plastic deformation occurs. 
 
Slip lines are defined as trajectories of the directions of maximum shear stress. For a 2D stress 
state, the orientation of the maximum shear can be found by the techniques of stress 
transformation or Mohr’s circle. 
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The above Mohr circle suggests that the 2D stress state in the orientations of the maximum shear 
stress can be expressed as: 
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βα , : slip directions corresponding to the directions of maximum shear stress. 

2 



EN0175                                                                            12 / 05/ 06 

Since the hydrostatic part of stress causes no plastic deformation, consider the deviatoric stress 
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Within the plastic zone,  
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Equilibrium equations (in-plane):  
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We now transform the stresses from the orientation of maximum shear stress to the x-y 
coordinates: 

φσσσ 2sin1111 kee −=⋅= vv
 

φσσσ 2sin2222 kee +=⋅= vv
 

φσσ 2cos2112 kee =⋅= vv
 

Plug these stress components into the equilibrium equations, we get  
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In the βα ,  directions, the above equations have the form 
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One can verify that these equations are equivalent to the original equilibrium equations using 
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Hencky’s equations: 

const.2 =− φσ k  along α -slip line 

const.2 =+ φσ k  along β -slip line 

 
Example 1: 
 
Consider uniaxial tension, 
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We can easily see that the slip lines are along  and  directions, which is 

straightforward by using Mohr’s circle. 

o45 o45−
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Consider tension in two 1 and 2 directions, 

11σ

22σ

 

Also, slip lines are along  and  directions because the present configuration is just the 

superposition of two uni-axial tensions. 

o45 o45−

 
 
Example 2: Hill’s problem of a rigid punch indenting a plastic solid 

P

punchflatrigid
 

 
What’s the value of P  that allows the punch to indent into the plastic solid? 
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P
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The slip lines consist of a curvilinear mesh of two families of lines, which always cross each other 
at right angles. Follow one slip line ending with two point ,  at boundaries, a b
 

At point ,  a o45=aφ

01222 ==σσ  (free boundary) 

At point ,  b o45−=bφ

022 ≠σ , 011 ≠σ , 012 =σ  (frictionless contact) 

 
@ Point :  a

02cos12 == ak φσ         o45=aφ
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@ Point :  b

02cos12 == bk φσ         o45=bφ

Using Hencky’s equation: aabb kk φσφσ 22 −=− , we obtain 
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The pressure under the punch, 22σ , turns out to be uniform, so integral of 22σ  over the area 

6 



EN0175                                                                            12 / 05/ 06 

should balance the applied force P , 

( ) ( ) wwkwwP Y
Yb σσππσ 3
3

2222 −≈+−=+−=⋅=  

w  is the width of the punch.  
 
(Note: The pressure to indent a material is often called the hardness of a material. The above 
relation shows that the hardness is roughly 3 times the yield stress. This relation between hardness 
and yield stress, sometimes called the Taber relation, is widely used in materials science.) 
 
 
Energy theorems and bounds for limit load in plasticity 
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Since the yield surface is always convex, the principle of maximum plastic resistance indicates an 
inequality: 
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This relation can be used to determine an upper and lower bound for the plastic limit load. First, 

suppose we take kinematically admissible  from some velocity field , and  is the 

stress that drives . In this case, (1) suggests a way to estimate the upper bound of the limit load. 

This is best illustrate by an example as follows. 
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Consider Hill’s problem by energy theorem. We attempt to find an upper bound for the force 

7 



EN0175                                                                            12 / 05/ 06 

required to push a rigid flat punch into a rigid plastic solid. 
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Assume a set of kinematically admissible velocity field in local polar coordinates as shown above:  
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θ

(i.e., This field satisfies all displacement boundary conditions in the problem.) 
The associated strain components are 
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Compare to the exact solution shown previously, 
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Added note:  
 
To estimate lower bound, we switch the starred and the non-stared field in eq. (1) as 
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where  corresponds to a statically admissible field (satisfying equilibrium and not violating 

the yield condition). This equation then provides an estimate for the lower bound. 
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Consider the same example as above. A statically admissible stress field not violating the yield is 
uniform stress equal to yield underneath the indenter. Therefore, 
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