Chapter 5

 

Mathematical description of internal forces in solids

 

 

 Our next objective is to outline the mathematical formulas that describe internal and external forces acting on a solid.  Just as there are many different strain measures, there are several different definitions of internal force.  We shall see that internal forces can be described as a second order tensor, which must be symmetric.  Thus, internal forces can always be quantified by a set of six numbers, and the various different definitions are all equivalent.

 

 

<5.1 Surface traction and internal body force

 

Forces can be applied to a solid body in two ways. 

(i) A force can be applied to its boundary: examples include fluid pressure, wind loading, or forces arising from contact with another solid. 

(ii) The solid can be subjected to body forces, which act on the interior of the solid.  Examples include gravitational loading, or electromagnetic forces.

 

 The surface traction vector t at a point on the surface represents the force acting on the surface per unit area of the deformed solid.

 

Formally, let dA be an element of area on a surface.  Suppose that dA is subjected to a force dP MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGKbGaaCiuaaaa@3487@ .  Then

t= lim dA0 dP dA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWH0bGaeyypa0ZaaCbeaeaaciGGSb GaaiyAaiaac2gaaSqaaiaadsgacaWGbbGaeyOKH4QaaGimaaqabaGc daWcaaqaaiaadsgacaWHqbaabaGaamizaiaadgeaaaaaaa@3FB2@

The resultant force acting on any portion S of the surface of the deformed solid is

P= S tdA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHqbGaeyypa0Zaa8quaeaacaWH0b GaaGPaVlaadsgacaWGbbaaleaacaWGtbaabeqdcqGHRiI8aaaa@3BFD@

Surface traction, like `true stress,’ should be thought of as acting on the deformed solid.

 Normal and shear tractions

The traction vector is often resolved into components acting normal and tangential to a surface, as shown in the picture. 

 

The normal component is referred to as the normal traction, and the tangential component is known as the shear traction.

 

Formally, let n denote a unit vector normal to the surface.  Then

t n =( tn )n t t =t t n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWH0bWaaSbaaSqaaiaah6gaaeqaaO Gaeyypa0ZaaeWaaeaacaWH0bGaeyyXICTaaCOBaaGaayjkaiaawMca aiaah6gacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaCiDamaaBaaaleaacaWH0baabeaakiabg2da9iaahshacq GHsislcaWH0bWaaSbaaSqaaiaah6gaaeqaaaaa@5CA3@

 

 

 The body force vector denotes the external force acting on the interior of a solid, per unit mass.

 

Formally, let dV denote an infinitesimal volume element within the deformed solid, and let ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHbpGCaaa@3485@  denote the mass density (mass per unit deformed volume).  Suppose that the element is subjected to a force dP MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGKbGaaCiuaaaa@3487@ .  Then

b= 1 ρ lim dV0 dP dV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHIbGaeyypa0ZaaSaaaeaacaaIXa aabaGaeqyWdihaamaaxababaGaciiBaiaacMgacaGGTbaaleaacaWG KbGaamOvaiabgkziUkaaicdaaeqaaOWaaSaaaeaacaWGKbGaaCiuaa qaaiaadsgacaWGwbaaaaaa@4255@

The resultant body force acting on any volume V  within the deformed solid is

P= V ρbdV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHqbGaeyypa0Zaa8quaeaacqaHbp GCcaaMc8UaaCOyaiaaykW7caWGKbGaamOvaaWcbaGaamOvaaqab0Ga ey4kIipaaaa@3F4E@

 

 

5.2 Traction acting on planes within a solid

 

Every plane in the interior of a solid is subjected to a distribution of traction.  To see this, consider a loaded, solid, body in static equilibrium.  Imagine cutting the solid in two.  The two parts of the solid must each be in static equilibrium.  This is possible only if forces act on the planes that were created by the cut.

 

 The internal traction vector T(n) represents the force per unit area acting on a section of the deformed body across a plane with outer normal vector n.

 

Formally, let dA be an element of area in the interior of the solid, with normal n.  Suppose that the material on the underside of dA is subjected to a force d P (n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGKbGaaCiuamaaCaaaleqabaGaai ikaiaah6gacaGGPaaaaaaa@3704@  across the plane dA.  Then

T(n)= lim dA0 d P (n) dA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHubGaaiikaiaah6gacaGGPaGaey ypa0ZaaCbeaeaaciGGSbGaaiyAaiaac2gaaSqaaiaadsgacaWGbbGa eyOKH4QaaGimaaqabaGcdaWcaaqaaiaadsgacaWHqbWaaWbaaSqabe aacaGGOaGaaCOBaiaacMcaaaaakeaacaWGKbGaamyqaaaaaaa@4469@

Note that internal traction is the force per unit area of the deformed solid, like `true stress’

 

 The resultant force acting on any internal volume V with boundary surface A within a deformed solid is

P= A T(n)dA+ V ρbdV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHqbGaeyypa0Zaa8quaeaacaWHub Gaaiikaiaah6gacaGGPaGaamizaiaadgeacqGHRaWkaSqaaiaadgea aeqaniabgUIiYdGcdaWdrbqaaiabeg8aYjaaykW7caWHIbGaaGPaVl aadsgacaWGwbaaleaacaWGwbaabeqdcqGHRiI8aaaa@4826@

The first term is the resultant force acting on the internal surface A, the second term is the resultant body force acting on the interior V.

