Chapter 12

 

Dynamic solutions for elastic solids

 

 

 

In this section we discuss briefly the motion of elastic solids subjected to some loading.   We will consider two topics: (1) wave propagation in an elastic solid; and (2) vibrations.

 

 

12.1 Wave propagation in a string

 

We can develop some physical intuition into how deformable solids will move by solving some simple problems.   We start by analyzing motion of strings MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  these are simple MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  but it turns out that waves in a string behave the same way as plane waves in an elastic solid.

 

Example 1: Traveling wave propagation in a stretched string with given initial conditions

 

We can learn a lot about the behavior of waves in solids by looking at the behavior of a stretched string. For this purpose we solve the following problem:  An infinitely long string under axial tension T 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGubWaaSbaaS qaaiaaicdaaeqaaaaa@3735@  as at rest and has a transverse displacement

u 1 ( x 3 )= u (0) ( x 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG1bWaaSbaaS qaaiaaigdaaeqaaOGaaiikaiaadIhadaWgaaWcbaGaaG4maaqabaGc caGGPaGaeyypa0JaamyDamaaCaaaleqabaGaaiikaiaaicdacaGGPa aaaOGaaiikaiaadIhadaWgaaWcbaGaaG4maaqabaGccaGGPaaaaa@423D@

at time t=0.   Find the subsequent motion of the string.

 

We derived the governing equation for a string in Chapter 10.  It is

T 0 d 2 u 1 d x 3 2 =ρA d 2 u 1 d t 2 d 2 u 1 d x 3 2 = 1 c 2 d 2 u 1 d t 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaWgaaWcbaGaaGimaaqabaGcda WcaaqaaiaadsgadaahaaWcbeqaaiaaikdaaaGccaWG1bWaaSbaaSqa aiaaigdaaeqaaaGcbaGaamizaiaadIhadaqhaaWcbaGaaG4maaqaai aaikdaaaaaaOGaeyypa0JaeqyWdiNaamyqamaalaaabaGaamizamaa CaaaleqabaGaaGOmaaaakiaadwhadaWgaaWcbaGaaGymaaqabaaake aacaWGKbGaamiDamaaCaaaleqabaGaaGOmaaaaaaGccqGHshI3daWc aaqaaiaadsgadaahaaWcbeqaaiaaikdaaaGccaWG1bWaaSbaaSqaai aaigdaaeqaaaGcbaGaamizaiaadIhadaqhaaWcbaGaaG4maaqaaiaa ikdaaaaaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaam4yamaaCaaale qabaGaaGOmaaaaaaGcdaWcaaqaaiaadsgadaahaaWcbeqaaiaaikda aaGccaWG1bWaaSbaaSqaaiaaigdaaeqaaaGcbaGaamizaiaadshada ahaaWcbeqaaiaaikdaaaaaaaaa@580E@

 where  c= T 0 /ρA MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGJbGaeyypa0 ZaaOaaaeaacaWGubWaaSbaaSqaaiaaicdaaeqaaOGaai4laiabeg8a YjaadgeaaSqabaaaaa@3C81@  is the wave speed.

 

This is the famous wave equation.   It has a rather simple general solution u 1 =f( x 3 ct)+g( x 3 +ct) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG1bWaaSbaaS qaaiaaigdaaeqaaOGaeyypa0JaamOzaiaacIcacaWG4bWaaSbaaSqa aiaaiodaaeqaaOGaeyOeI0Iaam4yaiaadshacaGGPaGaey4kaSIaam 4zaiaacIcacaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaam4y aiaadshacaGGPaaaaa@4743@  where f and g are arbitrary functions, which must be determined from the initial conditions (and if the string has ends, boundary conditions at the ends).   For the current case the initial conditions for u 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG1bWaaSbaaS qaaiaaigdaaeqaaaaa@3757@  give

f( x 3 )+g( x 3 )= u (0) ( x 3 ) u 1 t =cf'( x 3 )+cg'( x 3 )=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGMbGaaiikai aadIhadaWgaaWcbaGaaG4maaqabaGccaGGPaGaey4kaSIaam4zaiaa cIcacaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaaiykaiabg2da9iaadw hadaahaaWcbeqaaiaacIcacaaIWaGaaiykaaaakiaacIcacaWG4bWa aSbaaSqaaiaaiodaaeqaaOGaaiykaiaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVpaalaaabaGaey OaIyRaamyDamaaBaaaleaacaaIXaaabeaaaOqaaiabgkGi2kaadsha aaGaeyypa0JaaGPaVlaaykW7cqGHsislcaWGJbGaamOzaiaacEcaca GGOaGaamiEamaaBaaaleaacaaIZaaabeaakiaacMcacqGHRaWkcaWG JbGaam4zaiaacEcacaGGOaGaamiEamaaBaaaleaacaaIZaaabeaaki aacMcacqGH9aqpcaaIWaaaaa@7B14@

where f'(λ)=df/dλ,g'(λ)=dg/dλ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGMbGaai4jai aacIcacqaH7oaBcaGGPaGaeyypa0JaamizaiaadAgacaGGVaGaamiz aiabeU7aSjaacYcacaaMc8UaaGPaVlaaykW7caWGNbGaai4jaiaacI cacqaH7oaBcaGGPaGaeyypa0JaamizaiaadEgacaGGVaGaamizaiab eU7aSbaa@5063@  .   To solve these for f and g just integrate the second one, which gives us two equations

f( x 3 )+g( x 3 )= u (0) ( x 3 )f( x 3 )+g( x 3 )=A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGMbGaaiikai aadIhadaWgaaWcbaGaaG4maaqabaGccaGGPaGaey4kaSIaam4zaiaa cIcacaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaaiykaiabg2da9iaadw hadaahaaWcbeqaaiaacIcacaaIWaGaaiykaaaakiaacIcacaWG4bWa aSbaaSqaaiaaiodaaeqaaOGaaiykaiaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaeyOeI0IaamOzaiaacIcacaWG4bWaaSbaaSqaaiaaiodaaeqaaOGa aiykaiabgUcaRiaadEgacaGGOaGaamiEamaaBaaaleaacaaIZaaabe aakiaacMcacqGH9aqpcaWGbbaaaa@7134@

where A is a constant.   Solve these

f( x 3 )=[ u (0) ( x 3 )A]/2g( x 3 )=[ u (0) ( x 3 )+A]/2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGMbGaaiikai aadIhadaWgaaWcbaGaaG4maaqabaGccaGGPaGaeyypa0Jaai4waiaa dwhadaahaaWcbeqaaiaacIcacaaIWaGaaiykaaaakiaacIcacaWG4b WaaSbaaSqaaiaaiodaaeqaaOGaaiykaiabgkHiTiaadgeacaGGDbGa ai4laiaaikdacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadEgacaGGOaGaam iEamaaBaaaleaacaaIZaaabeaakiaacMcacqGH9aqpcaGGBbGaamyD amaaCaaaleqabaGaaiikaiaaicdacaGGPaaaaOGaaiikaiaadIhada WgaaWcbaGaaG4maaqabaGccaGGPaGaey4kaSIaamyqaiaac2facaaM c8Uaai4laiaaikdacaaMc8oaaa@78B0@

So the solution is

u 1 ( x 3 )=f( x 3 ct)+g( x 3 +ct)=[ u (0) ( x 3 ct)+ u (0) ( x 3 +ct)]/2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG1bWaaSbaaS qaaiaaigdaaeqaaOGaaiikaiaadIhadaWgaaWcbaGaaG4maaqabaGc caGGPaGaeyypa0JaamOzaiaacIcacaWG4bWaaSbaaSqaaiaaiodaae qaaOGaeyOeI0Iaam4yaiaadshacaGGPaGaey4kaSIaam4zaiaacIca caWG4bWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaam4yaiaadshaca GGPaGaeyypa0Jaai4waiaadwhadaahaaWcbeqaaiaacIcacaaIWaGa aiykaaaakiaacIcacaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaeyOeI0 Iaam4yaiaadshacaGGPaGaey4kaSIaamyDamaaCaaaleqabaGaaiik aiaaicdacaGGPaaaaOGaaiikaiaadIhadaWgaaWcbaGaaG4maaqaba GccqGHRaWkcaWGJbGaamiDaiaacMcacaGGDbGaai4laiaaikdaaaa@624E@

The solution (with initial condition u(0, x 3 )=exp( x 3 2 /4) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG1bGaaiikai aaicdacaGGSaGaamiEamaaBaaaleaacaaIZaaabeaakiaacMcacqGH 9aqpciGGLbGaaiiEaiaacchacaGGOaGaeyOeI0IaamiEamaaDaaale aacaaIZaaabaGaaGOmaaaakiaac+cacaaI0aGaaiykaaaa@4568@  )  is animated in the figure below   

 

 

You can see the initial disturbance split into two waves, which propagate at stead speed down the string.  These are the functions f and gf  is a wave propagating to the right, and g is a wave propagating to the left.  Of course, the wave motion is just an illusion MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  every point in the string moves transverse to its axis, but like the ‘wave’ in an athletic stadium the disturbance appears to propagate even though the crowd are just raising and lowering their arms.  

 

 

Example 2: Traveling wave propagation in a stretched string with prescribed motion at an end

 

The same general solution can be used to solve any traveling wave problem.  For example, suppose we hold one end of a very long string.  The string is at rest with u 1 =d u 1 /dt=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG1bWaaSbaaS qaaiaaigdaaeqaaOGaeyypa0JaamizaiaadwhadaWgaaWcbaGaaGym aaqabaGccaGGVaGaamizaiaadshacqGH9aqpcaaIWaaaaa@3F90@  everywhere at t=0.  We then move the end we are holding with a prescribed displacement u * (t) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG1bWaaWbaaS qabeaacaGGQaaaaOGaaiikaiaadshacaGGPaaaaa@39A7@  .   Find the displacement.

 

As before, the solution is u 3 =f( x 3 ct)+g( x 3 +ct) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG1bWaaSbaaS qaaiaaiodaaeqaaOGaeyypa0JaamOzaiaacIcacaWG4bWaaSbaaSqa aiaaiodaaeqaaOGaeyOeI0Iaam4yaiaadshacaGGPaGaey4kaSIaam 4zaiaacIcacaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaam4y aiaadshacaGGPaaaaa@4745@ .  Note that f(λ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGMbGaaiikai abeU7aSjaacMcaaaa@396E@   must be calculated for all <λ< MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqGHsislcqGHEi sPcqGH8aapcqaH7oaBcqGH8aapcqGHEisPaaa@3D01@ , since for any x 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4bWaaSbaaS qaaiaaiodaaeqaaaaa@375C@  its argument will be negative for sufficiently large t, but g(λ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGNbGaaiikai abeU7aSjaacMcaaaa@396F@  need only be defined for λ>0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBcqGH+a GpcaaIWaaaaa@38EC@  , since its argument is never negative .The initial conditions give

f( x 3 )+g( x 3 )=0cf'( x 3 )cg'( x 3 )=0x 3 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGMbGaaiikai aadIhadaWgaaWcbaGaaG4maaqabaGccaGGPaGaey4kaSIaam4zaiaa cIcacaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaaiykaiabg2da9iaaic dacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caWGJbGaamOzaiaacEcacaGGOaGaamiEamaaBaaa leaacaaIZaaabeaakiaacMcacqGHsislcaWGJbGaam4zaiaacEcaca GGOaGaamiEamaaBaaaleaacaaIZaaabeaakiaacMcacqGH9aqpcaaI WaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaamiEaiaaxcW7daWgaaWcbaGaaG4maaqabaGccqGHLjYS caaIWaaaaa@7E5D@

Integrate the second equation and then solve for f and,g to see that

f( x 3 )=A,g( x 3 )=A x 3 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGMbGaaiikai aadIhadaWgaaWcbaGaaG4maaqabaGccaGGPaGaeyypa0Jaamyqaiaa cYcacaaMc8UaaGPaVlaaykW7caaMc8Uaam4zaiaacIcacaWG4bWaaS baaSqaaiaaiodaaeqaaOGaaiykaiabg2da9iabgkHiTiaadgeacaaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaamiEamaaBaaaleaacaaIZaaa beaakiabgwMiZkaaicdaaaa@61BF@

This gives us g everywhere we need it, and tells us f(λ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGMbGaaiikai abeU7aSjaacMcaaaa@396E@  for λ>0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBcqGH+a GpcaaIWaaaaa@38EC@  .  We can find f(λ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGMbGaaiikai abeU7aSjaacMcaaaa@396E@  for λ<0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBcqGH8a apcaaIWaaaaa@38E8@  from the boundary condition on displacement at x 3 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4bWaaSbaaS qaaiaaiodaaeqaaOGaeyypa0JaaGimaaaa@3926@

f(ct)+g(ct)= u * (t)t0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGMbGaaiikai abgkHiTiaadogacaWG0bGaaiykaiabgUcaRiaadEgacaGGOaGaam4y aiaadshacaGGPaGaeyypa0JaaGPaVlaaykW7caaMc8UaaGPaVlaadw hadaahaaWcbeqaaiaacQcaaaGccaGGOaGaamiDaiaacMcacaaMc8Ua aGPaVlaaykW7caWG0bGaeyyzImRaaGimaaaa@530C@

We already know g(ct)=At0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGNbGaaiikai aadogacaWG0bGaaiykaiabg2da9iabgkHiTiaadgeacaaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWG0b GaeyyzImRaaGimaaaa@4DB1@   so it follows that

f(ct)=A+ u * (t)t0f(λ)=A+ u * (λ/c)λ0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGMbGaaiikai abgkHiTiaadogacaWG0bGaaiykaiabg2da9iaadgeacqGHRaWkcaWG 1bWaaWbaaSqabeaacaGGQaaaaOGaaiikaiaadshacaGGPaGaaGPaVl aaykW7caaMc8UaaGPaVlaadshacqGHLjYScaaIWaGaeyO0H4TaamOz aiaacIcacqaH7oaBcaGGPaGaeyypa0JaamyqaiabgUcaRiaadwhada ahaaWcbeqaaiaacQcaaaGccaGGOaGaeyOeI0Iaeq4UdWMaai4laiaa dogacaGGPaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlabeU7aSjabgsMiJkaaicdaaaa@6A73@  .

We now have the complete solution, which can be re-written as

u 3 (t, x 3 )={ 0 x 3 ct>0 u * (t x 3 /c) x 3 ct<0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG1bWaaSbaaS qaaiaaiodaaeqaaOGaaiikaiaadshacaGGSaGaamiEamaaBaaaleaa caaIZaaabeaakiaacMcacqGH9aqpdaGabaqaauaabeqaceaaaeaaca aIWaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaamiEamaaBaaaleaacaaIZaaabeaakiabgkHiTiaadoga caWG0bGaeyOpa4JaaGimaaqaaiaadwhadaahaaWcbeqaaiaacQcaaa GccaGGOaGaamiDaiabgkHiTiaadIhadaWgaaWcbaGaaG4maaqabaGc caGGVaGaam4yaiaacMcacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caWG4bWaaSbaaSqaaiaaiodaaeqaaOGaeyOeI0Iaam4yaiaa dshacqGH8aapcaaIWaaaaaGaay5Eaaaaaa@910E@

It is a bit easier to visualize this if we re-write the conditional as

u 3 (t, x 3 )={ 0t x 3 /c<0 u * (t x 3 /c)t x 3 /c>0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG1bWaaSbaaS qaaiaaiodaaeqaaOGaaiikaiaadshacaGGSaGaamiEamaaBaaaleaa caaIZaaabeaakiaacMcacqGH9aqpdaGabaqaauaabeqaceaaaeaaca aIWaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaamiDaiabgkHiTiaadIhadaWgaaWcbaGaaG4maaqabaGc caGGVaGaam4yaiabgYda8iaaicdaaeaacaWG1bWaaWbaaSqabeaaca GGQaaaaOGaaiikaiaadshacqGHsislcaWG4bWaaSbaaSqaaiaaioda aeqaaOGaai4laiaadogacaGGPaGaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaamiDaiabgkHiTiaadIhadaWgaaWcbaGaaG4maaqa baGccaGGVaGaam4yaiabg6da+iaaicdaaaaacaGL7baaaaa@9274@

This equation says that every point on the string experiences the same history of displacement u* MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG1bGaaiOkaa aa@371E@  , but a point at position x 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4bWaaSbaaS qaaiaaiodaaeqaaaaa@375C@  will experience the displacement at a time x 3 /c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4bWaaSbaaS qaaiaaiodaaeqaaOGaai4laiaadogaaaa@3901@  later than the point at x 3 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4bWaaSbaaS qaaiaaiodaaeqaaOGaeyypa0JaaGimaaaa@3926@  .  Of course we already know that, but it is nice to see the math work out.

 

The figure below animates the behavior of a string that has its leftmost end moved through two cycles  of a sin wave.

 

 

Example 3: Reflections at a boundary

 

Finally, we look at what happens when a wave reaches the end of a string.  The figure shows the two possible types of boundary: at x 3 =L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4bWaaSbaaS qaaiaaiodaaeqaaOGaeyypa0Jaamitaaaa@393D@  is a fixed end; x 3 =L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4bWaaSbaaS qaaiaaiodaaeqaaOGaeyypa0JaeyOeI0Iaamitaaaa@3A2A@  is a free end.   The string is at rest at time t=0 and has a transverse displacement

u 1 ( x 3 )= u (0) ( x 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG1bWaaSbaaS qaaiaaigdaaeqaaOGaaiikaiaadIhadaWgaaWcbaGaaG4maaqabaGc caGGPaGaeyypa0JaamyDamaaCaaaleqabaGaaiikaiaaicdacaGGPa aaaOGaaiikaiaadIhadaWgaaWcbaGaaG4maaqabaGccaGGPaaaaa@423D@

For simplicity we assume that the string is only displaced near the origin, and in particular u (0) ( x 3 )=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG1bWaaWbaaS qabeaacaGGOaGaaGimaiaacMcaaaGccaGGOaGaamiEamaaBaaaleaa caaIZaaabeaakiaacMcacqGH9aqpcaaIWaaaaa@3DC3@  at x 3 =±L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4bWaaSbaaS qaaiaaiodaaeqaaOGaeyypa0JaeyySaeRaamitaaaa@3B2B@  .

