

EN175: Advanced Mechanics of Solids

Final Examination Monday Dec 17 2018

School of Engineering Brown University

NAME:	
General Instructions	
 No collaboration of any kind is permitted on this of You may use two pages of reference notes Write all your solutions in the space provided. Note Make diagrams and sketches as clear as possible, Incomplete solutions will receive only partial crecitations. If you find you are unable to complete part of a quantum of the provided in the pr	o sheets should be added to the exam. and show all your derivations clearly. dit, even if the answer is correct.
Please initial the statement below to show that you have read it `By affixing my name to this paper, I affirm that I have executed the examination in accordance with the Academic Honor Code of Brown University. PLEASE WRITE YOUR NAME ABOVE ALSO!	
	1-5. (11 points)
	6. (16 points)
	7. (6 points)
	8. (12 points)

TOTAL (45 points)____

1. The figure shows a beam subjected to constraints and forces. Indicate whether the following functions are kinematically admissible displacement fields for calculating the beam's potential energy

 $\begin{array}{c|c}
 & \mathbf{e}_{I} \\
 & L \\
 & \mathbf{e}_{3}
\end{array}$

Admissible?

(a)
$$u_1 = x_3(L - x_3)$$

(b)
$$u_1 = x_3^3 (L - x_3)^2$$

Y

(c)
$$u_1 = x_3^2 (L - x_3)(2L - x_3)$$

N

N

(d)
$$u_1 = x_3^2 (2L - x_3)$$

[2 POINTS]

2. The figure shows a tumbler with mass density ρ_T filled with fluid with mass density ρ . Using the cylindrical-polar basis shown, write down the boundary conditions for stress components on the three surfaces marked (1), (2), (3) in the figure.

- (1) (Top surface, z = 0, a < r < a + t)
- (2) (Outer surface r=a+t)
- (3) (Inner surface r=a)

[3 POINTS]

3. The circular plate shown in the figure is meshed with plate elements for a static analysis. Indicate whether the boundary conditions shown properly constrain the solid.

Properly constrained?

[2 POINTS]

4. The string shown in the figure has mass per unit length m and is stretched by an axial tension T_0 . It is prevented from moving in a vertical direction at its ends $x_3=0, x_3=L$. At time $t\!=\!0$ it is released from rest with the displacement distribution shown in the figure. Use the space below to draw the shape of the string at time $t=L\sqrt{m/T_0}$

5. The figure shows a finite element simulation of an elastic cylinder with radius R, mass density ρ , Young's modulus E and Poisson's ratio ν colliding with a frictionless rigid surface. The goal of the simulation is to calculate the contact time T as a function of material properties and geometry. Re-write the relationship $T = f(E, \rho, \nu, R)$ in dimensionless form.

[2 POINTS]

6. The figure shows a simple design for a dam. The wedge-shaped dam is made from a material with weight density ρ_C . It is loaded on its vertical face AB by fluid pressure $p=-\rho_W x_2$, where ρ_W is the weight density of the fluid.

6.1 Write down formulas for unit vectors \mathbf{t} , \mathbf{n} tangent and normal to the back face of the dam, in terms of β (you will need this information for part 6.2 and 6.3)

6.2 Consider the stress state

$$\sigma_{11} = -\rho_W x_2$$

$$\sigma_{22} = \rho_C (x_1 \cot(\beta) - x_2) - \rho_W \cot^2 \beta (2x_1 \cot(\beta) - x_2)$$

$$\sigma_{12} = -\rho_W x_1 \cot^2 \beta$$

 $\sigma_{12}=-\rho_W x_1 \cot^2\beta$ Show that the stress state satisfies equilibrium in the dam (inside the wedge) and also satisfies the boundary conditions on the faces AB and AC. Note that on face AC $x_1=x_2 \tan\beta$.

[6 POINTS]

6.3 Suppose that the dam is made from concrete, which cannot safely withstand tensile stress. Assuming that the maximum principal tensile stress occurs at B, find a formula for the minimum allowable value for the angle β , in terms of ρ_c , ρ_W

[2 POINTS]

6.4 Assume that the concrete fails by crushing if the minimum principal stress reaches $\sigma_3 = -\sigma_c$. Assuming that the minimum principal stress occurs at point C, and that β has the minimum value calculated in 7.3, find an expression for the maximum height of the dam, in terms of ρ_C , ρ_W . You may find the trig identity $1 + \tan^2 \beta = 1/\cos^2 \beta$ helpful.

- 7. The figure shows a beam that is clamped at $x_3 = 0$ and pinned at $x_3 = L$. It is subjected to a point force P at mid-span $x_3 = L/2$.
- 7.1 Show that $\hat{v} = Cx_3^2(L x_3)$ is a kinematically admissible deflection for the beam

[2 POINTS]

7.2 Hence, find a formula for the potential energy of the beam, in terms of E,I,C,P,L. You can assume that the potential energy of a beam is

$$\Pi = \int_{0}^{L} \frac{1}{2} EI \left(\frac{d^2 v}{dx^2} \right)^2 dx - \int_{0}^{L} q(x) v(x) dx$$

7.3 Hence, use the Rayleigh-Ritz method to estimate the deflection of the beam at $x_3 = L/2$.

- **8.** A thin-walled sphere with radius R and wall thickness t is made from an elastic-plastic material with Young's modulus E, Poissons ratio v and a linear hardening relation $Y = Y_0 + h\varepsilon_e$. The sphere is subjected to monotonically increasing internal pressure p (with dp/dt > 0), which generates a stress state (in spherical-polar coordinates) $\sigma_{rr} \approx 0$, $\sigma_{\phi\phi} = \sigma_{\theta\theta} = pR/(2t)$ (note that these are principal stresses)
- 8.1 Find a formula for the Von-Mises stress in the sphere wall, in terms of p,R and t. Hence, calculate the pressure that will first cause yield in the sphere wall.

8.2 Find the hydrostatic and deviatoric stresses in the sphere wall.	
	I2 DOINTS
8.3 Hence, find a formula for the Von Mises plastic strain rate $d\varepsilon_e/dt$ of $dp/dt, h, R, t$	[2 POINTS] in the sphere wall, in terms
	[2 POINTS]

