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1. Please answer the following general questions about FEA modeling briefly 
 
1.1 What are the main differences between a small displacement/geometrically linear (NLGEOM 
OFF in ABAQUS) and a large displacement/geometrically nonlinear analysis (NLGEOM ON in 
ABAQUS)?  (i.e. what approximations are made for NLGEOM OFF) 
 
NLGEOM Off:  small strain measures are used (eg the infinitesimal strain tensor) and deformation 
is neglected when solving the equations of equilibrium or linear momentum balance (i.e. spatial 
derivatives are taken with respect to undeformed coordinates) 
 
NLGEOM On:  large strain measures are used (eg the Lagrange strain tensor) and deformation is 
considered when solving the equations of equilibrium or linear momentum balance (i.e. spatial 
derivatives are taken with respect to deformed coordinates) 

[2 POINTS] 
 
1.2 Give three reasons why a nonlinear static simulation may not converge 
 
Some possible reasons (there are many others): 

(1) Boundary conditions do not constrain rigid body modes 
(2) The user is attempting to apply a load that exceeds the maximum load that the component 

can support (eg a load that exceeds the buckling load, or collapse load on the structure) so 
that a static solution does not exist 

(3) The FE mesh is poorly designed, leading to a poorly conditioned stiffness matrix 
(4) The FE mesh has become excessively distorted by deformation in the component 
(5) The user has requested a step or increment size that is too large 
(6) The assembly may contain a part that has unconstrained rigid body modes because it is not 

in contact with its neighbors in the initial step 
(7) A highly deformable surface has been selected as master surface in a master/slave contact 

pair (master surface should be the more rigid of the two contacting solids) 
[2 POINTS] 

 
 
1.3  Suggest a suitable choice of material model for each of the following applications: 

(a) Calculate stresses near the contact between two gear teeth 
 
Linear elasticity 
 
 
(b) Model material removal in an orthogonal machining process 
 
An elastic-plastic material model with damage, e.g. Johnson-Cook 
 
 
(c) Model the rubber seal around a refrigerator door 
 
A large strain elasticity model, eg neo-hookean or more complex model; or possibly a finite 
strain viscoelastic material model 

[2 POINTS] 
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1.4 Explain briefly what is meant by a finite element interpolation.  
 

 The goal of FEA is to calculate displacements (in solid mechanics, or more generally other 
field variables) at a set of discrete points (nodes) in a component.    The FE interpolations 
allow displacements at arbitrary positions between the discrete points to be calculated.   
They do this by sub-dividing the solid into discrete volume elements.   The displacement in 
each element depends only on the nodes attached to the element, and does not depend on 
displacements at other nodes. 

 
[2 POINTS] 

 
1.5 Explain the difference between a static and an explicit dynamic FEA simulation 
 

A static analysis is calculating the displacements in a solid that is stationary, or deforming 
so slowly that its kinetic energy is negligible. It is solving the equations of static 
equilibrium.  An explicit dynamic simulation is calculating time dependent displacements in 
a solid that is accelerating.   It is solving the linear momentum conservation equation. 

 
[2 POINTS] 

 
 
2. The figure shows a tensile specimen.  It is 
intended to be loaded in uniaxial tension parallel 
to the 3x  direction, with a constant engineering 
strain rate 33E   applied to the specimen. 
 
Specify boundary conditions that you would 
impose on the specimen if you were to conduct 
an FEA analysis of the tensile test. 
 
 
(Identify points or planes where BCs are to be 
applied by their coordinates or equations; eg ‘apply 1 25 on 0u x= = ’   etc.   If a boundary 
condition is a function of time specify the function.) 
 