 

The two boundary conditions at the ends are

u 1 =0 x 3 =L d u 1 d x 3 =0 x 3 =L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG1bWaaSbaaS qaaiaaigdaaeqaaOGaeyypa0JaaGimaiaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caWG4bWaaSbaaSqaaiaaiodaaeqaaO Gaeyypa0JaamitaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7daWcaaqaaiaadsgacaWG1bWaaSbaaSqaaiaaigda aeqaaaGcbaGaamizaiaadIhadaWgaaWcbaGaaG4maaqabaaaaOGaey ypa0JaaGimaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadIhadaWgaaWcba GaaG4maaqabaGccqGH9aqpcqGHsislcaWGmbaaaa@7F1A@

We can satisfy these by extending the string to ± MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqGHXcqScqGHEi sPaaa@38D5@  , and introducing initial displacements into the imaginary parts of the string outside L< x 3 <L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqGHsislcaWGmb GaeyipaWJaamiEamaaBaaaleaacaaIZaaabeaakiabgYda8iaadYea aaa@3BFD@  that will satisfy the two boundary conditions.  Hopefully you can see that to cancel the forward propagating wave (to keep the end fixed at x 3 =L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4bWaaSbaaS qaaiaaiodaaeqaaOGaeyypa0Jaamitaaaa@393D@  ) you need to introduce an initial displacement in the opposite direction centered at x 3 =2L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4bWaaSbaaS qaaiaaiodaaeqaaOGaeyypa0JaaGOmaiaadYeaaaa@39F9@  , while to keep the slope fixed at x 3 =L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4bWaaSbaaS qaaiaaiodaaeqaaOGaeyypa0JaeyOeI0Iaamitaaaa@3A2A@  , you need to introduce a disturbance of the same sign at x 3 =2L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4bWaaSbaaS qaaiaaiodaaeqaaOGaeyypa0JaeyOeI0IaaGOmaiaadYeaaaa@3AE6@  .   The figure below illustrates the idea graphically: the waves generated by the initial displacements of the fictitious blue parts of the string will reach the boundaries at just the same time as those in the real, brown parts: on the right, the waves cancel and give zero displacement; on the left, they combine and keep the slope zero.

Of course the process does not end here: we need to continue extending the string to both left and right and add the appropriate initial displacements to satisfy boundary conditions at the two ends for all time.  The animation below shows the full sequence (the left end is free; the right end is fixed).  If you enjoy puzzles and some basic matlab coding you might find it instructive to try to reproduce the result yourself.

You can watch the two ends to understand the two types of reflection:

·         At a fixed end, a wave with positive deflection reflects as one with a negative deflection;

·         At a free end, a wave with positive deflection reflects as one with a positive deflection sign.

 

It is helpful to understand how reflections influence transverse forces in the string as well.   Recall that the transverse force in a string is related to the deflection by

T 1 = T 0 d u 1 d x 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGubWaaSbaaS qaaiaaigdaaeqaaOGaeyypa0JaamivamaaBaaaleaacaaIWaaabeaa kmaalaaabaGaamizaiaadwhadaWgaaWcbaGaaGymaaqabaaakeaaca WGKbGaamiEamaaBaaaleaacaaIZaaabeaaaaaaaa@3FC2@

An animation of the transverse force is shown below

 Watch the animation and convince yourself that

·         At a fixed end, a positive transverse force is reflected as a positive transverse force;

·         At a free end, a positive transverse force is reflected as a negative transverse force.

The rules governing reflections of forces are the opposite to those governing displacement.

 

 

 

12.2: Pressure and shear plane waves in 3D elastic solids

 

Now that we understand strings, we can think about waves in 3D elastic solids.   Start with the special case of an infinitely large, isotropic linear elastic solid with Young’s modulus E, Poissons ratio ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH9oGBaaa@372E@  and mass density ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHbpGCaaa@3736@  that fills all of space.   Consider motion of the form

u(x,t)= u 1 ( x 3 ,t) e 1 + u 3 ( x 3 ,t) e 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH1bGaaiikai aahIhacaGGSaGaamiDaiaacMcacqGH9aqpcaWG1bWaaSbaaSqaaiaa igdaaeqaaOGaaiikaiaadIhadaWgaaWcbaGaaG4maaqabaGccaGGSa GaaiiDaiaacMcacaWHLbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIa amyDamaaBaaaleaacaaIZaaabeaakiaacIcacaWG4bWaaSbaaSqaai aaiodaaeqaaOGaaiilaiaacshacaGGPaGaaCyzamaaBaaaleaacaaI Zaaabeaaaaa@4DCF@

This describes a so-called ‘plane wave’ that propagates in the x 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4bWaaSbaaS qaaiaaiodaaeqaaaaa@375C@   direction.  To visualize the motion note that

(1)   every point that lies in a particular ( x 1 , x 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaamiEam aaBaaaleaacaaIXaaabeaakiaacYcacaWG4bWaaSbaaSqaaiaaikda aeqaaOGaaiykaaaa@3B5C@  plane has the same displacement

(2)   u 1 ( x 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG1bWaaSbaaS qaaiaaigdaaeqaaOGaaiikaiaadIhadaWgaaWcbaGaaG4maaqabaGc caGGPaaaaa@3AAA@  is a displacement transverse to the propagation direction (a so called ‘Shear wave’ or S-wave).  This is just like the motion of a wave moving along a string.

(3)   u 3 ( x 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG1bWaaSbaaS qaaiaaiodaaeqaaOGaaiikaiaadIhadaWgaaWcbaGaaG4maaqabaGc caGGPaaaaa@3AAC@ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  it is a displacement parallel to the wave propagation direction (a ‘Pressure wave’ or P-wave).   This type of motion can’t occur in a string, but it does occur in long flexible springs (like a slinky) which can be stretched axially.

 

We can now substitute this displacement field into the elasticity equations:

* The strain-displacement relation gives

ε 13 = 1 2 u 1 x 3 ε 33 = u 3 x 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaigdacaaIZaaabeaakiabg2da9maalaaabaGaaGymaaqa aiaaikdaaaWaaSaaaeaacqGHciITcaWG1bWaaSbaaSqaaiaaigdaae qaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaaIZaaabeaakiaaykW7 aaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlabew7aLnaaBaaaleaacaaIZaGaaG4maaqabaGc cqGH9aqpdaWcaaqaaiabgkGi2kaadwhadaWgaaWcbaGaaG4maaqaba aakeaacqGHciITcaWG4bWaaSbaaSqaaiaaiodaaeqaaaaaaaa@5E95@

* The elastic stress-strain law gives

σ 33 = E(1ν) (1+ν)(12ν) ε 33 = E(1ν) (1+ν)(12ν) u 3 x 3 σ 13 = E (1+ν) ε 13 = E 2(1+ν) u 1 x 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakqaabeqaaiabeo8aZnaaBaaaleaacaaIZa GaaG4maaqabaGccqGH9aqpdaWcaaqaaiaadweacaGGOaGaaGymaiab gkHiTiabe27aUjaacMcaaeaacaGGOaGaaGymaiabgUcaRiabe27aUj aacMcacaGGOaGaaGymaiabgkHiTiaaikdacqaH9oGBcaGGPaaaaiab ew7aLnaaBaaaleaacaaIZaGaaG4maaqabaGccqGH9aqpdaWcaaqaai aadweacaGGOaGaaGymaiabgkHiTiabe27aUjaacMcaaeaacaGGOaGa aGymaiabgUcaRiabe27aUjaacMcacaGGOaGaaGymaiabgkHiTiaaik dacqaH9oGBcaGGPaaaamaalaaabaGaeyOaIyRaamyDamaaBaaaleaa caaIZaaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaaG4maaqaba aaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIZaaabeaakiabg2da 9maalaaabaGaamyraaqaaiaacIcacaaIXaGaey4kaSIaeqyVd4Maai ykaaaacqaH1oqzdaWgaaWcbaGaaGymaiaaiodaaeqaaOGaeyypa0Za aSaaaeaacaWGfbaabaGaaGOmaiaacIcacaaIXaGaey4kaSIaeqyVd4 MaaiykaaaadaWcaaqaaiabgkGi2kaadwhadaWgaaWcbaGaaGymaaqa baaakeaacqGHciITcaWG4bWaaSbaaSqaaiaaiodaaeqaaaaaaaaa@7D13@

* Finally, the linear momentum balance equation gives

σ 33 x 3 =ρ 2 u 3 t 2 2 u 3 x 3 2 = 1 c L 2 2 u 3 t 2 σ 33 x 3 =ρ 2 u 1 t 2 2 u 3 x 3 2 = 1 c s 2 2 u 3 t 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakqaabeqaamaalaaabaGaeyOaIyRaeq4Wdm 3aaSbaaSqaaiaaiodacaaIZaaabeaaaOqaaiabgkGi2kaadIhadaWg aaWcbaGaaG4maaqabaaaaOGaeyypa0JaeqyWdi3aaSaaaeaacqGHci ITdaahaaWcbeqaaiaaikdaaaGccaWG1bWaaSbaaSqaaiaaiodaaeqa aaGcbaGaeyOaIyRaamiDamaaCaaaleqabaGaaGOmaaaaaaGccqGHsh I3daWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiaadwhadaWg aaWcbaGaaG4maaqabaaakeaacqGHciITcaWG4bWaa0baaSqaaiaaio daaeaacaaIYaaaaaaakiabg2da9maalaaabaGaaGymaaqaaiaadoga daqhaaWcbaGaamitaaqaaiaaikdaaaaaaOWaaSaaaeaacqGHciITda ahaaWcbeqaaiaaikdaaaGccaWG1bWaaSbaaSqaaiaaiodaaeqaaaGc baGaeyOaIyRaamiDamaaCaaaleqabaGaaGOmaaaaaaaakeaadaWcaa qaaiabgkGi2kabeo8aZnaaBaaaleaacaaIZaGaaG4maaqabaaakeaa cqGHciITcaWG4bWaaSbaaSqaaiaaiodaaeqaaaaakiabg2da9iabeg 8aYnaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaamyDamaa BaaaleaacaaIXaaabeaaaOqaaiabgkGi2kaadshadaahaaWcbeqaai aaikdaaaaaaOGaeyO0H49aaSaaaeaacqGHciITdaahaaWcbeqaaiaa ikdaaaGccaWG1bWaaSbaaSqaaiaaiodaaeqaaaGcbaGaeyOaIyRaam iEamaaDaaaleaacaaIZaaabaGaaGOmaaaaaaGccqGH9aqpdaWcaaqa aiaaigdaaeaacaWGJbWaa0baaSqaaiaadohaaeaacaaIYaaaaaaakm aalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaamyDamaaBaaa leaacaaIZaaabeaaaOqaaiabgkGi2kaadshadaahaaWcbeqaaiaaik daaaaaaaaaaa@8618@

 

where

 *  c L = E(1ν)/ρ(1+ν)( 12ν ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadogadaqhaa WcbaGaamitaaqaaaaakiabg2da9maakaaabaGaamyraiaacIcacaaI XaGaeyOeI0IaeqyVd4Maaiykaiaac+cacqaHbpGCcaGGOaGaaGymai abgUcaRiabe27aUjaacMcadaqadaqaaiaaigdacqGHsislcaaIYaGa eqyVd4gacaGLOaGaayzkaaaaleqaaaaa@4A62@  is the speed of longitudinal wave propagation through the solid

 *  c s = E/2(1+ν)ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadogadaWgaa WcbaGaam4CaaqabaGccqGH9aqpdaGcaaqaaiaadweacaGGVaGaaGOm aiaacIcacqGHXaqmcqGHRaWkcqaH9oGBcaGGPaGaeqyWdihaleqaaa aa@4119@  is the speed of shear wave propagation through the solid.

 

The longitudinal wave is always faster than the shear wave.

 

These are the same wave equation that governs the motion of a string.  Everything we learned about strings applies without modification to plane waves in 3D elastic solids.

 

Example 1: An isotropic, linear elastic half space with Young’s modulus E, Poisson’s ratio ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH9oGBaaa@347E@  and mass density ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHbpGCaaa@3486@  occupies the region x 3 >0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaaG4maaqabaGccqGH+aGpcaaIWaaaaa@38BA@  .  The solid is at rest and stress free at time t=0.  For t>0 it is subjected to a pressure p(t) on x 3 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaaG4maaqabaGccqGH9aqpcaaIWaaaaa@38B8@  as shown in the picture. 

Solution: The displacement and stress fields in the solid (as a function of time and position) are

u 3 ( x 3 ,t)={ c L E (1+ν)(12ν) (1ν) 0 t x 3 / c L p(τ)dτ x 3 <t c L 0 x 3 >t c L σ 33 ={ p(t x 3 / c L ) x 3 <t c L 0 x 3 >t c L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyDam aaBaaaleaacaaIZaaabeaakiaacIcacaWG4bWaaSbaaSqaaiaaioda aeqaaOGaaiilaiaadshacaGGPaGaeyypa0ZaaiqaaeaafaqabeGaba aabaWaaSaaaeaacaWGJbWaaSbaaSqaaiaadYeaaeqaaaGcbaGaamyr aaaadaWcaaqaaiaacIcacaaIXaGaey4kaSIaeqyVd4MaaiykaiaacI cacaaIXaGaeyOeI0IaaGOmaiabe27aUjaacMcaaeaacaGGOaGaaGym aiabgkHiTiabe27aUjaacMcaaaWaa8qCaeaacaWGWbGaaiikaiabes 8a0jaacMcacaWGKbGaeqiXdqNaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caWG4bWaaSbaaSqaaiaaiodaaeqaaOGaeyipaWJaamiDaiaado gadaWgaaWcbaGaamitaaqabaaabaGaaGimaaqaaiaadshacqGHsisl caWG4bWaaSbaaWqaaiaaiodaaeqaaSGaai4laiaadogadaWgaaadba GaamitaaqabaaaniabgUIiYdaakeaacaaIWaGaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaadIhadaWgaaWcbaGaaG4maaqaba GccqGH+aGpcaWG0bGaam4yamaaBaaaleaacaWGmbaabeaaaaaakiaa wUhaaaqaaiabeo8aZnaaBaaaleaacaaIZaGaaG4maaqabaGccqGH9a qpdaGabaqaauaabeqaceaaaeaacqGHsislcaWGWbGaaiikaiaadsha cqGHsislcaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaai4laiaadogada WgaaWcbaGaamitaaqabaGccaGGPaGaaGPaVlaaykW7caaMc8UaaGPa VlaadIhadaWgaaWcbaGaaG4maaqabaGccqGH8aapcaWG0bGaam4yam aaBaaaleaacaWGmbaabeaaaOqaaiaaicdacaaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadIhadaWgaaWcbaGaaG4m aaqabaGccqGH+aGpcaWG0bGaam4yamaaBaaaleaacaWGmbaabeaaaa aakiaawUhaaaaaaa@1C79@

where c L = E(1ν)/ρ(1+ν)( 12ν ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadogadaqhaa WcbaGaamitaaqaaaaakiabg2da9maakaaabaGaamyraiaacIcacaaI XaGaeyOeI0IaeqyVd4Maaiykaiaac+cacqaHbpGCcaGGOaGaaGymai abgUcaRiabe27aUjaacMcadaqadaqaaiaaigdacqGHsislcaaIYaGa eqyVd4gacaGLOaGaayzkaaaaleqaaaaa@4A62@  is the speed of longitudinal wave propagation through the solid.  All other displacement and stress components are zero.  For the particular case of a constant (i.e. time independent) pressure, magnitude σ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo8aZnaaBa aaleaacaaIWaaabeaaaaa@37B1@ , applied to the surface

u 3 ( x 3 ,t)={ (12ν)(1+ν) (1ν) σ 0 E ( c L t x 3 ) x 3 < c L t 0 x 3 > c L t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwhadaWgaa WcbaGaaG4maaqabaGccaGGOaGaamiEamaaBaaaleaacaaIZaaabeaa kiaacYcacaWG0bGaaiykaiabg2da9maaceaabaqbaeqabiqaaaqaam aalaaabaGaaiikaiaaigdacqGHsislcaaIYaGaeqyVd4Maaiykaiaa cIcacaaIXaGaey4kaSIaeqyVd4MaaiykaaqaaiaacIcacaaIXaGaey OeI0IaeqyVd4MaaiykaaaadaWcaaqaaiabeo8aZnaaBaaaleaacaaI WaaabeaaaOqaaiaadweaaaGaaiikaiaadogadaWgaaWcbaGaamitaa qabaGccaWG0bGaeyOeI0IaamiEamaaBaaaleaacaaIZaaabeaakiaa cMcacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaadIhadaWgaaWcbaGaaG4maaqabaGccqGH8aapcaWGJbWaaSba aSqaaiaadYeaaeqaaOGaamiDaaqaaiaaicdacaaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaamiEamaaBaaaleaacaaIZaaabeaa kiabg6da+iaadogadaWgaaWcbaGaamitaaqabaGccaWG0baaaaGaay 5Eaaaaaa@C556@               σ 33 ={ σ 0 x 3 < c L t 0 x 3 > c L t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo8aZnaaBa aaleaacaaIZaGaaG4maaqabaGccqGH9aqpdaGabaqaauaabeqaceaa aeaacqGHsislcqaHdpWCdaWgaaWcbaGaaGimaaqabaGccaaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadIhadaWg aaWcbaGaaG4maaqabaGccqGH8aapcaWGJbWaaSbaaSqaaiaadYeaae qaaOGaamiDaaqaaiaaicdacaaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaamiEamaaBaaaleaacaaIZaaabeaakiabg6da+iaadogadaWgaaWc baGaamitaaqabaGccaWG0baaaaGaay5Eaaaaaa@6B25@

Evidently, a stress pulse equal in magnitude to the surface pressure propagates vertically through the half-space with speed c L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadogadaWgaa WcbaGaamitaaqabaaaaa@36FB@ .

