School of Engineering

Brown University

EN175: Advanced Mechanics of Solids
Final Examination
Monday Dec 172018

NAME: \qquad

General Instructions

- No collaboration of any kind is permitted on this examination.
- You may use two pages of reference notes
- Write all your solutions in the space provided. No sheets should be added to the exam.
- Make diagrams and sketches as clear as possible, and show all your derivations clearly Incomplete solutions will receive only partial credit, even if the answer is correct.
- If you find you are unable to complete part of a question, proceed to the next part.

Please initial the statement below to show that you have read it
`By affixing my name to this paper, I affirm that I have executed the examination in accordance with the Academic Honor Code of Brown University. PLEASE WRITE YOUR NAME ABOVE ALSO!

1-5. (11 points)

6. (16 points)
7. (6 points)
8. (12 points)

TOTAL (45 points)

1. The figure shows a beam subjected to constraints and forces. Indicate whether the following functions are kinematically admissible displacement fields for calculating the beam's potential energy

Admissible?
(a) $u_{1}=x_{3}\left(L-x_{3}\right)$

> Y

N
(b) $u_{1}=x_{3}^{3}\left(L-x_{3}\right)^{2}$

Y
N
(c) $u_{1}=x_{3}^{2}\left(L-x_{3}\right)\left(2 L-x_{3}\right)$ Y

N
(d) $u_{1}=x_{3}^{2}\left(2 L-x_{3}\right)$

Y
N

[2 POINTS]
2. The figure shows a tumbler with mass density ρ_{T} filled with fluid with mass density ρ. Using the cylindrical-polar basis shown, write down the boundary conditions for stress components on the three surfaces marked (1), (2), (3) in the figure.

(1) (Top surface, $z=0, \quad a<r<a+t)$
(2) (Outer surface $r=a+t)$
(3) (Inner surface $r=a$)
3. The circular plate shown in the figure is meshed with plate elements for a static analysis. Indicate whether the boundary conditions shown properly constrain the solid.

Properly constrained?

[2 POINTS]
4. The string shown in the figure has mass per unit length m and is stretched by an axial tension T_{0}. It is prevented from moving in a vertical direction at its ends $x_{3}=0, x_{3}=L$. At time $t=0$ it is released from rest with the displacement distribution shown in the figure. Use the space
 below to draw the shape of the string at time $t=L \sqrt{m / T_{0}}$

효
5. The figure shows a finite element simulation of an elastic cylinder with radius R, mass density ρ, Young's modulus E and Poisson's ratio v colliding with a frictionless rigid surface. The goal of the simulation is to calculate the contact time T as a function of material properties and geometry. Re-write the relationship $T=f(E, \rho, \nu, R)$ in dimensionless form.

[2 POINTS]
6. The figure shows a simple design for a dam. The wedge-shaped dam is made from a material with weight density ρ_{C}. It is loaded on its vertical face AB by fluid pressure $p=-\rho_{W} x_{2}$, where ρ_{W} is the weight density of the fluid.
6.1 Write down formulas for unit vectors \mathbf{t}, \mathbf{n} tangent and normal to the back face of the dam, in terms of β (you will need this
 information for part 6.2 and 6.3)
6.2 Write down the boundary conditions on the two faces AB, AC of the dam, in terms of the 2 D stress components $\sigma_{11}, \sigma_{22}, \sigma_{12}$.
6.2 Consider the stress state

$$
\begin{aligned}
& \sigma_{11}=-\rho_{W} x_{2} \\
& \sigma_{22}=\rho_{C}\left(x_{1} \cot (\beta)-x_{2}\right)-\rho_{W} \cot ^{2} \beta\left(2 x_{1} \cot (\beta)-x_{2}\right) \\
& \sigma_{12}=-\rho_{W} x_{1} \cot ^{2} \beta
\end{aligned}
$$

Show that the stress state satisfies equilibrium in the dam (inside the wedge) and also satisfies the boundary conditions on the faces AB and AC . Note that on face $\mathrm{AC} x_{1}=x_{2} \tan \beta$.
6.3 Suppose that the dam is made from concrete, which cannot safely withstand tensile stress. Assuming that the maximum principal tensile stress occurs at B , find a formula for the minimum allowable value for the angle β, in terms of ρ_{c}, ρ_{W}
[2 POINTS]
6.4 Assume that the concrete fails by crushing if the minimum principal stress reaches $\sigma_{3}=-\sigma_{c}$ Assuming that the minimum principal stress occurs at point C , and that β has the minimum value calculated in 7.3, find an expression for the maximum height of the dam, in terms of ρ_{C}, ρ_{W}. You may find the trig identity $1+\tan ^{2} \beta=1 / \cos ^{2} \beta$ helpful.
7. The figure shows a beam that is clamped at $x_{3}=0$ and pinned at $x_{3}=L$. It is subjected to a point force P at mid-span $x_{3}=L / 2$.
7.1 Show that $\hat{v}=C x_{3}^{2}\left(L-x_{3}\right)$ is a kinematically admissible deflection for the beam

7.2 Hence, find a formula for the potential energy of the beam, in terms of E, I, C, P, L. You can assume that the potential energy of a beam is

$$
\Pi=\int_{0}^{L} \frac{1}{2} E I\left(\frac{d^{2} v}{d x^{2}}\right)^{2} d x-\int_{0}^{L} q(x) v(x) d x
$$

7.3 Hence, use the Rayleigh-Ritz method to estimate the deflection of the beam at $x_{3}=L / 2$.
[2 POINTS]
8. A thin-walled sphere with radius R and wall thickness t is made from an elastic-plastic material with Young's modulus E, Poissons ratio v and a linear hardening relation $Y=Y_{0}+h \varepsilon_{e}$. The sphere is subjected to monotonically increasing internal pressure p (with $d p / d t>0$), which generates a stress state (in spherical-polar coordinates) $\sigma_{r r} \approx 0, \sigma_{\phi \phi}=\sigma_{\theta \theta}=p R /(2 t)$ (note that these are principal stresses)
8.1 Find a formula for the Von-Mises stress in the sphere wall, in terms of p, R and t. Hence, calculate the pressure that will first cause yield in the sphere wall.

8.2 Find the hydrostatic and deviatoric stresses in the sphere wall.

[2 POINTS]

8.3 Hence, find a formula for the Von Mises plastic strain rate $d \varepsilon_{e} / d t$ in the sphere wall, in terms of $d p / d t, h, R, t$
8.4 Hence, find a formula for the total strain rates $d \varepsilon_{r r} / d t, d \varepsilon_{\theta \theta} / d t$ (include both elastic and plastic strain rates, and give solutions for pressure both below and above yield) in the shell.
[2 POINTS]
8.5 Find the total hoop strains $\varepsilon_{\theta \theta}, \varepsilon_{\phi \phi}$ when the pressure reaches a value $p=4 t Y_{0} / R$
8.6 Find a formula for the change in radius of the sphere when the pressure reaches a value $p=4 t Y_{0} / R$