Apply, eg (other choices are possible): 

• 1 30 0u x= =   
• 2 1 1 2 30 0u u x x x= = = = =   (i.e. at one point – to constrain rigid rotation) 
• 2 1 2 30 0u x w x x= = = =   (i.e. at one point – to constrain rigid rotation) 
• 3 33 3u E Lt x L= =   

[4 POINTS] 
 
 
 
 

h
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3. Consider the following displacement field 
1 2

1 2 32 2 2 2
1 2 1 2

0x xu u u
x x x x

= = =
+ +

 

 
 
3.1 Calculate the nonzero components of the infinitesimal strain tensor 

2 2 2
1 1 2 1

11 2 2 2 2 2 2 2 2
1 1 2 1 2 1 2

2 2 2
2 2 1 2

22 2 2 2 2 2 2 2 2
2 1 2 1 2 1 2

1 2 1 2
12 2 2 2

2 1 1 2

21
( ) ( )

21
( ) ( )

21
2 ( )

u x x x
x x x x x x x
u x x x
x x x x x x x

u u x x
x x x x

ε

ε

ε

∂ −
= = − =
∂ + + +

∂ −
= = − =
∂ + + +

 ∂ ∂
= + = − ∂ ∂ + 

 

 
[3 POINTS] 

 
3.2 Show that the material is incompressible 
 

For an incompressible material 11 22 0ε ε+ =  , which is clearly satisfied. 
 

[1 POINT] 
 
3.3 Calculate the principal strains (as functions of 1 2,x x ) 
 
The principal strains are the eigenvalues of the strain tensor 

( )
( )( ) ( )( )

( ) ( )
( ) ( )

2 2
2 1 1 2

2 2 22 2
1 2 2 11 2

2 22 2 2 2 2 2 2 2 2 2 2 2
2 1 1 2 2 1 1 2 1 2

4 22 2 4 2 2 2 2
1 2 2 1 1 2

4 22 2 4 2 2
1 2 2 1

2 2
2 1

021det 0
02 ( )

4 0

4 0

0

1

x x x x
x x x xx x

x x x x x x x x x x

x x x x x x

x x x x

x x

λ
λ

λ λ

λ

λ

λ

  −   − =    − −  +   

⇒ − − − + − + + − =

⇒ + − − + =

⇒ + − + =

⇒ = ±
+

 

Hence 1 22 2 2 2
2 1 2 1

1 1
x x x x

ε ε= = −
+ +

  

(As a check note that 1 2 0ε ε+ =  ) 
 

[3 POINTS] 
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4. The figure shows a MEMS mirror, which is a thin 
flat disk with radius a that spins at constant angular 
speed ω  about the 1e  axis.   The mirror is made from 
a material with mass density ρ , Young’s modulus E 
and Poisson’s ratio ν   
 
 
 
4.1 Find the acceleration vector of a material particle 
at position ( , )r θ  in the disk, expressing your answer 
in the { ,r θe e  } basis shown, which rotates with the 
disk (this is an engn40 problem - note that every point 
in the disk is in circular motion about the axis of 
rotation and use the circular motion formulas) 
 

2 sin ( sin cos )rr θω θ θ θ= − +a e e  
 

[1 POINT] 
 

4.2 The (steady state) stress state in the disk can be shown to be 

( )
2 2 2

2 2 2 2 2 2

2 2

( )(8sin 1)

( )(8sin 1) 2 4( )cos 2 (1 )

4 sin 2 ( )

rr

r

C a r

C a r C a r r

C a r
θθ

θ

σ θ ν

σ θ ν θ ν

σ θ

= − + −

= − + − + − + −

= −

 

where 2 /16C ρω= .  (All other stress components are zero).  
 
Show that the stress state satisfies the equations of linear momentum balance (use cylindrical polar 
coordinates)  

 
The linear momentum balance equations are 

1 1( ) rrr
rr ra

r r r
θ

θθ
σσ σ σ ρ
θ

∂∂
+ − + =

∂ ∂
 

1 2r r a
r r r

θθ θ θ
θ

σ σ σ ρ
θ

∂ ∂
+ + =

∂ ∂
 

 
where  

2 2 2sin 16 sinra r Crρ ρω θ θ= − = −   
2 sin cos 16 sin cosa r Crθρ ω ρ θ θ θ θ= − = −  

 
Substituting the given stress field: 
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( )2 2 2 2 2

2

2 2 2 2 2 2

1 1( )