 

Notice that the velocity of the solid is constant in the region 0< x 3 <t c L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaaicdacqGH8aapcaWG4bWaaSbaaSqaai aaiodaaeqaaOGaeyipaWJaamiDaiaadogadaWgaaWcbaGaamitaaqa baaaaa@37F8@ , and the velocity is related to the pressure by

v 3 = c L (12ν)(1+ν) (1ν) σ 0 E = ρ 0 c L σ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAhadaWgaa WcbaGaaG4maaqabaGccqGH9aqpcaWGJbWaaSbaaSqaaiaadYeaaeqa aOWaaSaaaeaacaGGOaGaaGymaiabgkHiTiaaikdacqaH9oGBcaGGPa GaaiikaiaaigdacqGHRaWkcqaH9oGBcaGGPaaabaGaaiikaiaaigda cqGHsislcqaH9oGBcaGGPaaaamaalaaabaGaeq4Wdm3aaSbaaSqaai aaicdaaeqaaaGcbaGaamyraaaacqGH9aqpdaWcaaqaaiabeg8aYnaa BaaaleaacaaIWaaabeaaaOqaaiaadogadaWgaaWcbaGaamitaaqaba aaaOGaeq4Wdm3aaSbaaSqaaiaaicdaaeqaaaaa@54C2@

 

Derivation: The solution can be derived as follows.

 

1.      The solution to the 1-D wave equation is

u 3 ( x 3 ,t)=f(t x 3 / c L )+g(t+ x 3 / c L ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwhadaWgaa WcbaGaaG4maaqabaGccaGGOaGaamiEamaaBaaaleaacaaIZaaabeaa kiaacYcacaWG0bGaaiykaiabg2da9iaadAgacaGGOaGaamiDaiabgk HiTiaadIhadaWgaaWcbaGaaG4maaqabaGccaGGVaGaam4yamaaBaaa leaacaWGmbaabeaakiaacMcacqGHRaWkcaWGNbGaaiikaiaadshacq GHRaWkcaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaai4laiaadogadaWg aaWcbaGaamitaaqabaGccaGGPaaaaa@4F3B@

where f and g are two functions that must be chosen to satisfy boundary and initial conditions.

2.      The initial conditions are

u 3 ( x 3 ,0)=f( x 3 / c L )+g( x 3 / c L )=0 u 3 t = f ( x 3 / c L )+ g ( x 3 / c L )=0 } x 3 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaciaabaqbae qabiqaaaqaaiaadwhadaWgaaWcbaGaaG4maaqabaGccaGGOaGaamiE amaaBaaaleaacaaIZaaabeaakiaacYcacaaIWaGaaiykaiabg2da9i aadAgacaGGOaGaeyOeI0IaamiEamaaBaaaleaacaaIZaaabeaakiaa c+cacaWGJbWaaSbaaSqaaiaadYeaaeqaaOGaaiykaiabgUcaRiaadE gacaGGOaGaamiEamaaBaaaleaacaaIZaaabeaakiaac+cacaWGJbWa aSbaaSqaaiaadYeaaeqaaOGaaiykaiabg2da9iaaicdaaeaadaWcaa qaaiabgkGi2kaadwhadaWgaaWcbaGaaG4maaqabaaakeaacqGHciIT caWG0baaaiabg2da9iqadAgagaqbaiaacIcacqGHsislcaWG4bWaaS baaSqaaiaaiodaaeqaaOGaai4laiaadogadaWgaaWcbaGaamitaaqa baGccaGGPaGaey4kaSIabm4zayaafaGaaiikaiaadIhadaWgaaWcba GaaG4maaqabaGccaGGVaGaam4yamaaBaaaleaacaWGmbaabeaakiaa cMcacqGH9aqpcaaIWaaaaaGaayzFaaGaamiEamaaBaaaleaacaaIZa aabeaakiabgwMiZkaaicdaaaa@6B9E@

where the prime denotes differentiation with respect to its argument.  Solving these equations shows that

f( x 3 / c L )=g( x 3 / c L )=A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgacaGGOa GaeyOeI0IaamiEamaaBaaaleaacaaIZaaabeaakiaac+cacaWGJbWa aSbaaSqaaiaadYeaaeqaaOGaaiykaiabg2da9iabgkHiTiaadEgaca GGOaGaamiEamaaBaaaleaacaaIZaaabeaakiaac+cacaWGJbWaaSba aSqaaiaadYeaaeqaaOGaaiykaiabg2da9iaadgeaaaa@475F@

where A is some constant.

3.      Observe that t+ x 3 / c L 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshacqGHRa WkcaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaai4laiaadogadaWgaaWc baGaamitaaqabaGccqGHLjYScaaIWaaaaa@3DF5@  for t>0, so that g(t+ x 3 / c L )=A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGNbGaaiikaiaadshacqGHRaWkca WG4bWaaSbaaSqaaiaaiodaaeqaaOGaai4laiaadogadaWgaaWcbaGa amitaaqabaGccaGGPaGaeyypa0JaeyOeI0Iaamyqaaaa@3E31@ .  Substituting this result back into the solution in (4) gives u 3 ( x 3 ,t)=f(t x 3 / c L )A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwhadaWgaa WcbaGaaG4maaqabaGccaGGOaGaamiEamaaBaaaleaacaaIZaaabeaa kiaacYcacaWG0bGaaiykaiabg2da9iaadAgacaGGOaGaamiDaiabgk HiTiaadIhadaWgaaWcbaGaaG4maaqabaGccaGGVaGaam4yamaaBaaa leaacaWGmbaabeaakiaacMcacqGHsislcaWGbbaaaa@475C@ .

4.        Next, use the boundary condition σ 22 =p(t) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaaGOmaiaaik daaeqaaOGaeyypa0JaeyOeI0IaamiCaiaacIcacaWG0bGaaiykaaaa @3B71@  at x 3 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWG4bWaaSbaaSqaaiaaiodaaeqaaO Gaeyypa0JaaGimaaaa@3676@  to see that

σ 33 = E(1ν) (1+ν)(12ν) u 3 x 3 =p(t) E(1ν) (1+ν)(12ν) ( 1 c L )f'(t)=p(t) f(t x 3 / c L )= c L E (1+ν)(12ν) (1ν) 0 t x 3 / c L p(τ)dτ +B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=fYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeq4Wdm 3aaSbaaSqaaiaaiodacaaIZaaabeaakiabg2da9maalaaabaGaamyr aiaacIcacaaIXaGaeyOeI0IaeqyVd4MaaiykaaqaaiaacIcacaaIXa Gaey4kaSIaeqyVd4MaaiykaiaacIcacaaIXaGaeyOeI0IaaGOmaiab e27aUjaacMcaaaWaaSaaaeaacqGHciITcaWG1bWaaSbaaSqaaiaaio daaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaaIZaaabeaaaaGc cqGH9aqpcqGHsislcaWGWbGaaiikaiaadshacaGGPaGaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlabgkDiElaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7daWcaaqaaiaadweacaGGOaGaaGymaiabgkHiTiabe27aUjaacMca aeaacaGGOaGaaGymaiabgUcaRiabe27aUjaacMcacaGGOaGaaGymai abgkHiTiaaikdacqaH9oGBcaGGPaaaamaabmaabaWaaSaaaeaacqGH sislcaaIXaaabaGaam4yamaaBaaaleaacaWGmbaabeaaaaaakiaawI cacaGLPaaacaWGMbGaai4jaiaacIcacaWG0bGaaiykaiabg2da9iab gkHiTiaadchacaGGOaGaamiDaiaacMcaaeaacqGHshI3caWGMbGaai ikaiaadshacqGHsislcaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaai4l aiaadogadaWgaaWcbaGaamitaaqabaGccaGGPaGaeyypa0ZaaSaaae aacaWGJbWaaSbaaSqaaiaadYeaaeqaaaGcbaGaamyraaaadaWcaaqa aiaacIcacaaIXaGaey4kaSIaeqyVd4MaaiykaiaacIcacaaIXaGaey OeI0IaaGOmaiabe27aUjaacMcaaeaacaGGOaGaaGymaiabgkHiTiab e27aUjaacMcaaaWaa8qCaeaacaWGWbGaaiikaiabes8a0jaacMcaca WGKbGaeqiXdqhaleaacaaIWaaabaGaamiDaiabgkHiTiaadIhadaWg aaadbaGaaG4maaqabaWccaGGVaGaam4yamaaBaaameaacaWGmbaabe aaa0Gaey4kIipakiabgUcaRiaadkeaaaaa@BFCD@

where B is a constant of integration.

5.      Finally, B can be determined by setting t=0 in the result of (7) and recalling from step (5) that f( x 3 / c L )=A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgacaGGOa GaeyOeI0IaamiEamaaBaaaleaacaaIZaaabeaakiaac+cacaWGJbWa aSbaaSqaaiaadYeaaeqaaOGaaiykaiabg2da9iaadgeaaaa@3E95@ .  This shows that B=-A and so

u 3 ( x 3 ,t)= c L E (1+ν)(12ν) (1ν) 0 t x 3 / c L p(τ)dτ σ 33 =p(t x 3 / c L ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FgYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyDam aaBaaaleaacaaIZaaabeaakiaacIcacaWG4bWaaSbaaSqaaiaaioda aeqaaOGaaiilaiaadshacaGGPaGaeyypa0ZaaSaaaeaacaWGJbWaaS baaSqaaiaadYeaaeqaaaGcbaGaamyraaaadaWcaaqaaiaacIcacaaI XaGaey4kaSIaeqyVd4MaaiykaiaacIcacaaIXaGaeyOeI0IaaGOmai abe27aUjaacMcaaeaacaGGOaGaaGymaiabgkHiTiabe27aUjaacMca aaWaa8qCaeaacaWGWbGaaiikaiabes8a0jaacMcacaWGKbGaeqiXdq haleaacaaIWaaabaGaamiDaiabgkHiTiaadIhadaWgaaadbaGaaG4m aaqabaWccaGGVaGaam4yamaaBaaameaacaWGmbaabeaaa0Gaey4kIi paaOqaaiabeo8aZnaaBaaaleaacaaIZaGaaG4maaqabaGccqGH9aqp cqGHsislcaWGWbGaaiikaiaadshacqGHsislcaWG4bWaaSbaaSqaai aaiodaaeqaaOGaai4laiaadogadaWgaaWcbaGaamitaaqabaGccaGG Paaaaaa@6D74@

as stated.

 

 

Example 2: Surface subjected to time varying shear traction

An isotropic, linear elastic half space with Youngs modulus E and Poisson’s ratio ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8sk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH9oGBaaa@348E@  and mass density ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8sk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHbpGCaaa@3496@  occupies the region x 3 >0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaaG4maaqabaGccqGH+aGpcaaIWaaaaa@38C8@  .  The solid is at rest and stress free at time t=0.  For t>0 it is subjected to a uniform anti-plane shear traction p(t) on x 3 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaaG4maaqabaGccqGH9aqpcaaIWaaaaa@38C6@ .  Calculate the displacement, stress and strain fields in the solid.

 

It is straightforward to show that in this case

u 1 ( x 2 ,t)= 2(1+ν) c s E 0 t x 3 / c s p(τ)dτ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwhadaWgaa WcbaGaaGymaaqabaGccaGGOaGaamiEamaaBaaaleaacaaIYaaabeaa kiaacYcacaWG0bGaaiykaiabg2da9maalaaabaGaaGOmaiaacIcaca aIXaGaey4kaSIaeqyVd4MaaiykaiaadogadaWgaaWcbaGaam4Caaqa baaakeaacaWGfbaaamaapehabaGaamiCaiaacIcacqaHepaDcaGGPa Gaamizaiabes8a0bWcbaGaaGimaaqaaiaadshacqGHsislcaWG4bWa aSbaaWqaaiaaiodaaeqaaSGaai4laiaadogadaWgaaadbaGaam4Caa qabaaaniabgUIiYdaaaa@55C0@

σ 31 =p(t x 3 / c s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo8aZnaaBa aaleaacaaIZaGaaGymaaqabaGccqGH9aqpcqGHsislcaWGWbGaaiik aiaadshacqGHsislcaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaai4lai aadogadaWgaaWcbaGaam4CaaqabaGccaGGPaaaaa@4359@

where c s 2 = E 2(1+ν)ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadogadaqhaa WcbaGaam4CaaqaaiaaikdaaaGccqGH9aqpdaWcaaqaaiaadweaaeaa caaIYaGaaiikaiaaigdacqGHRaWkcqaH9oGBcaGGPaGaeqyWdihaaa aa@40E5@  is the speed of shear waves propagating through the solid.  The details are left as an exercise.

 

 

Example 3: 1-D Bar subjected to end loading

 

This solution is a cheat, because it doesn’t satisfy the full 3D equations of elasticity, but it turns out to be quite accurate.

 

A long thin rod occupying the region x 1 >0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaaGymaaqabaGccqGH+aGpcaaIWaaaaa@38C6@  is made from a homogeneous, isotropic, linear elastic material with Young’s modulus E and mass density ρ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYnaaBa aaleaacaaIWaaabeaaaaa@37BC@ .  At time t<0 it is at rest and free of stress.  At time t=0 it is subjected to a pressure p(t) at one end.  Calculate the displacement and stress fields in the solid.

 

We cheat by modeling this as a 1-D problem.  We assume that σ 11 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo8aZnaaBa aaleaacaaIXaGaaGymaaqabaaaaa@387B@  is the only nonzero stress component, in which case the constitutive law and balance of linear momentum require that

σ 11 =E u 1 x 1 σ 11 x 1 = ρ 0 2 u 1 t 2 2 u 1 x 1 2 = 1 c B 2 2 u 1 t 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeq4Wdm 3aaSbaaSqaaiaaigdacaaIXaaabeaakiabg2da9iaadweadaWcaaqa aiabgkGi2kaadwhadaWgaaWcbaGaaGymaaqabaaakeaacqGHciITca WG4bWaaSbaaSqaaiaaigdaaeqaaaaakiaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVpaalaaabaGaeyOaIyRaeq4Wdm3aaSba aSqaaiaaigdacaaIXaaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcba GaaGymaaqabaaaaOGaeyypa0JaeqyWdi3aaSbaaSqaaiaaicdaaeqa aOWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGccaWG1bWaaS baaSqaaiaaigdaaeqaaaGcbaGaeyOaIyRaamiDamaaCaaaleqabaGa aGOmaaaaaaaakeaacqGHshI3daWcaaqaaiabgkGi2oaaCaaaleqaba GaaGOmaaaakiaadwhadaWgaaWcbaGaaGymaaqabaaakeaacqGHciIT caWG4bWaaSbaaSqaaiaaigdaaeqaaOWaaWbaaSqabeaacaaIYaaaaa aakiabg2da9maalaaabaGaaGymaaqaaiaadogadaqhaaWcbaGaamOq aaqaaiaaikdaaaaaaOWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaik daaaGccaWG1bWaaSbaaSqaaiaaigdaaeqaaaGcbaGaeyOaIyRaamiD amaaCaaaleqabaGaaGOmaaaaaaaaaaa@82C4@

where c B 2 =E/ ρ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVKI8FfYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadogadaqhaa WcbaGaamOqaaqaaiaaikdaaaGccqGH9aqpcaWGfbGaai4laiabeg8a YnaaBaaaleaacaaIWaaabeaaaaa@3CE3@  is the wave speed. This equation is exact for ν=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabe27aUjabg2 da9iaaicdaaaa@388E@  but cannot be correct in general, since transverse motion is neglected.  In practice waves are repeatedly reflected off the sides of the bar, which behaves as a wave-guide.

 

 It is straightforward to solve the equation to see that

u 1 ( x 2 ,t)= c B E 0 t x 1 / c B p(τ)dτ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVKI8FfYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwhadaWgaa WcbaGaaGymaaqabaGccaGGOaGaamiEamaaBaaaleaacaaIYaaabeaa kiaacYcacaWG0bGaaiykaiabg2da9maalaaabaGaam4yamaaBaaale aacaWGcbaabeaaaOqaaiaadweaaaWaa8qCaeaacaWGWbGaaiikaiab es8a0jaacMcacaWGKbGaeqiXdqhaleaacaaIWaaabaGaamiDaiabgk HiTiaadIhadaWgaaadbaGaaGymaaqabaWccaGGVaGaam4yamaaBaaa meaacaWGcbaabeaaa0Gaey4kIipaaaa@5002@

σ 11 =p(t x 1 / c B ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVKI8FfYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo8aZnaaBa aaleaacaaIXaGaaGymaaqabaGccqGH9aqpcqGHsislcaWGWbGaaiik aiaadshacqGHsislcaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaai4lai aadogadaWgaaWcbaGaamOqaaqabaGccaGGPaaaaa@4334@

 

 

 

Summary of Wave Speeds in isotropic elastic solids.

 

It is worth summarizing the three wave speeds calculated in the preceding sections.  Recall that

                            c L 2 = E(1ν) ρ 0 (1+ν)(12ν) = 2μ(1ν) ρ 0 (12ν) c s 2 = E 2(1+ν) ρ 0 = μ ρ 0 c B 2 = E ρ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadogadaqhaa WcbaGaamitaaqaaiaaikdaaaGccqGH9aqpdaWcaaqaaiaadweacaGG OaGaaGymaiabgkHiTiabe27aUjaacMcaaeaacqaHbpGCdaWgaaWcba GaaGimaaqabaGccaGGOaGaaGymaiabgUcaRiabe27aUjaacMcacaGG OaGaaGymaiabgkHiTiaaikdacqaH9oGBcaGGPaaaaiabg2da9maala aabaGaaGOmaiabeY7aTjaacIcacaaIXaGaeyOeI0IaeqyVd4Maaiyk aaqaaiabeg8aYnaaBaaaleaacaaIWaaabeaakiaacIcacaaIXaGaey OeI0IaaGOmaiabe27aUjaacMcaaaGaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caWGJbWaa0baaSqaaiaadohaaeaacaaIYaaaaOGa eyypa0ZaaSaaaeaacaWGfbaabaGaaGOmaiaacIcacaaIXaGaey4kaS IaeqyVd4Maaiykaiabeg8aYnaaBaaaleaacaaIWaaabeaaaaGccqGH 9aqpdaWcaaqaaiabeY7aTbqaaiabeg8aYnaaBaaaleaacaaIWaaabe aaaaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaadogadaqhaaWcbaGaamOqaaqaai aaikdaaaGccqGH9aqpdaWcaaqaaiaadweaaeaacqaHbpGCdaWgaaWc baGaaGimaaqabaaaaaaa@9B89@

It is possible to show that, for all positive definite materials (those with positive definite strain energy density MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  a thermodynamic constraint) c L > c S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadogadaWgaa WcbaGaamitaaqabaGccqGH+aGpcaWGJbWaaSbaaSqaaiaadofaaeqa aaaa@39F9@ .  For most real materials c L > c B > c s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadogadaWgaa WcbaGaamitaaqabaGccqGH+aGpcaWGJbWaaSbaaSqaaiaadkeaaeqa aOGaeyOpa4Jaam4yamaaBaaaleaacaWGZbaabeaaaaa@3D06@ .

 

There are also special kinds of waves (called Rayleigh and Stoneley waves) that travel near the surface of a solid, or near the interface between two dissimilar solids, respectively.  These waves have their own speeds.  Rayleigh waves are discussed in more detail in Section 11.3 below.

 

 

Reflection of waves traveling normal to a free surface

 

Suppose that a longitudinal wave with stress state

u 1 ( x 1 ,t)= c L E (1+ν)(12ν) (1ν) 0 t x 2 / c L f(τ)dτ u 2 = u 3 =0 σ 11 =f(t x 1 / c L ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=fYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyDam aaBaaaleaacaaIXaaabeaakiaacIcacaWG4bWaaSbaaSqaaiaaigda aeqaaOGaaiilaiaadshacaGGPaGaeyypa0JaeyOeI0YaaSaaaeaaca WGJbWaaSbaaSqaaiaadYeaaeqaaaGcbaGaamyraaaadaWcaaqaaiaa cIcacaaIXaGaey4kaSIaeqyVd4MaaiykaiaacIcacaaIXaGaeyOeI0 IaaGOmaiabe27aUjaacMcaaeaacaGGOaGaaGymaiabgkHiTiabe27a UjaacMcaaaWaa8qCaeaacaWGMbGaaiikaiabes8a0jaacMcacaWGKb GaeqiXdqhaleaacaaIWaaabaGaamiDaiabgkHiTiaadIhadaWgaaad baGaaGOmaaqabaWccaGGVaGaam4yamaaBaaameaacaWGmbaabeaaa0 Gaey4kIipaaOqaaiaadwhadaWgaaWcbaGaaGOmaaqabaGccqGH9aqp caWG1bWaaSbaaSqaaiaaiodaaeqaaOGaeyypa0JaaGimaaqaaiabeo 8aZnaaBaaaleaacaaIXaGaaGymaaqabaGccqGH9aqpcaWGMbGaaiik aiaadshacqGHsislcaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaai4lai aadogadaWgaaWcbaGaamitaaqabaGccaGGPaaaaaa@73D5@

is incident on a free surface at x 1 =a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaaGymaaqabaGccqGH9aqpcaWGHbaaaa@38F0@ .  Calculate the state of stress in the solid as a function of time, accounting for the stress free surface.

 

To visualize the wave, imagine that it is a front, such as would be generated by applying a constant uniform pressure at x 1 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaaGymaaqabaGccqGH9aqpcaaIWaaaaa@38C4@  at time t=0.  The material ahead of the front is at rest, and stress free, while behind the front material has a constant stress and velocity. 

 

At time t=a/ c L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshacqGH9a qpcaWGHbGaai4laiaadogadaWgaaWcbaGaamitaaqabaaaaa@3A93@  the front would reach the free surface and be reflected.  Let the horizontal stress associated with the reflected wave be

σ 11 =g(t+ x 1 / c L ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo8aZnaaBa aaleaacaaIXaGaaGymaaqabaGccqGH9aqpcaWGNbGaaiikaiaadsha cqGHRaWkcaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaai4laiaadogada WgaaWcbaGaamitaaqabaGccaGGPaaaaa@422D@

(we need a + in the argument because the wave travels to the left and has negative velocity). For the stress to vanish at the free surface, we must have

f(ta/ c L )+g(t+a/ c L )=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgacaGGOa GaamiDaiabgkHiTiaadggacaGGVaGaam4yamaaBaaaleaacaWGmbaa beaakiaacMcacqGHRaWkcaWGNbGaaiikaiaadshacqGHRaWkcaWGHb Gaai4laiaadogadaWgaaWcbaGaamitaaqabaGccaGGPaGaeyypa0Ja aGimaaaa@4704@

so,

g(t+ x 1 / c L )=f(ta/ c L +( x 1 a)/ c L ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEgacaGGOa GaamiDaiabgUcaRiaadIhadaWgaaWcbaGaaGymaaqabaGccaGGVaGa am4yamaaBaaaleaacaWGmbaabeaakiaacMcacqGH9aqpcqGHsislca WGMbGaaiikaiaadshacqGHsislcaWGHbGaai4laiaadogadaWgaaWc baGaamitaaqabaGccqGHRaWkcaGGOaGaamiEamaaBaaaleaacaaIXa aabeaakiabgkHiTiaadggacaGGPaGaai4laiaadogadaWgaaWcbaGa amitaaqabaGccaGGPaaaaa@4FFB@

and the full solution consists of both incident and reflected waves

u 1 ( x 1 ,t)= c L E (1+ν)(12ν) 1ν { 0 t x 2 / c L f(τ)dτ + 0 ta/ c L +( x 2 a)/ c L f(τ)dτ } u 2 = u 3 =0 σ 11 =f(t x 1 / c L )f(ta/ c L +( x 1 a)/ c L ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=fYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyDam aaBaaaleaacaaIXaaabeaakiaacIcacaWG4bWaaSbaaSqaaiaaigda aeqaaOGaaiilaiaadshacaGGPaGaeyypa0JaeyOeI0YaaSaaaeaaca WGJbWaaSbaaSqaaiaadYeaaeqaaaGcbaGaamyraaaadaWcaaqaaiaa cIcacaaIXaGaey4kaSIaeqyVd4MaaiykaiaacIcacaaIXaGaeyOeI0 IaaGOmaiabe27aUjaacMcaaeaacaaIXaGaeyOeI0IaeqyVd4gaamaa cmaabaWaa8qCaeaacaWGMbGaaiikaiabes8a0jaacMcacaWGKbGaeq iXdqhaleaacaaIWaaabaGaamiDaiabgkHiTiaadIhadaWgaaadbaGa aGOmaaqabaWccaGGVaGaam4yamaaBaaameaacaWGmbaabeaaa0Gaey 4kIipakiabgUcaRmaapehabaGaamOzaiaacIcacqaHepaDcaGGPaGa amizaiabes8a0bWcbaGaaGimaaqaaiaadshacqGHsislcaWGHbGaai 4laiaadogadaWgaaadbaGaamitaaqabaWccqGHRaWkcaGGOaGaamiE amaaBaaameaacaaIYaaabeaaliabgkHiTiaadggacaGGPaGaai4lai aadogadaWgaaadbaGaamitaaqabaaaniabgUIiYdaakiaawUhacaGL 9baaaeaacaWG1bWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaamyDam aaBaaaleaacaaIZaaabeaakiabg2da9iaaicdaaeaacqaHdpWCdaWg aaWcbaGaaGymaiaaigdaaeqaaOGaeyypa0JaamOzaiaacIcacaWG0b GaeyOeI0IaamiEamaaBaaaleaacaaIXaaabeaakiaac+cacaWGJbWa aSbaaSqaaiaadYeaaeqaaOGaaiykaiabgkHiTiaadAgacaGGOaGaam iDaiabgkHiTiaadggacaGGVaGaam4yamaaBaaaleaacaWGmbaabeaa kiabgUcaRiaacIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0 IaamyyaiaacMcacaGGVaGaam4yamaaBaaaleaacaWGmbaabeaakiaa cMcaaaaa@9EB8@

 

 

        

 

As a specific example, consider a plane, constant-stress wave that is incident on a free surface. The histories of stress and velocity in the solid are illustrated in the figures above. In this case:

1.      Behind the incident stress wave, the stress is constant, with magnitude σ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaaIWaaabeaaaa a@3331@ .   The velocity of the solid is constant, and related to the stress by v 1 =ρ σ 0 / c L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAhadaWgaa WcbaGaaGymaaqabaGccqGH9aqpcqGHsislcqaHbpGCcqaHdpWCdaWg aaWcbaGaaGimaaqabaGccaGGVaGaam4yamaaBaaaleaacaWGmbaabe aaaaa@3FF2@

2.      At time t=a/ c L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadshacqGH9aqpcaWGHbGaai4laiaado gadaWgaaWcbaGaamitaaqabaaaaa@3605@  the stress wave reaches the free surface.  At this time an equal and opposite stress pulse σ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabgkHiTiabeo8aZnaaBaaaleaacaaIWa aabeaaaaa@341E@  is reflected from the free surface, and propagates away from the surface.

3.      Behind the reflected wave, the solid is stress free, and, the solid has constant velocity   v 1 =2ρ σ 0 / c L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAhadaWgaa WcbaGaaGymaaqabaGccqGH9aqpcqGHsislcaaIYaGaeqyWdiNaeq4W dm3aaSbaaSqaaiaaicdaaeqaaOGaai4laiaadogadaWgaaWcbaGaam itaaqabaaaaa@40AE@

 

12.3 Rayleigh waves

A Rayleigh wave is a special type of wave which propagates near the surface of an elastic solid.  Assume that

 The solid is an isotropic, linear elastic material with Young’s modulus E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadweaaaa@3132@ , Poisson’s ratio ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabe27aUbaa@3220@  and mass density ρ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeg8aYnaaBaaaleaacaaIWaaabeaaaa a@330E@

 The solid has shear wave speed   c s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadogadaWgaaWcbaGaam4Caaqabaaaaa@3274@  and longitudinal wave speed c L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadogadaWgaaWcbaGaamitaaqabaaaaa@324D@

 The surface is free of tractions

 A Rayleigh wave with wavelength λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeU7aSbaa@321C@  propagates in the x 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadIhadaWgaaWcbaGaaGymaaqabaaaaa@324C@  direction

 

The nonzero components of displacement and stress in a Rayleigh wave are

u 1 = U 0 ik ( k 2 β T 2 ) β L exp( ik( x 1 c R t) ){ ( k 2 + β T 2 )exp( β L x 2 )2 β L β T exp( β T x 2 ) } u 2 = U 0 ( k 2 β T 2 ) exp( ik( x 1 c R t) ){ 2 k 2 exp( β T x 2 )( k 2 + β T 2 )exp( β L x 2 ) } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaGaamyDamaaBaaaleaacaaIXaaabe aakiabg2da9maalaaabaGaamyvamaaBaaaleaacaaIWaaabeaakiaa dMgacaWGRbaabaGaaiikaiaadUgadaahaaWcbeqaaiaaikdaaaGccq GHsislcqaHYoGydaqhaaWcbaGaamivaaqaaiaaikdaaaGccaGGPaGa eqOSdi2aaSbaaSqaaiaadYeaaeqaaaaakiGacwgacaGG4bGaaiiCam aabmaabaGaamyAaiaadUgacaGGOaGaamiEamaaBaaaleaacaaIXaaa beaakiabgkHiTiaadogadaWgaaWcbaGaamOuaaqabaGccaWG0bGaai ykaaGaayjkaiaawMcaaiaaykW7daGadaqaaiaacIcacaWGRbWaaWba aSqabeaacaaIYaaaaOGaey4kaSIaeqOSdi2aa0baaSqaaiaadsfaae aacaaIYaaaaOGaaiykaiGacwgacaGG4bGaaiiCamaabmaabaGaeyOe I0IaeqOSdi2aaSbaaSqaaiaadYeaaeqaaOGaamiEamaaBaaaleaaca aIYaaabeaaaOGaayjkaiaawMcaaiabgkHiTiaaikdacqaHYoGydaWg aaWcbaGaamitaaqabaGccqaHYoGydaWgaaWcbaGaamivaaqabaGcci GGLbGaaiiEaiaacchadaqadaqaaiabgkHiTiabek7aInaaBaaaleaa caWGubaabeaakiaadIhadaWgaaWcbaGaaGOmaaqabaaakiaawIcaca GLPaaaaiaawUhacaGL9baaaeaacaWG1bWaaSbaaSqaaiaaikdaaeqa aOGaeyypa0ZaaSaaaeaacaWGvbWaaSbaaSqaaiaaicdaaeqaaaGcba GaaiikaiaadUgadaahaaWcbeqaaiaaikdaaaGccqGHsislcqaHYoGy daqhaaWcbaGaamivaaqaaiaaikdaaaGccaGGPaaaaiGacwgacaGG4b GaaiiCamaabmaabaGaamyAaiaadUgacaGGOaGaamiEamaaBaaaleaa caaIXaaabeaakiabgkHiTiaadogadaWgaaWcbaGaamOuaaqabaGcca WG0bGaaiykaaGaayjkaiaawMcaaiaaykW7daGadaqaaiaaikdacaWG RbWaaWbaaSqabeaacaaIYaaaaOGaciyzaiaacIhacaGGWbWaaeWaae aacqGHsislcqaHYoGydaWgaaWcbaGaamivaaqabaGccaWG4bWaaSba aSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaeyOeI0IaaiikaiaadU gadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcqaHYoGydaqhaaWcbaGa amivaaqaaiaaikdaaaGccaGGPaGaciyzaiaacIhacaGGWbWaaeWaae aacqGHsislcqaHYoGydaWgaaWcbaGaamitaaqabaGccaWG4bWaaSba aSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaacaGL7bGaayzFaaaaaa a@B14B@

σ 11 = U 0 Eexp( ik( x 1 c R t) ) ( k 2 β T 2 )(1+ν)(12ν) β L { k 2 [ ν( β L 2 + β T 2 )(1ν)( k 2 + β T 2 ) ]exp( β L x 2 ) +2 k 2 β T β L (12ν)exp( β T x 2 ) } σ 22 = U 0 Eexp( ik( x 1 c R t) ) ( k 2 β T 2 )(1+ν)(12ν) β L { ( k 2 + β T 2 )[ (1ν) β L 2 ν k 2 ]exp( β L x 2 ) 2 k 2 β T β L (12ν)exp( β T x 2 ) } σ 12 = i U 0 kE( k 2 + β T 2 ) ( k 2 β T 2 )(1+ν) exp( ik( x 1 c R t) ){ exp( β T x 2 )exp( β L x 2 ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaGaeq4Wdm3aaSbaaSqaaiaaigdaca aIXaaabeaakiabg2da9maalaaabaGaamyvamaaBaaaleaacaaIWaaa beaakiaadweaciGGLbGaaiiEaiaacchadaqadaqaaiaadMgacaWGRb GaaiikaiaadIhadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWGJbWa aSbaaSqaaiaadkfaaeqaaOGaamiDaiaacMcaaiaawIcacaGLPaaaae aacaGGOaGaam4AamaaCaaaleqabaGaaGOmaaaakiabgkHiTiabek7a InaaDaaaleaacaWGubaabaGaaGOmaaaakiaacMcacaGGOaGaaGymai abgUcaRiabe27aUjaacMcacaGGOaGaaGymaiabgkHiTiaaikdacqaH 9oGBcaGGPaGaeqOSdi2aaSbaaSqaaiaadYeaaeqaaaaakmaaceaaba Gaam4AamaaCaaaleqabaGaaGOmaaaakmaadmaabaGaeqyVd4Maaiik aiabek7aInaaDaaaleaacaWGmbaabaGaaGOmaaaakiabgUcaRiabek 7aInaaDaaaleaacaWGubaabaGaaGOmaaaakiaacMcacqGHsislcaGG OaGaaGymaiabgkHiTiabe27aUjaacMcacaGGOaGaam4AamaaCaaale qabaGaaGOmaaaakiabgUcaRiabek7aInaaDaaaleaacaWGubaabaGa aGOmaaaakiaacMcaaiaawUfacaGLDbaaciGGLbGaaiiEaiaacchada qadaqaaiabgkHiTiabek7aInaaBaaaleaacaWGmbaabeaakiaadIha daWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaaaiaawUhaaaqaai aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7daGacaqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaey4kaSIaaGOmai aadUgadaahaaWcbeqaaiaaikdaaaGccqaHYoGydaWgaaWcbaGaamiv aaqabaGccqaHYoGydaWgaaWcbaGaamitaaqabaGccaGGOaGaaGymai abgkHiTiaaikdacqaH9oGBcaGGPaGaciyzaiaacIhacaGGWbWaaeWa aeaacqGHsislcqaHYoGydaWgaaWcbaGaamivaaqabaGccaWG4bWaaS baaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaacaGL9baaaeaacqaH dpWCdaWgaaWcbaGaaGOmaiaaikdaaeqaaOGaeyypa0ZaaSaaaeaaca WGvbWaaSbaaSqaaiaaicdaaeqaaOGaamyraiGacwgacaGG4bGaaiiC amaabmaabaGaamyAaiaadUgacaGGOaGaamiEamaaBaaaleaacaaIXa aabeaakiabgkHiTiaadogadaWgaaWcbaGaamOuaaqabaGccaWG0bGa aiykaaGaayjkaiaawMcaaaqaaiaacIcacaWGRbWaaWbaaSqabeaaca aIYaaaaOGaeyOeI0IaeqOSdi2aa0baaSqaaiaadsfaaeaacaaIYaaa aOGaaiykaiaacIcacaaIXaGaey4kaSIaeqyVd4MaaiykaiaacIcaca aIXaGaeyOeI0IaaGOmaiabe27aUjaacMcacqaHYoGydaWgaaWcbaGa amitaaqabaaaaOWaaiqaaeaacaGGOaGaam4AamaaCaaaleqabaGaaG OmaaaakiabgUcaRiabek7aInaaDaaaleaacaWGubaabaGaaGOmaaaa kiaacMcadaWadaqaaiaacIcacaaIXaGaeyOeI0IaeqyVd4Maaiykai abek7aInaaDaaaleaacaWGmbaabaGaaGOmaaaakiabgkHiTiabe27a UjaadUgadaahaaWcbeqaaiaaikdaaaaakiaawUfacaGLDbaaciGGLb GaaiiEaiaacchadaqadaqaaiabgkHiTiabek7aInaaBaaaleaacaWG mbaabeaakiaadIhadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPa aaaiaawUhaaaqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7daGacaqaaiaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaeyOeI0IaaGOmaiaadUgadaahaaWcbeqaaiaaikdaaaGccqaHYoGy daWgaaWcbaGaamivaaqabaGccqaHYoGydaWgaaWcbaGaamitaaqaba GccaGGOaGaaGymaiabgkHiTiaaikdacqaH9oGBcaGGPaGaciyzaiaa cIhacaGGWbWaaeWaaeaacqGHsislcqaHYoGydaWgaaWcbaGaamivaa qabaGccaWG4bWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaa caGL9baaaeaacqaHdpWCdaWgaaWcbaGaaGymaiaaikdaaeqaaOGaey ypa0ZaaSaaaeaacaWGPbGaamyvamaaBaaaleaacaaIWaaabeaakiaa dUgacaWGfbGaaiikaiaadUgadaahaaWcbeqaaiaaikdaaaGccqGHRa WkcqaHYoGydaqhaaWcbaGaamivaaqaaiaaikdaaaGccaGGPaaabaGa aiikaiaadUgadaahaaWcbeqaaiaaikdaaaGccqGHsislcqaHYoGyda qhaaWcbaGaamivaaqaaiaaikdaaaGccaGGPaGaaiikaiaaigdacqGH RaWkcqaH9oGBcaGGPaaaaiGacwgacaGG4bGaaiiCamaabmaabaGaam yAaiaadUgacaGGOaGaamiEamaaBaaaleaacaaIXaaabeaakiabgkHi TiaadogadaWgaaWcbaGaamOuaaqabaGccaWG0bGaaiykaaGaayjkai aawMcaamaacmaabaGaciyzaiaacIhacaGGWbWaaeWaaeaacqGHsisl cqaHYoGydaWgaaWcbaGaamivaaqabaGccaWG4bWaaSbaaSqaaiaaik daaeqaaaGccaGLOaGaayzkaaGaeyOeI0IaciyzaiaacIhacaGGWbWa aeWaaeaacqGHsislcqaHYoGydaWgaaWcbaGaamitaaqabaGccaWG4b WaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaacaGL7bGaayzF aaaaaaa@C2D7@