2 8sin 1 8 ( )cos 2 2 (1 ) 8 ( )cos 2

16 sin
1 2

8 16 8( )2sin cos ( )sin 2 8 sin 2 ( )sin 2

16 sin cos

rrr
rr

r r

r r r
C CrC a r Cr a r
r r

Cr

r r r
C C Ca r a r Cr a r
r r r

Cr

θ
θθ

θθ θ θ

σσ σ σ
θ

θ ν θ ν θ

θ
σ σ σ
θ

θ θ θ θ θ

θ θ

∂∂
+ − +

∂ ∂

= − + − − − − − + −

= −
∂ ∂

+ +
∂ ∂

= − − − − + −

= −

 

 
[4 POINTS] 

 
4.3 Show that the stress state satisfies boundary conditions at the edge of the disk (r=a) 
 

The boundary conditions are 0rr rθσ σ= =   This is clearly satisfied 
 

[1 POINT] 
 
4.4 What other conditions must be satisfied for the stress state to be a correct solution? (you don’t 
need to show that the conditions are satisfied) 
 

The stress state must be related to the strains by the elastic stress-strain relations, and the 
strain field must be compatible. 

 
[2 POINTS] 

 
 
4.5 Suppose that the mirror is made from Si, which fails by fracture if the maximum principal stress 
exceeds a critical value 0σ  .   Find a formula for the maximum admissible angular speed ω  .  You 
can assume that the critically stressed location is at 0θ = , r=0. 
 
At r=0 , 0θ = we have 

2

2

( 1)
(7 )

0

rr

r

Ca
Caθθ

θ

σ ν

σ ν
σ

= −

= +
=

 

 
Since the stress is diagonal ,rr θθσ σ  are the principal stresses.   At the critical angular speed 

2 2 0
0

4(7 ) /16
(7 )

a
a

σρω ν σ ω
ρ ν

+ = ⇒ =
+

 

 
[2 POINTS] 
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5. A cable with mass m per unit length is 
stretched by a tension 0T  .    The end at 

3 0x =  is pinned, while the support at 

3x L=  can move vertically, and is held in 
place by a spring with stiffness s    The 
goal of this problem is to calculate the 
natural frequencies of vibration. 
 
 
5.1 Write down the boundary condition for 
the transverse displacement 1u   of the cable at 3 0x = . 
 
 
The left hand end is pinned so 1 0u =   
 

[1 POINT] 
 
 
 
5.2 Show that the boundary condition at 3x L=  is  

1
0 1

3

0duT su
dx

+ =  

(assume small deflections, and that 1( ) 0u L = when the system is in its static equilibrium 
configuration). 
 
 
 One way to show this is to draw a FBD for the support at the 
right – summing forces in the vertical direction gives 

0 sin 0sT Fθ− − =  

Noting that 1
1

3

sin ( )s
du F su L
dx

θ θ≈ = =   

then gives the stated answer 
 
 
 

[2 POINTS] 
 
 
 
 
 
 
 
 

e1

e3
u1(x3)

x3

T0T0

s

L

T0

T0

FS

θ
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5.3  State the equation of motion for the cable (you don’t need to derive it), and show that the 
standing wave solution 1 3 3sin ( sin cos )u t A kx B kxω= +  satisfies the equation. Give the relation 
between wave number k, natural frequency ω  and wave speed c. 
 

The governing equation is the wave equation 
2 2

1 1
2 2 2
3

1u u
x c t

∂ ∂
=

∂ ∂
 

Where 0Tc
m

=   

 
 
Substituting the given solution gives 

2
2

2sin ( sin cos ) sin ( sin cos )k t A kx B kx t A kx B kx
c
ωω ω− + = − +  

So if we pick 

k
c
ω

=  

the equation is satisfied 
 

[3 POINTS] 
 
5.4 Show that the natural frequencies are given by 

0n
n

T
L m
βω =  

where nβ  are the roots of the equation 

0

cos sin 0n n n
Ls
T

β β β+ =  

 
The boundary conditions can be expressed as 

0 0

0 1 0
cos sin sin cos 0

A
kT kL s kL kT kL s kL B
     

=     + − +     
 

 
The determinant of the matrix must vanish for a nontrivial solution, which gives 

0 cos sin 0T k kL s kL+ =  
 
Set kL β=   

0

0

cos sin 0 cos sin 0T sLs
L T
β β β β β β+ = ⇒ + =  

Finally using the dispersion relation gives 

0TL c
c L L m
ω ββ ω β= ⇒ = =  

 
[4 POINTS] 