where i= 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadMgacqGH9aqpdaGcaaqaaiabgkHiTi aaigdaaSqabaaaaa@341F@ , U 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwfadaWgaaWcbaGaaGimaaqabaaaaa@3228@  is the amplitude of the vertical displacement at the free surface, k=2π/λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadUgacqGH9aqpcaaIYaGaeqiWdaNaai 4laiabeU7aSbaa@373E@  is the wavenumber; β L =k 1 c R 2 / c L 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabek7aInaaBaaaleaacaWGmbaabeaaki abg2da9iaadUgadaGcaaqaaiaaigdacqGHsislcaWGJbWaa0baaSqa aiaadkfaaeaacaaIYaaaaOGaai4laiaadogadaqhaaWcbaGaamitaa qaaiaaikdaaaaabeaaaaa@3CC5@ , β T =k 1 c R 2 / c s 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabek7aInaaBaaaleaacaWGubaabeaaki abg2da9iaadUgadaGcaaqaaiaaigdacqGHsislcaWGJbWaa0baaSqa aiaadkfaaeaacaaIYaaaaOGaai4laiaadogadaqhaaWcbaGaam4Caa qaaiaaikdaaaaabeaaaaa@3CF4@ ; and c R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadogadaWgaaWcbaGaamOuaaqabaaaaa@3253@  is the Rayleigh wave speed, which is the positive real root of

( 2 c R 2 c s 2 ) 2 4 ( 1 (12ν) 2(1ν) c R 2 c s 2 ) 1/2 ( 1 c R 2 c s 2 ) 1/2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaabmaabaGaaGOmaiabgkHiTmaalaaaba Gaam4yamaaDaaaleaacaWGsbaabaGaaGOmaaaaaOqaaiaadogadaqh aaWcbaGaam4CaaqaaiaaikdaaaaaaaGccaGLOaGaayzkaaWaaWbaaS qabeaacaaIYaaaaOGaeyOeI0IaaGinamaabmaabaGaaGymaiabgkHi TmaalaaabaGaaiikaiaaigdacqGHsislcaaIYaGaeqyVd4Maaiykaa qaaiaaikdacaGGOaGaaGymaiabgkHiTiabe27aUjaacMcaaaWaaSaa aeaacaWGJbWaa0baaSqaaiaadkfaaeaacaaIYaaaaaGcbaGaam4yam aaDaaaleaacaWGZbaabaGaaGOmaaaaaaaakiaawIcacaGLPaaadaah aaWcbeqaaiaaigdacaGGVaGaaGOmaaaakmaabmaabaGaaGymaiabgk HiTmaalaaabaGaam4yamaaDaaaleaacaWGsbaabaGaaGOmaaaaaOqa aiaadogadaqhaaWcbaGaam4CaaqaaiaaikdaaaaaaaGccaGLOaGaay zkaaWaaWbaaSqabeaacaaIXaGaai4laiaaikdaaaGccqGH9aqpcaaI Waaaaa@5ED5@

This equation can easily be solved for c R / c s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadogadaWgaaWcbaGaamOuaaqabaGcca GGVaGaam4yamaaBaaaleaacaWGZbaabeaaaaa@351C@  with a symbolic manipulation program, which will most likely return 6 roots.  The root of interest lies in the range 0.65< c R / c s <1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaaicdacaGGUaGaaGOnaiaaiwdacqGH8a apcaWGJbWaaSbaaSqaaiaadkfaaeqaaOGaai4laiaadogadaWgaaWc baGaam4CaaqabaGccqGH8aapcaaIXaaaaa@3AD4@  for 1<ν<0.5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabgkHiTiaaigdacqGH8aapcqaH9oGBcq GH8aapcaaIWaGaaiOlaiaaiwdaaaa@37FB@ . The solution can be approximated by c R / c s =0.8750.2ν0.05 (ν+0.25) 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadogadaWgaaWcbaGaamOuaaqabaGcca GGVaGaam4yamaaBaaaleaacaWGZbaabeaakiabg2da9iaaicdacaGG UaGaaGioaiaaiEdacaaI1aGaeyOeI0IaaGimaiaac6cacaaIYaGaeq yVd4MaeyOeI0IaaGimaiaac6cacaaIWaGaaGynaiaacIcacqaH9oGB cqGHRaWkcaaIWaGaaiOlaiaaikdacaaI1aGaaiykamaaCaaaleqaba GaaG4maaaaaaa@4A3D@  with an error of less than 0.6% over the full range of Poisson ratio.

 

You can use either the real or imaginary part of these expressions for the displacement and stress fields (they are identical, except for a phase difference). Of course, if you choose to take the real part of one of the functions, you must take the real part for all the others as well. Note that substituting x 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadIhadaWgaaWcbaGaaGOmaaqabaGccq GH9aqpcaaIWaaaaa@3417@  in the expression for σ 22 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaaIYaGaaGOmaa qabaaaaa@33CF@  and setting σ 22 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaaIYaGaaGOmaa qabaGccqGH9aqpcaaIWaaaaa@3599@  yields the equation for the Rayleigh wave speed, so the boundary condition σ 22 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaaIYaGaaGOmaa qabaGccqGH9aqpcaaIWaaaaa@3599@  is satisfied.  The variations with depth of stress amplitude and displacement amplitude are plotted below.

      

 

Important features of this solution are:

  1. The wave is confined to a layer near the surface with thickness about twice the wavelength. 
  2. The horizontal and vertical components of displacement are 90 degrees out of phase.  Material particles therefore describe elliptical orbits as the wave passes by.
  3. The speed of the wave is independent of its wavelength MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  that is to say, the wave is non-dispersive.
  4. Rayleigh waves are exploited in a range of engineering applications, including surface acoustic wave devices; touch sensors; and miniature linear motors.  They are also observed in earthquakes, although these waves are observed to be dispersive, because of density variations of the earth’s surface.

 

Other similar kinds of wave occur in solids: waves near an interface between two dissimilar elastic solids are called ‘Stoneley’ waves.   There are also special kinds of waves that occur in thin layers, which behave like wave-guides.

 

12.4 Travelling waves in beams

 

 

We end our discussion of waves with a brief look at waves in beams, which show that many of the things we learn about waves in elementary courses aren’t always true.  The figure shows an infinitely long Euler-Bernoulli beam with Youngs modulus E, mass density ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdihaaa@37B7@  , cross sectional area A and inertia components I 11 , I 22 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBa aaleaacaaIXaGaaGymaaqabaGccaGGSaGaamysamaaBaaaleaacaaI YaGaaGOmaaqabaaaaa@3B93@  and I 12 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBa aaleaacaaIXaGaaGOmaaqabaGccqGH9aqpcaaIWaaaaa@3A32@  .  The beam is at rest and has a transverse displacement

u 1 ( x 3 )= u (0) ( x 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG1bWaaSbaaS qaaiaaigdaaeqaaOGaaiikaiaadIhadaWgaaWcbaGaaG4maaqabaGc caGGPaGaeyypa0JaamyDamaaCaaaleqabaGaaiikaiaaicdacaGGPa aaaOGaaiikaiaadIhadaWgaaWcbaGaaG4maaqabaGccaGGPaaaaa@423D@

at time t=0.   Our goal is to find the subsequent motion of the beam.

Start with the equation of motion for the beam:

E I 22 d 4 u 1 d x 3 4 +ρA d 2 u 1 d t 2 =0 d 4 u 1 d x 3 4 + 1 β 2 d 2 u 1 d t 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadweacaWGjbWaaSbaaSqaaiaaikdaca aIYaaabeaakmaalaaabaGaamizamaaCaaaleqabaGaaGinaaaakiaa dwhadaWgaaWcbaGaaGymaaqabaaakeaacaWGKbGaamiEamaaDaaale aacaaIZaaabaGaaGinaaaaaaGccqGHRaWkcqaHbpGCcaWGbbWaaSaa aeaacaWGKbWaaWbaaSqabeaacaaIYaaaaOGaamyDamaaBaaaleaaca aIXaaabeaaaOqaaiaadsgacaWG0bWaaWbaaSqabeaacaaIYaaaaaaa kiabg2da9iaaicdacqGHshI3daWcaaqaaiaadsgadaahaaWcbeqaai aaisdaaaGccaWG1bWaaSbaaSqaaiaaigdaaeqaaaGcbaGaamizaiaa dIhadaqhaaWcbaGaaG4maaqaaiaaisdaaaaaaOGaey4kaSYaaSaaae aacaaIXaaabaGaeqOSdi2aaWbaaSqabeaacaaIYaaaaaaakmaalaaa baGaamizamaaCaaaleqabaGaaGOmaaaakiaadwhadaWgaaWcbaGaaG ymaaqabaaakeaacaWGKbGaamiDamaaCaaaleqabaGaaGOmaaaaaaGc cqGH9aqpcaaIWaaaaa@5D8E@

where β= E I 22 /ρA MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdiMaey ypa0ZaaOaaaeaacaWGfbGaamysamaaBaaaleaacaaIYaGaaGOmaaqa baGccaGGVaGaeqyWdiNaamyqaaWcbeaaaaa@3F38@  .   At first sight this looks just like the wave equation for a string, but the simple solution u 1 =f( x 3 βt)+g( x 3 +βt) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG1bWaaSbaaS qaaiaaigdaaeqaaOGaeyypa0JaamOzaiaacIcacaWG4bWaaSbaaSqa aiaaiodaaeqaaOGaeyOeI0IaeqOSdiMaamiDaiaacMcacqGHRaWkca WGNbGaaiikaiaadIhadaWgaaWcbaGaaG4maaqabaGccqGHRaWkcqaH YoGycaWG0bGaaiykaaaa@48B5@  does not satisfy the governing equation.   Travelling wave solutions do exist, but only for very special initial deflections.   For example, if the initial deflection is

u (0) ( x 3 )= U 0 cosk x 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG1bWaaWbaaS qabeaacaGGOaGaaGimaiaacMcaaaGccaGGOaGaamiEamaaBaaaleaa caaIZaaabeaakiaacMcacqGH9aqpcaWGvbWaaSbaaSqaaiaaicdaae qaaOGaci4yaiaac+gacaGGZbGaam4AaiaadIhadaWgaaWcbaGaaG4m aaqabaaaaa@447C@

where k is the wave number (related to the wavelength λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@37AB@  by k=2π/λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabg2 da9iaaikdacqaHapaCcaGGVaGaeq4UdWgaaa@3CCD@  ), then the governing equation and initial conditions are satisfied by a propagating wave solution of the form

u(t, x 3 )= U 0 [ cos{ k( x 3 βkt) }+cos{ k( x 3 +βkt) } ]/2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaacI cacaWG0bGaaiilaiaadIhadaWgaaWcbaGaaG4maaqabaGccaGGPaGa eyypa0JaamyvamaaBaaaleaacaaIWaaabeaakmaadmaabaGaci4yai aac+gacaGGZbWaaiWaaeaacaWGRbGaaiikaiaadIhadaWgaaWcbaGa aG4maaqabaGccqGHsislcqaHYoGycaWGRbGaamiDaiaacMcaaiaawU hacaGL9baacqGHRaWkciGGJbGaai4BaiaacohadaGadaqaaiaadUga caGGOaGaamiEamaaBaaaleaacaaIZaaabeaakiabgUcaRiabek7aIj aadUgacaWG0bGaaiykaaGaay5Eaiaaw2haaaGaay5waiaaw2faaiaa c+cacaaIYaaaaa@5E53@

Note that the wave speed turns out to be c=βk MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiabg2 da9iabek7aIjaadUgaaaa@3A76@ .  This means that the wave speed depends on the wavelength, and waves with short wavelength propagate faster than those with long wavelength.   Waves of this kind are called ‘dispersive’.  Dispersive waves are actually more common than the non-dispersive kind, but they are not as well behaved, so we don’t talk about them in polite company.

 

We can use the double-angle formulas to re-write the harmonic traveling wave solution as

u(t, x 3 )= U 0 cosk x 3 cosωtω=β k 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaacI cacaWG0bGaaiilaiaadIhadaWgaaWcbaGaaG4maaqabaGccaGGPaGa eyypa0JaamyvamaaBaaaleaacaaIWaaabeaakiGacogacaGGVbGaai 4CaiaadUgacaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaci4yaiaac+ga caGGZbGaeqyYdCNaamiDaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeqyYdCNaeyyp a0JaeqOSdiMaam4AamaaCaaaleqabaGaaGOmaaaaaaa@6145@

This tells us the frequency ω MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHjpWDaaa@3743@  of oscillatory motion at every point on the beam.  The formula relating frequency ω MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHjpWDaaa@3743@  to wave number k is called the ‘dispersion relation’ for the wave.

 

The general solution for an arbitrary initial condition can be found by superposing the harmonic solutions (for an infinitely long beam, take a Fourier transform of the initial disturbance; for a beam with finite length use Fourier series).   We won’t discuss this in detail here, but the figures below compare the motion of an initial disturbance

u 1 (0) =(1+cos(π x 3 /a))/2a< x 3 <a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG1bWaa0baaS qaaiaaigdaaeaacaGGOaGaaGimaiaacMcaaaGccqGH9aqpcaGGOaGa aGymaiabgUcaRiGacogacaGGVbGaai4CaiaacIcacqaHapaCcaWG4b WaaSbaaSqaaiaaiodaaeqaaOGaai4laiaadggacaGGPaGaaiykaiaa ykW7caGGVaGaaGOmaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7cqGHsislcaWGHbGaeyipaWJa amiEamaaBaaaleaacaaIZaaabeaakiabgYda8iaadggaaaa@5FFC@

in a beam (the top figure) and a string (the bottom figure).  You can clearly see the dispersion in the beam.

 

 

 

12.5 Modeling transient dynamics with FEA

 

If you need to run a finite element simulation that involves dynamic loading and you need to understand wave propagation, it is usually best to do an explicit dynamic simulation.  For a linear elastic solid, the explicit dynamic algorithm will use a forward-Euler time-stepping algorithm to integrate the discrete equations of motion with respect to time.  The discrete equations have the form

M d 2 u d t 2 +Ku=F(t) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHnbWaaSaaae aacaWGKbWaaWbaaSqabeaacaaIYaaaaOGaaCyDaaqaaiaadsgacaWG 0bWaaWbaaSqabeaacaaIYaaaaaaakiabgUcaRiaahUeacaWH1bGaey ypa0JaaCOraiaacIcacaWG0bGaaiykaaaa@42E6@

where u is a huge vector of the unknown nodal displacements, K is the stiffness matrix (we derived a formula for K in Chapter 10), and M is a diagonal mass matrix MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  essentially, the total mass of the solid is divided up among the nodes.  The mass value assigned to each node is determined by the density and volume of the elements attached to the node. 

 

In FEA, equations like this are integrated with the following simple time-stepping scheme:

1.      At  t=0, initialize the displacement and velocity vectors u 0 , v 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyDamaaBa aaleaacaaIWaaabeaakiaacYcacaWH2bWaaSbaaSqaaiaaicdaaeqa aaaa@3A7A@  , and compute the initial acceleration a 0 = M 1 [ K u 0 +F(0) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyyamaaBaaaleaacaaIWaaabeaaki abg2da9iaah2eadaahaaWcbeqaaiabgkHiTiaaigdaaaGcdaWadaqa aiabgkHiTiaahUeacaWH1bWaaSbaaSqaaiaaicdaaeqaaOGaey4kaS IaaCOraiaacIcacaaIWaGaaiykaaGaay5waiaaw2faaaaa@3FC9@

2.      Then for successive time steps, calculate the acceleration at the end of the step

a n+1 = M 1 K[ u n + v n Δt+ Δ t 2 2 a n (t) ]+F(t+Δt) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyyamaaBaaaleaacaWGUbGaey4kaS IaaGymaaqabaGccqGH9aqpcqGHsislcaWHnbWaaWbaaSqabeaacqGH sislcaaIXaaaaOGaaC4samaadmaabaGaaCyDamaaBaaaleaacaWGUb aabeaakiabgUcaRiaahAhadaWgaaWcbaGaamOBaaqabaGccqqHuoar caWG0bGaey4kaSYaaSaaaeaacqqHuoarcaWG0bWaaWbaaSqabeaaca aIYaaaaaGcbaGaaGOmaaaacaWHHbWaaSbaaSqaaiaad6gaaeqaaOGa aiikaiaadshacaGGPaaacaGLBbGaayzxaaGaey4kaSIaaCOraiaacI cacaWG0bGaey4kaSIaeuiLdqKaamiDaiaacMcaaaa@5426@

3.      Then compute the displacement and velocity at the end of the step

u n+1 = u n +Δt v n + Δ t 2 2 a n v n+1 = v n + Δt 2 [ a n + a n+1 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWH1bWaaSbaaSqaaiaad6gacq GHRaWkcaaIXaaabeaakiabg2da9iaahwhadaWgaaWcbaGaamOBaaqa baGccqGHRaWkcqqHuoarcaWG0bGaaCODamaaBaaaleaacaWGUbaabe aakiabgUcaRmaalaaabaGaeuiLdqKaamiDamaaCaaaleqabaGaaGOm aaaaaOqaaiaaikdaaaGaaCyyamaaBaaaleaacaWGUbaabeaaaOqaai aahAhadaWgaaWcbaGaamOBaiabgUcaRiaaigdaaeqaaOGaeyypa0Ja aCODamaaBaaaleaacaWGUbaabeaakiabgUcaRmaalaaabaGaeuiLdq KaamiDaaqaaiaaikdaaaWaamWaaeaacaWHHbWaaSbaaSqaaiaad6ga aeqaaOGaey4kaSIaaCyyamaaBaaaleaacaWGUbGaey4kaSIaaGymaa qabaaakiaawUfacaGLDbaaaaaa@57DA@

 The details of this process are not important MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  the most important things you need to know are:

1.      The equations of motion are integrated using a time-stepping scheme, usually with a fixed time interval Δt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam iDaaaa@3856@  

2.      The algorithm is stable only if the time-step is smaller than a critical magnitude Δ t crit MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam iDamaaBaaaleaacaWGJbGaamOCaiaadMgacaWG0baabeaaaaa@3C48@  .   The critical time-step is the time required for the fastest wave to propagate through the smallest element in the mesh.

 

The animations below illustrate the instability.   The figure shows a results of a simple MATLAB simulation of the motion of a beam subjected to a vertical end load (the mesh is coarse, so the predicted displacements will not be very accurate).  The figure on the left is with a time-step just below the critical value; the figure on the right is for a time-step just above.

 

 

    

 

 

Running explicit dynamic simulations in ABAQUS

 

To set up an explicit dynamic simulation in ABAQUS, use the following steps:

 

1.      Define a part in the usual way, and assign properties (and if appropriate a section geometry) with the property module as usual.   You will need to assign a mass density to the part along with its mechanical properties.  You can do this using the ‘General’ tab in the property editor.

2.      Create an instance of the part in the usual way.

3.      In the Step module, select the ‘Dynamic, Explicit’ option.  You can define the time interval for the analysis in the usual way.  In the ‘Incrementation’ tab there are some options to select the time step size.  It is safest to use the ‘Automatic’ option, but it is a good idea to estimate how many time-steps the simulation is likely to take using the formula for the critical time step (you will need to know the mesh size, of course, and will need to be able to estimate the wave speed.   Using the P-wave speed usually gives a safe estimate.)

4.      You can generate a mesh in the usual way.  Note that choice of element type can be important in dynamic simulations; you are likely to see hourglassing in some reduced integration elements; and elements that lock are likely to cause problems.

5.      You can define boundary conditions the usual way in the Load module.   In dynamic simulations, you don’t have to worry about constraining rigid body modes.   You can also use the ‘Predefined Field’ tab in the ‘Load’ module to define initial velocity distributions in your part.   You can’t define initial displacements.   If you need to do this, you will have to run a separate static step just before the explicit dynamic step, and define the initial displacement field as boundary conditions in the static step.

6.      Create the job and run the analysis in the usual way.   The visualization module is identical for static and dynamic analysis.

 

It is a good idea to do some hand calculations before you start the calculations to estimate the stable time-step, and make sure the total analysis time is short enough for the simulation to complete before you graduate (or if you already graduated, move to another job or retire).

 

 

12.6 Free vibration of strings and beams

 

We can learn about vibrations in solids by studying the behavior of a stretched string.   We can start by solving the following problem:   a string with length L, mass density ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHbpGCaaa@3736@  and cross-sectional area A under axial tension T 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGubWaaSbaaS qaaiaaicdaaeqaaaaa@3735@  as at rest and has a transverse displacement

u 1 ( x 3 )= u (0) ( x 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG1bWaaSbaaS qaaiaaigdaaeqaaOGaaiikaiaadIhadaWgaaWcbaGaaG4maaqabaGc caGGPaGaeyypa0JaamyDamaaCaaaleqabaGaaiikaiaaicdacaGGPa aaaOGaaiikaiaadIhadaWgaaWcbaGaaG4maaqabaGccaGGPaaaaa@423D@

at time t=0.   Find the subsequent motion of the string.

 

We derived the governing equation for a string in Chapter 10.  It is

T 0 d 2 u 1 d x 3 2 =ρA d 2 u 1 d t 2 d 2 u 1 d x 3 2 = 1 c 2 d 2 u 1 d t 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaWgaaWcbaGaaGimaaqabaGcda WcaaqaaiaadsgadaahaaWcbeqaaiaaikdaaaGccaWG1bWaaSbaaSqa aiaaigdaaeqaaaGcbaGaamizaiaadIhadaqhaaWcbaGaaG4maaqaai aaikdaaaaaaOGaeyypa0JaeqyWdiNaamyqamaalaaabaGaamizamaa CaaaleqabaGaaGOmaaaakiaadwhadaWgaaWcbaGaaGymaaqabaaake aacaWGKbGaamiDamaaCaaaleqabaGaaGOmaaaaaaGccqGHshI3daWc aaqaaiaadsgadaahaaWcbeqaaiaaikdaaaGccaWG1bWaaSbaaSqaai aaigdaaeqaaaGcbaGaamizaiaadIhadaqhaaWcbaGaaG4maaqaaiaa ikdaaaaaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaam4yamaaCaaale qabaGaaGOmaaaaaaGcdaWcaaqaaiaadsgadaahaaWcbeqaaiaaikda aaGccaWG1bWaaSbaaSqaaiaaigdaaeqaaaGcbaGaamizaiaadshada ahaaWcbeqaaiaaikdaaaaaaaaa@580E@

 where  c= T 0 /ρA MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGJbGaeyypa0 ZaaOaaaeaacaWGubWaaSbaaSqaaiaaicdaaeqaaOGaai4laiabeg8a YjaadgeaaSqabaaaaa@3C81@  (this turns out to be is the travelling wave speed).   We already solved this equation, of course, and could use the traveling wave solution here as well.   But it can be rather painful to satisfy the boundary conditions with the travelling wave solution, and it is not easy to visualize the behavior of the solution.   It is better to start from scratch, and seek standing wave solutions to the equations of motion.  We’ll work through the general procedure:

1.      Find general harmonic solutions to the governing equation MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugGbabaaa aaaaaapeGaa83eGaaa@3742@  you can usually try solutions of the form expiωtexpikx MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciyzaiaacI hacaGGWbGaamyAaiabeM8a3jaadshaciGGLbGaaiiEaiaacchacaWG PbGaam4AaiaadIhaaaa@423C@ . You will always find a family of possible pairs of k,ω MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiaacY cacqaHjpWDaaa@3964@  that satisfy the equation.  For the standard wave equation it’s more convenient to write the solution in the form

u 1 = n=0 cos( ω n t+ ϕ n )( A n sin k n x 3 + B n cos k n x 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG1bWaaSbaaS qaaiaaigdaaeqaaOGaeyypa0ZaaabCaeaaaSqaaiaad6gacqGH9aqp caaIWaaabaGaeyOhIukaniabggHiLdGcciGGJbGaai4Baiaacohaca GGOaGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaOGaamiDaiabgUcaRiab ew9aMnaaBaaaleaacaWGUbaabeaakiaacMcadaqadaqaaiaadgeada WgaaWcbaGaamOBaaqabaGcciGGZbGaaiyAaiaac6gacaWGRbWaaSba aSqaaiaad6gaaeqaaOGaamiEamaaBaaaleaacaaIZaaabeaakiabgU caRiaadkeadaWgaaWcbaGaamOBaaqabaGcciGGJbGaai4Baiaacoha caWGRbWaaSbaaSqaaiaad6gaaeqaaOGaamiEamaaBaaaleaacaaIZa aabeaaaOGaayjkaiaawMcaaaaa@5ECB@

where (by substituting into the wave equation) the frequencies must satisfy the dispersion relation

ω n =c k n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHjpWDdaWgaa WcbaGaamOBaaqabaGccqGH9aqpcaWGJbGaam4AamaaBaaaleaacaWG Ubaabeaaaaa@3C69@

2.      The wave numbers k n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaBa aaleaacaWGUbaabeaaaaa@3806@  must be determined from the boundary conditions.  For our problem we have u 1 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaaIXaaabeaakiabg2da9iaaicdaaaa@39A2@  at x 3 =0, x 3 =L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIZaaabeaakiabg2da9iaaicdacaGGSaGaamiEamaaBaaa leaacaaIZaaabeaakiabg2da9iaadYeaaaa@3E1E@   

                                                             [ 0 1 sin k n L cos k n L ][ A n B n ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaafa qabeGacaaabaGaaGimaaqaaiaaigdaaeaaciGGZbGaaiyAaiaac6ga caWGRbWaaSbaaSqaaiaad6gaaeqaaOGaamitaaqaaiGacogacaGGVb Gaai4CaiaadUgadaWgaaWcbaGaamOBaaqabaGccaWGmbaaaaGaay5w aiaaw2faamaadmaabaqbaeqabiqaaaqaaiaadgeadaWgaaWcbaGaam OBaaqabaaakeaacaWGcbWaaSbaaSqaaiaad6gaaeqaaaaaaOGaay5w aiaaw2faaiabg2da9iaaicdaaaa@4C8A@  

For nonzero solutions to exist the determinant of the matrix must vanish, which gives sin k n L=0 k n =nπ/L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacM gacaGGUbGaam4AamaaBaaaleaacaWGUbaabeaakiaadYeacqGH9aqp caaIWaGaeyO0H4Taam4AamaaBaaaleaacaWGUbaabeaakiabg2da9i aad6gacqaHapaCcaGGVaGaamitaaaa@4729@  where n is any integer.

3.      Since the equation system in (2) is now singular, we may discard either of the two equations and use the other three to determine an equation relating A n , B n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaWGUbaabeaakiaacYcacaWGcbWaaSbaaSqaaiaad6gaaeqa aaaa@3A7C@ .  For the present case we just get the trivial solution B n =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaaBa aaleaacaWGUbaabeaakiabg2da9iaaicdaaaa@39A7@  ; with different boundary conditions you will get more complicated equations.  

4.      Finally, we have to determine the coefficients A n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaWGUbaabeaaaaa@37DC@  from the initial conditions (zero velocity and given initial shape).   This gives

u 1 = n=0 cos( ϕ n )( A n sinnπ x 3 /L )= u (0) ( x 3 ) u 1 t = n=0 sin( ϕ n )( A n sinnπ x 3 /L )=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaadwhada WgaaWcbaGaaGymaaqabaGccqGH9aqpdaaeWbqaaaWcbaGaamOBaiab g2da9iaaicdaaeaacqGHEisPa0GaeyyeIuoakiGacogacaGGVbGaai 4CaiaacIcacqaHvpGzdaWgaaWcbaGaamOBaaqabaGccaGGPaWaaeWa aeaacaWGbbWaaSbaaSqaaiaad6gaaeqaaOGaci4CaiaacMgacaGGUb GaamOBaiabec8aWjaadIhadaWgaaWcbaGaaG4maaqabaGccaGGVaGa amitaaGaayjkaiaawMcaaiabg2da9iaadwhadaahaaWcbeqaaiaacI cacaaIWaGaaiykaaaakiaacIcacaWG4bWaaSbaaSqaaiaaiodaaeqa aOGaaiykaaqaamaalaaabaGaeyOaIyRaamyDamaaBaaaleaacaaIXa aabeaaaOqaaiabgkGi2kaadshaaaGaeyypa0ZaaabCaeaaaSqaaiaa d6gacqGH9aqpcaaIWaaabaGaeyOhIukaniabggHiLdGcciGGZbGaai yAaiaac6gacaGGOaGaeqy1dy2aaSbaaSqaaiaad6gaaeqaaOGaaiyk amaabmaabaGaamyqamaaBaaaleaacaWGUbaabeaakiGacohacaGGPb GaaiOBaiaad6gacqaHapaCcaWG4bWaaSbaaSqaaiaaiodaaeqaaOGa ai4laiaadYeaaiaawIcacaGLPaaacqGH9aqpcaaIWaaaaaa@7C8E@

The second equation shows that ϕ n =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dy2aaS baaSqaaiaad6gaaeqaaOGaeyypa0JaaGimaaaa@3AA8@  .   To find the coefficients A n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaWGUbaabeaaaaa@37DC@  we can use the usual trick to calculate coefficients of Fourier series: multiply both sides of the equation by sinmπ x 3 /L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacM gacaGGUbGaamyBaiabec8aWjaadIhadaWgaaWcbaGaaG4maaqabaGc caGGVaGaamitaaaa@3EF2@  (where m is an integer) and integrate over the length of the string.  The integral of the left hand side is zero for mn MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgc Mi5kaad6gaaaa@39A3@  and L/2 for n=m, so

A n = 2 L 0 L u (0) ( x 3 )sin(nπ x 3 /L) d x 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaWGUbaabeaakiabg2da9maalaaabaGaaGOmaaqaaiaadYea aaWaa8qCaeaacaWG1bWaaWbaaSqabeaacaGGOaGaaGimaiaacMcaaa GccaGGOaGaamiEamaaBaaaleaacaaIZaaabeaakiaacMcaciGGZbGa aiyAaiaac6gacaGGOaGaamOBaiabec8aWjaadIhadaWgaaWcbaGaaG 4maaqabaGccaGGVaGaamitaiaacMcaaSqaaiaaicdaaeaacaWGmbaa niabgUIiYdGccaWGKbGaamiEamaaBaaaleaacaaIZaaabeaaaaa@5238@

Notice that if we happen to choose the very special initial deflections

u (0) ( x 3 )=sin(mπ x 3 /L) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaCa aaleqabaGaaiikaiaaicdacaGGPaaaaOGaaiikaiaadIhadaWgaaWc baGaaG4maaqabaGccaGGPaGaeyypa0Jaci4CaiaacMgacaGGUbGaai ikaiaad2gacqaHapaCcaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaai4l aiaadYeacaGGPaaaaa@47DE@

then A m =1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaWGTbaabeaakiabg2da9iaaigdaaaa@39A6@  , and A n =0mm MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaWGUbaabeaakiabg2da9iaaicdacaaMc8UaaGPaVlaaykW7 caaMc8UaamyBaiabgcMi5kaad2gaaaa@437D@  .   For this choice, we will see perfectly harmonic motion

                        u 1 (t, x 3 )=sin ω n tsin k n x 3 k n =nπ x 3 /L ω n =c k n c= T 0 /ρA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaaIXaaabeaakiaacIcacaWG0bGaaiilaiaadIhadaWgaaWc baGaaG4maaqabaGccaGGPaGaeyypa0Jaci4CaiaacMgacaGGUbGaeq yYdC3aaSbaaSqaaiaad6gaaeqaaOGaamiDaiGacohacaGGPbGaaiOB aiaadUgadaWgaaWcbaGaamOBaaqabaGccaWG4bWaaSbaaSqaaiaaio daaeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 Uaam4AamaaBaaaleaacaWGUbaabeaakiabg2da9iaad6gacqaHapaC caWG4bWaaSbaaSqaaiaaiodaaeqaaOGaai4laiaadYeacaaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabeM8a3naa BaaaleaacaWGUbaabeaakiabg2da9iaadogacaWGRbWaaSbaaSqaai aad6gaaeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caWGJbGaeyypa0ZaaOaaaeaacaWGubWaaSbaaSqaai aaicdaaeqaaOGaai4laiabeg8aYjaadgeaaSqabaGccaaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7aaa@9BED@  

The initial conditions have excited the vibration mode with natural frequency ω n =c k n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaad6gaaeqaaOGaeyypa0Jaam4yaiaadUgadaWgaaWcbaGa amOBaaqabaaaaa@3CEA@  

We can draw some general conclusions from this analysis:

 

Mode shapes and natural frequencies: The physical significance of the mode shapes and natural frequencies of a vibrating beam can be visualized as follows:

  1. Suppose that an elastic solid (we consider a 1D beam or a string as an example, but the ideas are the same for 2D and 3D solids) is made to vibrate by bending it into some (fixed) deformed shape u 1 = u 0 ( x 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwhadaWgaaWcbaGaaGymaaqabaGccq GH9aqpcaWG1bWaaWbaaSqabeaacaaIWaaaaOGaaiikaiaadIhadaWg aaWcbaGaaG4maaqabaGccaGGPaaaaa@38AD@ ; and then suddenly releasing it.   In general, the resulting motion of the solid will be very complicated, and may not even appear to be periodic (it will be periodic in a string, however).
  2. However, there exists a set of special initial deflections u 0 = U n ( k n x 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwhadaahaaWcbeqaaiaaicdaaaGccq GH9aqpcaWGvbWaaSbaaSqaaiaad6gaaeqaaOGaaiikaiaadUgadaWg aaWcbaGaamOBaaqabaGccaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaai ykaaaa@3ADE@ , which cause every point on the beam to experience simple harmonic motion at some (angular) frequency ω n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeM8a3naaBaaaleaacaWGUbaabeaaaa a@3374@ , so that the deflected shape has the form u 1 (x,t)= U n ( k n x 3 )cos( ω n t) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwhadaWgaaWcbaGaaGymaaqabaGcca GGOaGaamiEaiaacYcacaWG0bGaaiykaiabg2da9iaadwfadaWgaaWc baGaamOBaaqabaGccaGGOaGaam4AamaaBaaaleaacaWGUbaabeaaki aadIhadaWgaaWcbaGaaG4maaqabaGccaGGPaGaci4yaiaac+gacaGG ZbGaaiikaiabeM8a3naaBaaaleaacaWGUbaabeaakiaadshacaGGPa aaaa@46F8@ .
  3. The special frequencies ω n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeM8a3naaBaaaleaacaWGUbaabeaaaa a@3374@  are called the natural frequencies, and the special initial deflections U n ( k n x 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwfadaWgaaWcbaGaamOBaaqabaGcca GGOaGaam4AamaaBaaaleaacaWGUbaabeaakiaadIhadaWgaaWcbaGa aG4maaqabaGccaGGPaaaaa@37ED@  are called the mode shapes.   Each mode shape has a wave number k n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadUgadaWgaaWcbaGaamOBaaqabaaaaa@3297@ , which characterizes the wavelength of the harmonic vibrations.  The formula relating wave number to frequency depends on the shape of the solid (it is actually the dispersion relation for the wave).  For a stretched spring, we have the formulas

k n =nπ x 3 /L ω n =c k n c= T 0 /ρA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGPaVlaadU gadaWgaaWcbaGaamOBaaqabaGccqGH9aqpcaWGUbGaeqiWdaNaamiE amaaBaaaleaacaaIZaaabeaakiaac+cacaWGmbGaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqaHjpWDdaWgaaWc baGaamOBaaqabaGccqGH9aqpcaWGJbGaam4AamaaBaaaleaacaWGUb aabeaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8Uaam4yaiabg2da9maakaaabaGaamivamaaBaaaleaacaaIWa aabeaakiaac+cacqaHbpGCcaWGbbaaleqaaaaa@677C@

  1. The mode shapes U n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwfadaWgaaWcbaGaamOBaaqabaaaaa@3281@  have a very useful property MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  as we saw for the string

0 L U i ( k i x 3 ) U j ( k j x 3 )d x 3 =0ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaapehabaGaamyvamaaBaaaleaacaWGPb aabeaakiaacIcacaWGRbWaaSbaaSqaaiaadMgaaeqaaOGaamiEamaa BaaaleaacaaIZaaabeaakiaacMcaaSqaaiaaicdaaeaacaWGmbaani abgUIiYdGccaWGvbWaaSbaaSqaaiaadQgaaeqaaOGaaiikaiaadUga daWgaaWcbaGaamOAaaqabaGccaWG4bWaaSbaaSqaaiaaiodaaeqaaO GaaiykaiaadsgacaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaeyypa0Ja aGimaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaamyAaiab gcMi5kaadQgaaaa@6115@

 

 

The example below will give you some more insight into the nature of vibrations in flexible solids.