 9 

 
5.5   Find formulas (in terms of 0 , ,T L m  ) for the lowest natural frequency of the system for  

(a) 
0

0Ls
T

=  

(b) 
0

Ls
T

→∞  

(c) 
0

1Ls
T

=  

The plot of tan( )x  provided in the figure may be helpful. 
 

 

 
 
 

For 
0

0Ls
T

=  we require 0
1 1cos 0 / 2

2n
T

L m
πβ β π ω= ⇒ = ⇒ =   

For 
0

Ls
T

→∞  we require 0
1 1sin 0n

T
L m
πβ β π ω= ⇒ = ⇒ =   

For 
0

1Ls
T

=  we require 0
1 1 1 1

2.03tan 2.05 T
L m

β β β ω= − ⇒ ≈ ⇒ =  (using the graph) 

 
[2 POINTS] 

 
 

0 0.5 1 1.5 2 2.5 3
x

-4

-3

-2

-1

0

1

2

3

4

ta
n(

x)
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L

a

v∆
x

q

 
6 The figure shows a MEMS cantilever beam with length L, Young’s modulus E and area moment 
of inertia I.   When straight, the beam is a height ∆  above a surface.  A constant attractive force per 
unit length q acts between the surface and the beam.  As a result, the beam is bent, and a portion 
a<x<L of the beam comes into contact with the surface, as indicated in the figure.   The goal of this 
problem is to estimate the length a of the cantilever that is not in contact.    
 
6.1 Show that 

(1 cos(2 / )) / 2 0x a x a
v

a x L
π∆ − < <

=  ∆ < <
 

 is a kinematically admissible (downward) deflection of the beam 
 

The boundary conditions are 
/ 0 0

/ 0
v dv dx x
v dv dx x a
= = =
= ∆ = >

 

 
The stated displacement satisfies all these.  The displacement is also continuous, has 
continuous slope, and is twice differentiable. 

 
[2 POINTS] 

 
6.2 Find a formula for the potential energy of the beam, in terms of , , , , ,a E I L q∆   (be sure to 
include the contribution to the potential energy from the section a<x<L.  You can assume that this 
section is also subjected to the force per unit length q).   You might find the integral 

( )2

0

cos 2 / / 2
a

x a dx aπ =∫  

helpful. 
 

We have that 
22

2
0 0

22

2
0 0

2 4 2 4

3 3

1 ( )
2

1 4 2 2cos 1 cos
2 2 2

( )
2 2

L L

a a L

a

d vEI dx qv x dx
dx

x xEI dx q dx qdx
a aa

EI q a EI q aq L a qL
a a

π π π

π π

 
Π = −  

 

 ∆ ∆  = − − − ∆       

∆ ∆ ∆ ∆
= − − ∆ − = + − ∆

∫ ∫

∫ ∫ ∫  

 
 

[3 POINTS] 
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6.3  Hence, find a formula for a 
 

We want to minimize Π  so 
2 4

4

1/4

3 0
2

6

EI q
a a

EIa
q

π

π

∂Π ∆ ∆
= − + =

∂

 ∆
⇒ =  

 

 

 
 

[2 POINTS] 
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7. A cylindrical, thin-walled pressure vessel with close ends, initial radius R, 
length L  and wall thickness t<<R is subjected to internal pressure p.  The 
vessel is made from an isotropic elastic-plastic solid with Young’s modulus E, 
Poisson’s ratio ν , and its yield stress varies with accumulated plastic strain eε  
as 0 eY Y hε= + .   
 