 

 

Free vibration of a beam

 

The figure illustrates the problem to be solved: an initially straight beam, with axis parallel to the e 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaaG4maaqabaaaaa@325F@  direction and principal axes of inertia parallel to e 1 , e 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaaGymaaqabaGcca GGSaGaaCyzamaaBaaaleaacaaIYaaabeaaaaa@34ED@  is free of external force.  The beam has Young’s modulus E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadweaaaa@3152@  and mass density ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeg8aYbaa@3248@ , and its cross-section has area A and principal moments of area I 1 , I 2 , I 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadMeadaWgaaWcbaGaaGymaaqabaGcca GGSaGaamysamaaBaaaleaacaaIYaaabeaakiaacYcacaWGjbWaaSba aSqaaiaaiodaaeqaaaaa@371E@ .  Its ends may be constrained in various ways, as described in more detail below.  We wish to calculate the natural frequencies and mode shapes of vibration for the beam, and to use these results to write down the displacement u 1 ( x 3 ,t) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwhadaWgaaWcbaGaaGymaaqabaGcca GGOaGaamiEamaaBaaaleaacaaIZaaabeaakiaacYcacaWG0bGaaiyk aaaa@3765@  for a beam that is caused to vibrate with initial conditions u 1 = u 0 ( x 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwhadaWgaaWcbaGaaGymaaqabaGccq GH9aqpcaWG1bWaaWbaaSqabeaacaaIWaaaaOGaaiikaiaadIhadaWg aaWcbaGaaG4maaqabaGccaGGPaaaaa@38AD@ , d u 1 /dt= v 0 ( x 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgacaWG1bWaaSbaaSqaaiaaigdaae qaaOGaai4laiaadsgacaWG0bGaeyypa0JaamODamaaCaaaleqabaGa aGimaaaakiaacIcacaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaaiykaa aa@3C2C@  at time t=0.

 

Mode shapes and natural frequencies: The physical significance of the mode shapes and natural frequencies of a vibrating beam can be visualized as follows:

  1. Suppose that the beam is made to vibrate by bending it into some (fixed) deformed shape u 1 = u 0 ( x 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwhadaWgaaWcbaGaaGymaaqabaGccq GH9aqpcaWG1bWaaWbaaSqabeaacaaIWaaaaOGaaiikaiaadIhadaWg aaWcbaGaaG4maaqabaGccaGGPaaaaa@38AD@ ; and then suddenly releasing it.   In general, the resulting motion of the beam will be very complicated, and may not even appear to be periodic.
  2. However, there exists a set of special initial deflections u 0 = U n ( k n x 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwhadaahaaWcbeqaaiaaicdaaaGccq GH9aqpcaWGvbWaaSbaaSqaaiaad6gaaeqaaOGaaiikaiaadUgadaWg aaWcbaGaamOBaaqabaGccaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaai ykaaaa@3ADE@ , which cause every point on the beam to experience simple harmonic motion at some (angular) frequency ω n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeM8a3naaBaaaleaacaWGUbaabeaaaa a@3374@ , so that the deflected shape has the form u 1 (x,t)= U n ( k n x 3 )cos( ω n t) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwhadaWgaaWcbaGaaGymaaqabaGcca GGOaGaamiEaiaacYcacaWG0bGaaiykaiabg2da9iaadwfadaWgaaWc baGaamOBaaqabaGccaGGOaGaam4AamaaBaaaleaacaWGUbaabeaaki aadIhadaWgaaWcbaGaaG4maaqabaGccaGGPaGaci4yaiaac+gacaGG ZbGaaiikaiabeM8a3naaBaaaleaacaWGUbaabeaakiaadshacaGGPa aaaa@46F8@ .
  3. The special frequencies ω n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeM8a3naaBaaaleaacaWGUbaabeaaaa a@3374@  are called the natural frequencies of the beam, and the special initial deflections U n ( k n x 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwfadaWgaaWcbaGaamOBaaqabaGcca GGOaGaam4AamaaBaaaleaacaWGUbaabeaakiaadIhadaWgaaWcbaGa aG4maaqabaGccaGGPaaaaa@37ED@  are called the mode shapes.   Each mode shape has a wave number k n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadUgadaWgaaWcbaGaamOBaaqabaaaaa@3297@ , which characterizes the wavelength of the harmonic vibrations, and is related to the natural frequency by

ω n = k n 2 E I 2 ρA MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeM8a3naaBaaaleaacaWGUbaabeaaki abg2da9iaadUgadaqhaaWcbaGaamOBaaqaaiaaikdaaaGcdaGcaaqa amaalaaabaGaamyraiaadMeadaWgaaWcbaGaaGOmaaqabaaakeaacq aHbpGCcaWGbbaaaaWcbeaaaaa@3C95@

  1. The mode shapes U n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwfadaWgaaWcbaGaamOBaaqabaaaaa@3281@  have a very useful property (which is proved in Section 5.9.1):

0 L U i ( k i x 3 ) U j ( k j x 3 )=0ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaapehabaGaamyvamaaBaaaleaacaWGPb aabeaakiaacIcacaWGRbWaaSbaaSqaaiaadMgaaeqaaOGaamiEamaa BaaaleaacaaIZaaabeaakiaacMcaaSqaaiaaicdaaeaacaWGmbaani abgUIiYdGccaWGvbWaaSbaaSqaaiaadQgaaeqaaOGaaiikaiaadUga daWgaaWcbaGaamOAaaqabaGccaWG4bWaaSbaaSqaaiaaiodaaeqaaO Gaaiykaiabg2da9iaaicdacaaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaadMgacqGHGjsUcaWGQbaaaa@5E3C@

 

 

The mode shapes, wave numbers and corresponding natural frequencies depend on the way the beam is supported at its ends.  A few representative results are listed below

 

Beam with free ends:

The wave numbers for each mode are given by the roots of the equation cos( k n L)cosh( k n L )1=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiGacogacaGGVbGaai4CaiaacIcacaWGRb WaaSbaaSqaaiaad6gaaeqaaOGaamitaiaacMcaciGGJbGaai4Baiaa cohacaGGObWaaeWaaeaacaWGRbWaaSbaaSqaaiaad6gaaeqaaOGaam itaaGaayjkaiaawMcaaiabgkHiTiaaigdacqGH9aqpcaaIWaaaaa@4338@

The mode shapes are

U n = A n ( sinh( k n x 3 )+sin( k n x 3 )+ cosh( k n L)cos( k n L) sinh( k n L)+sin( k n L) [ cosh( k n x 3 )+cos( k n x 3 ) ] ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwfadaWgaaWcbaGaamOBaaqabaGccq GH9aqpcaWGbbWaaSbaaSqaaiaad6gaaeqaaOWaaeWaaeaaciGGZbGa aiyAaiaac6gacaGGObGaaiikaiaadUgadaWgaaWcbaGaamOBaaqaba GccaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaaiykaiabgUcaRiGacoha caGGPbGaaiOBaiaacIcacaWGRbWaaSbaaSqaaiaad6gaaeqaaOGaam iEamaaBaaaleaacaaIZaaabeaakiaacMcacqGHRaWkdaWcaaqaaiGa cogacaGGVbGaai4CaiaacIgacaGGOaGaam4AamaaBaaaleaacaWGUb aabeaakiaadYeacaGGPaGaeyOeI0Iaci4yaiaac+gacaGGZbGaaiik aiaadUgadaWgaaWcbaGaamOBaaqabaGccaWGmbGaaiykaaqaaiGaco hacaGGPbGaaiOBaiaacIgacaGGOaGaam4AamaaBaaaleaacaWGUbaa beaakiaadYeacaGGPaGaey4kaSIaci4CaiaacMgacaGGUbGaaiikai aadUgadaWgaaWcbaGaamOBaaqabaGccaWGmbGaaiykaaaadaWadaqa aiGacogacaGGVbGaai4CaiaacIgacaGGOaGaam4AamaaBaaaleaaca WGUbaabeaakiaadIhadaWgaaWcbaGaaG4maaqabaGccaGGPaGaey4k aSIaci4yaiaac+gacaGGZbGaaiikaiaadUgadaWgaaWcbaGaamOBaa qabaGccaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaaiykaaGaay5waiaa w2faaaGaayjkaiaawMcaaaaa@7E6F@

where A n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadgeadaWgaaWcbaGaamOBaaqabaaaaa@326D@  are arbitrary constants.

 

Beam with pinned ends:

The wave numbers for each mode are k n = nπ L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadUgadaWgaaWcbaGaamOBaaqabaGccq GH9aqpdaWcaaqaaiaad6gacqaHapaCaeaacaWGmbaaaaaa@3738@

The mode shapes are U n = A n sin( k n x 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwfadaWgaaWcbaGaamOBaaqabaGccq GH9aqpcaWGbbWaaSbaaSqaaiaad6gaaeqaaOGaci4CaiaacMgacaGG UbGaaiikaiaadUgadaWgaaWcbaGaamOBaaqabaGccaWG4bWaaSbaaS qaaiaaiodaaeqaaOGaaiykaaaa@3DB9@ , where A n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadgeadaWgaaWcbaGaamOBaaqabaaaaa@326D@  are arbitrary constants

 

Cantilever beam (clamped at x 3 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadIhadaWgaaWcbaGaaG4maaqabaGccq GH9aqpcaaIWaaaaa@3438@ , free at  x 3 =L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadIhadaWgaaWcbaGaaG4maaqabaGccq GH9aqpcaWGmbaaaa@344F@ :

 

The wave numbers for each mode are given by the roots of the equation cos( k n L)cosh( k n L )+1=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiGacogacaGGVbGaai4CaiaacIcacaWGRb WaaSbaaSqaaiaad6gaaeqaaOGaamitaiaacMcaciGGJbGaai4Baiaa cohacaGGObWaaeWaaeaacaWGRbWaaSbaaSqaaiaad6gaaeqaaOGaam itaaGaayjkaiaawMcaaiabgUcaRiaaigdacqGH9aqpcaaIWaaaaa@432D@

The mode shapes are

U n = A n ( sinh( k n x 3 )sin( k n x 3 )+ cosh( k n L)+cos( k n L) sin( k n L)sinh( k n L) [ cosh( k n x 3 )cos( k n x 3 ) ] ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwfadaWgaaWcbaGaamOBaaqabaGccq GH9aqpcaWGbbWaaSbaaSqaaiaad6gaaeqaaOWaaeWaaeaaciGGZbGa aiyAaiaac6gacaGGObGaaiikaiaadUgadaWgaaWcbaGaamOBaaqaba GccaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaaiykaiabgkHiTiGacoha caGGPbGaaiOBaiaacIcacaWGRbWaaSbaaSqaaiaad6gaaeqaaOGaam iEamaaBaaaleaacaaIZaaabeaakiaacMcacqGHRaWkdaWcaaqaaiGa cogacaGGVbGaai4CaiaacIgacaGGOaGaam4AamaaBaaaleaacaWGUb aabeaakiaadYeacaGGPaGaey4kaSIaci4yaiaac+gacaGGZbGaaiik aiaadUgadaWgaaWcbaGaamOBaaqabaGccaWGmbGaaiykaaqaaiGaco hacaGGPbGaaiOBaiaacIcacaWGRbWaaSbaaSqaaiaad6gaaeqaaOGa amitaiaacMcacqGHsislciGGZbGaaiyAaiaac6gacaGGObGaaiikai aadUgadaWgaaWcbaGaamOBaaqabaGccaWGmbGaaiykaaaadaWadaqa aiGacogacaGGVbGaai4CaiaacIgacaGGOaGaam4AamaaBaaaleaaca WGUbaabeaakiaadIhadaWgaaWcbaGaaG4maaqabaGccaGGPaGaeyOe I0Iaci4yaiaac+gacaGGZbGaaiikaiaadUgadaWgaaWcbaGaamOBaa qabaGccaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaaiykaaGaay5waiaa w2faaaGaayjkaiaawMcaaaaa@7E85@

where A n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadgeadaWgaaWcbaGaamOBaaqabaaaaa@326D@  are arbitrary constants.

 

 

Vibration of a beam with given initial displacement and velocity

 

The solution for free vibration of a beam with given initial displacement and velocity can be found by superposing contributions from each mode as follows

u 1 ( x 3 ,t)= n=1 C n U n ( k n x 3 )cos( ω n t)+ n=1 D n U n ( k n x 3 )sin( ω n t) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwhadaWgaaWcbaGaaGymaaqabaGcca GGOaGaamiEamaaBaaaleaacaaIZaaabeaakiaacYcacaWG0bGaaiyk aiabg2da9maaqahabaGaam4qamaaBaaaleaacaWGUbaabeaakiaadw fadaWgaaWcbaGaamOBaaqabaGccaGGOaGaam4AamaaBaaaleaacaWG UbaabeaakiaadIhadaWgaaWcbaGaaG4maaqabaGccaGGPaGaci4yai aac+gacaGGZbGaaiikaiabeM8a3naaBaaaleaacaWGUbaabeaakiaa dshacaGGPaGaey4kaScaleaacaWGUbGaeyypa0JaaGymaaqaaiabg6 HiLcqdcqGHris5aOWaaabCaeaacaWGebWaaSbaaSqaaiaad6gaaeqa aOGaamyvamaaBaaaleaacaWGUbaabeaakiaacIcacaWGRbWaaSbaaS qaaiaad6gaaeqaaOGaamiEamaaBaaaleaacaaIZaaabeaakiaacMca ciGGZbGaaiyAaiaac6gacaGGOaGaeqyYdC3aaSbaaSqaaiaad6gaae qaaOGaamiDaiaacMcaaSqaaiaad6gacqGH9aqpcaaIXaaabaGaeyOh IukaniabggHiLdaaaa@690D@

where

C n = 0 L u 0 ( x 3 ) U n ( k n x 3 )d x 3 0 L { U n ( k n x 3 ) } 2 d x 3 D n = 0 L v 0 ( x 3 ) U n ( k n x 3 )d x 3 ω n 0 L { U n ( k n x 3 ) } 2 d x 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadoeadaWgaaWcbaGaamOBaaqabaGccq GH9aqpdaWcaaqaamaapehabaGaamyDamaaCaaaleqabaGaaGimaaaa kiaacIcacaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaaiykaiaadwfada WgaaWcbaGaamOBaaqabaGccaGGOaGaam4AamaaBaaaleaacaWGUbaa beaakiaadIhadaWgaaWcbaGaaG4maaqabaGccaGGPaGaamizaiaadI hadaWgaaWcbaGaaG4maaqabaaabaGaaGimaaqaaiaadYeaa0Gaey4k IipaaOqaamaapehabaWaaiWaaeaacaWGvbWaaSbaaSqaaiaad6gaae qaaOGaaiikaiaadUgadaWgaaWcbaGaamOBaaqabaGccaWG4bWaaSba aSqaaiaaiodaaeqaaOGaaiykaaGaay5Eaiaaw2haamaaCaaaleqaba GaaGOmaaaakiaadsgacaWG4bWaaSbaaSqaaiaaiodaaeqaaaqaaiaa icdaaeaacaWGmbaaniabgUIiYdaaaOGaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaamiramaaBa aaleaacaWGUbaabeaakiabg2da9maalaaabaWaa8qCaeaacaWG2bWa aWbaaSqabeaacaaIWaaaaOGaaiikaiaadIhadaWgaaWcbaGaaG4maa qabaGccaGGPaGaamyvamaaBaaaleaacaWGUbaabeaakiaacIcacaWG RbWaaSbaaSqaaiaad6gaaeqaaOGaamiEamaaBaaaleaacaaIZaaabe aakiaacMcacaWGKbGaamiEamaaBaaaleaacaaIZaaabeaaaeaacaaI WaaabaGaamitaaqdcqGHRiI8aaGcbaGaeqyYdC3aaSbaaSqaaiaad6 gaaeqaaOWaa8qCaeaadaGadaqaaiaadwfadaWgaaWcbaGaamOBaaqa baGccaGGOaGaam4AamaaBaaaleaacaWGUbaabeaakiaadIhadaWgaa WcbaGaaG4maaqabaGccaGGPaaacaGL7bGaayzFaaWaaWbaaSqabeaa caaIYaaaaOGaamizaiaadIhadaWgaaWcbaGaaG4maaqabaaabaGaaG imaaqaaiaadYeaa0Gaey4kIipaaaaaaa@9E96@