Recall that the stresses in a thin-walled pressurized tube are related to the 
internal pressure by / (2 )zz pR tσ = , /pR tθθσ =     0rrσ ≈   
 
 
 
7.1 Calculate the Von-Mises stress in the tube 

{ }2 2 2 2 2 2
1 2 1 3 2 3

1 1 1 1 3( ) ( ) ( ) (1 ) (1 0) ( 0)
2 2 2 2 2e

pR pR
t t

σ σ σ σ σ σ σ  = − + − + − = − + − + − = 
 

 

 
[1 POINT] 

 
 
7.2 Hence, find the critical value of internal pressure required to initiate yield in the solid (use the Von-

Mises criterion) 
 

Use the Von-Mises yield criterion 

{ }2 2 2 2 2 2
1 2 1 3 2 3 0

0

1 1 1 1 3( ) ( ) ( ) (1 ) (1 0) ( 0)
2 2 2 2 2
2

3

e
pR pR Y
t t

Y tp
R

σ σ σ σ σ σ σ  = − + − + − = − + − + − = = 
 

⇒ =

[1 POINT] 
 

 
7.3 Find a formula for the strain increment , ,rr zzd d dθθε ε ε  resulting from an increment in pressure dp  

(neglect changes in the tube geometry) 
 

Below yield the strains are elastic 

0

0

21
1 3

0 /
21 2 (2 ) /

2 2 2 3/

e p T
ij ij ij ij ij kk

ij

rr

zz

d d d d d d Y tp
dt dt dt dt E dt dt R

p dp dt
Y tR d R d Rp p dp dt p

E t dt E t dt Et Rp p dp dt
θθ

ε ε ε ε σ σν ν δ
ν

ε ν
ν νε ν

ε

 +
= + + = − < + 

−       
+       ⇒ = − = − <       

              

 

(or can use matrix formulas from class directly).    
 
If yield is exceeded, we can use the general formula 

1 3 3
1 2 2

kl
e p T kl

ij ij ij ij ij ijkk
ij ij

e e

dSd d d d d Sd d Tdt
dt dt dt dt E dt dt h dt

σ
ε ε ε ε σ σν ν δ αδ

ν σ σ
 + ∆

= + + = − + + + 
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The hydrostatic stress is ( )1 2 1
3 2 2

pR pR
t t

+ =   

The deviatoric stress is 0
2 2rr zz
pR pRS S S

t tθθ= − = =   

The Von Mises stress is 
3
2e
pR
t

σ =   

Therefore 

2

0 1
( / 2 ) ( / ) /1 3 32 1

2 2 2 2 23 / (2 ) 0

/ 1
3 1(2 ) / 1

2 4
/ 0

rr

zz

p
pR t d pR t dtd R d R d pRp p

dt E t dt E t dt th pR tp p

dp dt
R R dpdp dt
Et t h dt

dp dt

θθ

ε
ν νε

ε

ν
ν

−       
+       = − +                       

− −   
   = − +   
      

 

(or use matrix formulas from class directly) 
 

[4 POINTS] 
 
 
7.4 Suppose that the pressure is increased 10% above the initial yield value.  Find a formula for the change 

in radius, length and wall thickness of the vessel.  Assume small strains. 
 
We need to do this calculation in two steps.    
 
Before the tube reaches yield, it deforms elastically.   The strains at the point of yield are 

0 02(2 ) (2 )
2 3 31 1

rr

zz

Y t YR
Et R Eθθ

ε ν ν
ε ν ν
ε

− −     
     = − = −     
          

 

We now integrate the results of 7.3 to find the total strain after the tube exceeds yield  

0 0 0 0

1 1
2(1.1) 2(0.1) 1.1 (0.1)3 1 3(2 ) 1 (2 ) 1

2 4 23 3 31 0 1 0

rr

zz

Y t Y t Y YR R
Et t h hR R Eθθ

ε ν ν
ε ν ν
ε

− − − −         
         = − + = − +         
                  

 

 
We can use the strains to calculate the changes in thickness, radius and length: 

/ / /rr zzt t R R L Lθθε ε ε= ∆ = ∆ = ∆  
Therefore 

0 01.1 (0.1)3(2 )
23 0

t t t
Y YR R R

hEL L

ν
ν

∆ − −     
     ∆ == − +     
     ∆     

 

[4 POINTS] 
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