 

 

Derivation:  The deflection of the beam must satisfy the equation of motion given in Chapter 10

E I 2 d 4 u 1 d x 3 4 +ρA d 2 u 1 d t 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadweacaWGjbWaaSbaaSqaaiaaikdaae qaaOWaaSaaaeaacaWGKbWaaWbaaSqabeaacaaI0aaaaOGaamyDamaa BaaaleaacaaIXaaabeaaaOqaaiaadsgacaWG4bWaa0baaSqaaiaaio daaeaacaaI0aaaaaaakiabgUcaRiabeg8aYjaadgeadaWcaaqaaiaa dsgadaahaaWcbeqaaiaaikdaaaGccaWG1bWaaSbaaSqaaiaaigdaae qaaaGcbaGaamizaiaadshadaahaaWcbeqaaiaaikdaaaaaaOGaeyyp a0JaaGimaaaa@4657@

1.      The general solution to this equation (found, e.g. by separation of variables, or just by direct substitution) is

u 1 ={ A 1 sinh( k n x 3 )+ A 2 cosh( k n x 3 )+ A 3 sin( k n x 3 )+ A 4 cos( k n x 3 ) }cos( ω n t+ϕ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwhadaWgaaWcbaGaaGymaaqabaGccq GH9aqpdaGadaqaaiaadgeadaWgaaWcbaGaaGymaaqabaGcciGGZbGa aiyAaiaac6gacaGGObGaaiikaiaadUgadaWgaaWcbaGaamOBaaqaba GccaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaaiykaiabgUcaRiaadgea daWgaaWcbaGaaGOmaaqabaGcciGGJbGaai4BaiaacohacaGGObGaai ikaiaadUgadaWgaaWcbaGaamOBaaqabaGccaWG4bWaaSbaaSqaaiaa iodaaeqaaOGaaiykaiabgUcaRiaadgeadaWgaaWcbaGaaG4maaqaba GcciGGZbGaaiyAaiaac6gacaGGOaGaam4AamaaBaaaleaacaWGUbaa beaakiaadIhadaWgaaWcbaGaaG4maaqabaGccaGGPaGaey4kaSIaam yqamaaBaaaleaacaaI0aaabeaakiGacogacaGGVbGaai4CaiaacIca caWGRbWaaSbaaSqaaiaad6gaaeqaaOGaamiEamaaBaaaleaacaaIZa aabeaakiaacMcaaiaawUhacaGL9baaciGGJbGaai4BaiaacohacaGG OaGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaOGaamiDaiabgUcaRiabew 9aMjaacMcaaaa@6CAD@

where the frequency and wave number must be related by k n 4 =ρA ω n 2 /E I 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadUgadaqhaaWcbaGaamOBaaqaaiaais daaaGccqGH9aqpcqaHbpGCcaWGbbGaeqyYdC3aa0baaSqaaiaad6ga aeaacaaIYaaaaOGaai4laiaadweacaWGjbWaaSbaaSqaaiaaikdaae qaaaaa@3DD2@  to satisfy the equation of motion.

2.      The coefficients A 1 ... A 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadgeadaWgaaWcbaGaaGymaaqabaGcca GGUaGaaiOlaiaac6cacaWGbbWaaSbaaSqaaiaaisdaaeqaaaaa@3605@  and the wave number k n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadUgadaWgaaWcbaGaamOBaaqabaaaaa@3297@  must be chosen to satisfy the boundary conditions at the ends of the bar.   For a beam with free ends, the boundary conditions reduce to d 2 u 1 /d x 3 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgadaahaaWcbeqaaiaaikdaaaGcca WG1bWaaSbaaSqaaiaaigdaaeqaaOGaai4laiaadsgacaWG4bWaa0ba aSqaaiaaiodaaeaacaaIYaaaaOGaeyypa0JaaGimaaaa@3A58@ , d 3 u 1 /d x 3 3 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgadaahaaWcbeqaaiaaiodaaaGcca WG1bWaaSbaaSqaaiaaigdaaeqaaOGaai4laiaadsgacaWG4bWaa0ba aSqaaiaaiodaaeaacaaIZaaaaOGaeyypa0JaaGimaaaa@3A5A@  at x 3 =0, x 3 =L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadIhadaWgaaWcbaGaaG4maaqabaGccq GH9aqpcaaIWaGaaiilaiaadIhadaWgaaWcbaGaaG4maaqabaGccqGH 9aqpcaWGmbaaaa@38AF@ .  Substituting the formula from (2) into the four boundary conditions, and writing the resulting equations in matrix form yields

[ 1 0 1 0 0 1 0 1 cosh( k n L) sinh( k n L) cos( k n L) sin( k n L) sinh( k n L) cosh( k n L) sin( k n L) cos( k n L) ][ A 1 A 2 A 3 A 4 ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaadmaabaqbaeqabqabaaaaaeaacaaIXa aabaGaaGimaaqaaiabgkHiTiaaigdaaeaacaaIWaaabaGaaGimaaqa aiaaigdaaeaacaaIWaaabaGaeyOeI0IaaGymaaqaaiGacogacaGGVb Gaai4CaiaacIgacaGGOaGaam4AamaaBaaaleaacaWGUbaabeaakiaa dYeacaGGPaaabaGaci4CaiaacMgacaGGUbGaaiiAaiaacIcacaWGRb WaaSbaaSqaaiaad6gaaeqaaOGaamitaiaacMcaaeaacqGHsislciGG JbGaai4BaiaacohacaGGOaGaam4AamaaBaaaleaacaWGUbaabeaaki aadYeacaGGPaaabaGaci4CaiaacMgacaGGUbGaaiikaiaadUgadaWg aaWcbaGaamOBaaqabaGccaWGmbGaaiykaaqaaiGacohacaGGPbGaai OBaiaacIgacaGGOaGaam4AamaaBaaaleaacaWGUbaabeaakiaadYea caGGPaaabaGaci4yaiaac+gacaGGZbGaaiiAaiaacIcacaWGRbWaaS baaSqaaiaad6gaaeqaaOGaamitaiaacMcaaeaacqGHsislciGGZbGa aiyAaiaac6gacaGGOaGaam4AamaaBaaaleaacaWGUbaabeaakiaadY eacaGGPaaabaGaeyOeI0Iaci4yaiaac+gacaGGZbGaaiikaiaadUga daWgaaWcbaGaamOBaaqabaGccaWGmbGaaiykaaaaaiaawUfacaGLDb aadaWadaqaauaabeqaeeaaaaqaaiaadgeadaWgaaWcbaGaaGymaaqa baaakeaacaWGbbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaamyqamaaBa aaleaacaaIZaaabeaaaOqaaiaadgeadaWgaaWcbaGaaGinaaqabaaa aaGccaGLBbGaayzxaaGaeyypa0JaaGimaaaa@8428@

3.      For a nonzero solution, the matrix in this equation must be singular.  This implies that the determinant of the matrix  is  zero, which gives the governing equation for the wave-number

cos( k n L)cosh( k n L )1=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiGacogacaGGVbGaai4CaiaacIcacaWGRb WaaSbaaSqaaiaad6gaaeqaaOGaamitaiaacMcaciGGJbGaai4Baiaa cohacaGGObWaaeWaaeaacaWGRbWaaSbaaSqaaiaad6gaaeqaaOGaam itaaGaayjkaiaawMcaaiabgkHiTiaaigdacqGH9aqpcaaIWaaaaa@4338@

4.      Since the equation system in (3) is now singular, we may discard any one of the four equations and use the other three to determine an equation relating A 2 , A 3 , A 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadgeadaWgaaWcbaGaaGOmaaqabaGcca GGSaGaamyqamaaBaaaleaacaaIZaaabeaakiaacYcacaWGbbWaaSba aSqaaiaaisdaaeqaaaaa@3709@  to A 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadgeadaWgaaWcbaGaaGymaaqabaaaaa@3235@ .  Choosing to discard the last row of the matrix, and taking the first column to the right hand side shows that

[ 0 1 0 1 0 1 sinh( k n L) cos( k n L) sin( k n L) ][ A 2 A 3 A 4 ]= A 1 [ 1 0 cosh( k n L) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaadmaabaqbaeqabmWaaaqaaiaaicdaae aacqGHsislcaaIXaaabaGaaGimaaqaaiaaigdaaeaacaaIWaaabaGa eyOeI0IaaGymaaqaaiGacohacaGGPbGaaiOBaiaacIgacaGGOaGaam 4AamaaBaaaleaacaWGUbaabeaakiaadYeacaGGPaaabaGaeyOeI0Ia ci4yaiaac+gacaGGZbGaaiikaiaadUgadaWgaaWcbaGaamOBaaqaba GccaWGmbGaaiykaaqaaiGacohacaGGPbGaaiOBaiaacIcacaWGRbWa aSbaaSqaaiaad6gaaeqaaOGaamitaiaacMcaaaaacaGLBbGaayzxaa WaamWaaeaafaqabeWabaaabaGaamyqamaaBaaaleaacaaIYaaabeaa aOqaaiaadgeadaWgaaWcbaGaaG4maaqabaaakeaacaWGbbWaaSbaaS qaaiaaisdaaeqaaaaaaOGaay5waiaaw2faaiabg2da9iabgkHiTiaa dgeadaWgaaWcbaGaaGymaaqabaGcdaWadaqaauaabeqadeaaaeaaca aIXaaabaGaaGimaaqaaiGacogacaGGVbGaai4CaiaacIgacaGGOaGa am4AamaaBaaaleaacaWGUbaabeaakiaadYeacaGGPaaaaaGaay5wai aaw2faaaaa@663C@

Solving this equation system shows that A 2 = A 4 = cosh( k n L)cos( k n L) sinh( k n L)+sin( k n L) A 1 A 3 = A 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadgeadaWgaaWcbaGaaGOmaaqabaGccq GH9aqpcaWGbbWaaSbaaSqaaiaaisdaaeqaaOGaeyypa0ZaaSaaaeaa ciGGJbGaai4BaiaacohacaGGObGaaiikaiaadUgadaWgaaWcbaGaam OBaaqabaGccaWGmbGaaiykaiabgkHiTiGacogacaGGVbGaai4Caiaa cIcacaWGRbWaaSbaaSqaaiaad6gaaeqaaOGaamitaiaacMcaaeaaci GGZbGaaiyAaiaac6gacaGGObGaaiikaiaadUgadaWgaaWcbaGaamOB aaqabaGccaWGmbGaaiykaiabgUcaRiGacohacaGGPbGaaiOBaiaacI cacaWGRbWaaSbaaSqaaiaad6gaaeqaaOGaamitaiaacMcaaaGaamyq amaaBaaaleaacaaIXaaabeaakiaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadgeadaWgaaWcbaGaaG4m aaqabaGccqGH9aqpcaWGbbWaaSbaaSqaaiaaigdaaeqaaOGaaGPaVl aaykW7aaa@6D45@ .  Substituting these values back into the solution in step (2) gives the mode shape.

5.      To understand the formula for the vibration of a beam with given initial conditions, note that the most general solution consists of a linear combination of all possible mode shapes, i.e.

u 1 ( x 3 ,t)= n=1 C n U n ( k n x 3 )cos( ω n t)+ n=1 D n U n ( k n x 3 )sin( ω n t) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwhadaWgaaWcbaGaaGymaaqabaGcca GGOaGaamiEamaaBaaaleaacaaIZaaabeaakiaacYcacaWG0bGaaiyk aiabg2da9maaqahabaGaam4qamaaBaaaleaacaWGUbaabeaakiaadw fadaWgaaWcbaGaamOBaaqabaGccaGGOaGaam4AamaaBaaaleaacaWG UbaabeaakiaadIhadaWgaaWcbaGaaG4maaqabaGccaGGPaGaci4yai aac+gacaGGZbGaaiikaiabeM8a3naaBaaaleaacaWGUbaabeaakiaa dshacaGGPaGaey4kaScaleaacaWGUbGaeyypa0JaaGymaaqaaiabg6 HiLcqdcqGHris5aOWaaabCaeaacaWGebWaaSbaaSqaaiaad6gaaeqa aOGaamyvamaaBaaaleaacaWGUbaabeaakiaacIcacaWGRbWaaSbaaS qaaiaad6gaaeqaaOGaamiEamaaBaaaleaacaaIZaaabeaakiaacMca ciGGZbGaaiyAaiaac6gacaGGOaGaeqyYdC3aaSbaaSqaaiaad6gaae qaaOGaamiDaiaacMcaaSqaaiaad6gacqGH9aqpcaaIXaaabaGaeyOh IukaniabggHiLdaaaa@690D@

Formulas for C n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadoeadaWgaaWcbaGaamOBaaqabaaaaa@326F@  found by substituting t=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadshacqGH9aqpcaaIWaaaaa@3341@ , multiplying both sides of the equation by U j ( k n x 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwfadaWgaaWcbaGaamOAaaqabaGcca GGOaGaam4AamaaBaaaleaacaWGUbaabeaakiaadIhadaWgaaWcbaGa aG4maaqabaGccaGGPaaaaa@37E9@  and integrating over the length of the beam.   We know that

0 L U n ( k n x 3 ) U j ( k j x 3 )=0nj MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaapehabaGaamyvamaaBaaaleaacaWGUb aabeaakiaacIcacaWGRbWaaSbaaSqaaiaad6gaaeqaaOGaamiEamaa BaaaleaacaaIZaaabeaakiaacMcaaSqaaiaaicdaaeaacaWGmbaani abgUIiYdGccaWGvbWaaSbaaSqaaiaadQgaaeqaaOGaaiikaiaadUga daWgaaWcbaGaamOAaaqabaGccaWG4bWaaSbaaSqaaiaaiodaaeqaaO Gaaiykaiabg2da9iaaicdacaaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaad6gacqGHGjsUcaWGQbaaaa@5E4B@

so the result reduces to

0 L u 0 ( x 3 ) U j ( k n x 3 )d x 3 = C j 0 L { U j ( k n x 3 ) } 2 d x 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaapehabaGaamyDamaaCaaaleqabaGaaG imaaaakiaacIcacaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaaiykaiaa dwfadaWgaaWcbaGaamOAaaqabaGccaGGOaGaam4AamaaBaaaleaaca WGUbaabeaakiaadIhadaWgaaWcbaGaaG4maaqabaGccaGGPaGaamiz aiaadIhadaWgaaWcbaGaaG4maaqabaaabaGaaGimaaqaaiaadYeaa0 Gaey4kIipakiabg2da9iaadoeadaWgaaWcbaGaamOAaaqabaGcdaWd XbqaamaacmaabaGaamyvamaaBaaaleaacaWGQbaabeaakiaacIcaca WGRbWaaSbaaSqaaiaad6gaaeqaaOGaamiEamaaBaaaleaacaaIZaaa beaakiaacMcaaiaawUhacaGL9baadaahaaWcbeqaaiaaikdaaaGcca WGKbGaamiEamaaBaaaleaacaaIZaaabeaaaeaacaaIWaaabaGaamit aaqdcqGHRiI8aOGaaGPaVlaaykW7caaMc8oaaa@5CBA@

The formula for D n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadseadaWgaaWcbaGaamOBaaqabaaaaa@3270@  is found by differentiating the general solution with respect to time to find the velocity, substituting t=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadshacqGH9aqpcaaIWaaaaa@3341@ , and then proceeding as before to extract each coefficient D n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadseadaWgaaWcbaGaamOBaaqabaaaaa@3270@ .

 

 

12.7 Calculating natural frequencies and mode shapes with ABAQUS

 

 

It is straightforward to calculate natural frequencies and mode shapes for elastic solids using ABAQUS.

 

1.      Define a part in the usual way, and assign properties (and if appropriate a section geometry) with the property module as usual.   You will need to assign a mass density to the part along with its mechanical properties.  You can do this using the ‘General’ tab in the property editor.

2.      Create an instance of the part in the usual way.

3.      In the Step module, select the ‘Linear Perturbation’ procedure, and select the ‘Frequency’ option. 

4.      In the menu that comes up next, you can specify the maximum frequency of the vibration mode you care about MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  this is usually the most useful option for real design applications but for homework problems we don’t usually have a reason to look for a particular frequency range so it’s better to specify how many vibration modes you want to look at MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  for this purpose, check the ‘Value’ radio button and enter a suitable number of vibration modes into the box.   Of course, the more you ask for, the longer the calculation will take.    The higher frequency modes tend to also need a finer mesh.   Usually 30-50 modes is more than enough.

5.     

6.      You can generate a mesh in the usual way.  Note that choice of element type can be important in dynamic simulations; you are likely to see hourglassing in some reduced integration elements; and elements that lock are likely to cause problems.

7.      You can define boundary conditions the usual way in the Load module.   In dynamic simulations, you don’t have to worry about constraining rigid body modes.   You can also use the ‘Predefined Field’ tab in the ‘Load’ module to define initial velocity distributions in your part.   You can’t define initial displacements.   If you need to do this, you will have to run a separate static step just before the explicit dynamic step, and define the initial displacement field as boundary conditions in the static step.

8.      Create the job and run the analysis in the usual way

9.      You can view the natural frequencies and mode shapes in the Visualization module.  The arrows that normally select the increment number are used to step through the modes.   The deformed shape will show the mode shape (you can see the stresses associated with the deformation if you are interested; of course the magnitudes of the stresses are irrelevant, because the amplitude of the mode is arbitrary).   You will see the frequency displayed in the viewport as well.