 

 

 Newton’s third law (every action has an equal and opposite reaction) requires that

T(n)=T(n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHubGaaiikaiabgkHiTiaah6gaca GGPaGaeyypa0JaeyOeI0IaaCivaiaacIcacaWHUbGaaiykaaaa@3BFF@

To see this, note that the forces acting on planes separating two adjacent volume elements in a solid must be equal and opposite.

 

 

 

 Traction acting on different planes passing through the same point are related, in order to satisfy Newton’s second law (F=ma).

 

Let { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaGadaqaaiaahwgadaWgaaWcbaGaaG ymaaqabaGccaGGSaGaaCyzamaaBaaaleaacaaIYaaabeaakiaacYca caWHLbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7bGaayzFaaaaaa@3BF6@  be a Cartesian basis.  Let T i ( e 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGubWaaSbaaSqaaiaadMgaaeqaaO GaaiikaiaahwgadaWgaaWcbaGaaGymaaqabaGccaGGPaaaaa@37FA@ , T i ( e 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGubWaaSbaaSqaaiaadMgaaeqaaO GaaiikaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGPaaaaa@37FB@ , T i ( e 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGubWaaSbaaSqaaiaadMgaaeqaaO GaaiikaiaahwgadaWgaaWcbaGaaG4maaqabaGccaGGPaaaaa@37FC@  denote the components of traction acting on planes with normal vectors in the e 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHLbWaaSbaaSqaaiaaigdaaeqaaa aa@349A@ , e 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHLbWaaSbaaSqaaiaaikdaaeqaaa aa@349B@ , and e 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHLbWaaSbaaSqaaiaaiodaaeqaaa aa@349C@  directions, respectively.  Then, the traction components T i (n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGubWaaSbaaSqaaiaadMgaaeqaaO Gaaiikaiaah6gacaGGPaaaaa@3712@  acting on a surface with normal n are given by

T i (n)= T i ( e 1 ) n 1 + T i ( e 2 ) n 2 + T i ( e 3 ) n 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGubWaaSbaaSqaaiaadMgaaeqaaO Gaaiikaiaah6gacaGGPaGaeyypa0JaamivamaaBaaaleaacaWGPbaa beaakiaacIcacaWHLbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiaad6 gadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGubWaaSbaaSqaaiaa dMgaaeqaaOGaaiikaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGPa GaamOBamaaBaaaleaacaaIYaaabeaakiabgUcaRiaadsfadaWgaaWc baGaamyAaaqabaGccaGGOaGaaCyzamaaBaaaleaacaaIZaaabeaaki aacMcacaWGUbWaaSbaaSqaaiaaiodaaeqaaaaa@4F23@

where n i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGUbWaaSbaaSqaaiaadMgaaeqaaa aa@34D2@  are the components of n.

 

To see this, consider the forces acting on the infinitessimal tetrahedron shown in the figure.  The base and sides of the tetrahedron have normals in the e 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqGHsislcaWHLbWaaSbaaSqaaiaaik daaeqaaaaa@3588@ , e 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqGHsislcaWHLbWaaSbaaSqaaiaaig daaeqaaaaa@3587@  and e 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqGHsislcaWHLbWaaSbaaSqaaiaaio daaeqaaaaa@3589@  directions.  The fourth face has normal n.  Suppose the volume of the tetrahedron is dV, and let d A 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGKbGaamyqamaaBaaaleaacaaIXa aabeaaaaa@355B@ d A 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGKbGaamyqamaaBaaaleaacaaIYa aabeaaaaa@355C@ d A 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGKbGaamyqamaaBaaaleaacaaIZa aabeaaaaa@355D@ d A n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGKbGaamyqamaaBaaaleaacaWGUb aabeaaaaa@3593@  denote the areas of the faces.  Assume that the material within the tetrahedron has mass density ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHbpGCaaa@3485@  and is subjected to a body force b. Let a denote the acceleration of the center of mass of the tetrahedron. Then, F=ma for the tetrahedron requires that

T(n)d A (n) +T( e 1 )d A 1 +T( e 2 )d A 2 +T( e 3 )d A 3 +ρbdV=ρdVa MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHubGaaiikaiaah6gacaGGPaGaam izaiaadgeadaahaaWcbeqaaiaacIcacaWGUbGaaiykaaaakiabgUca RiaahsfacaGGOaGaeyOeI0IaaCyzamaaBaaaleaacaaIXaaabeaaki aacMcacaWGKbGaamyqamaaBaaaleaacaaIXaaabeaakiabgUcaRiaa hsfacaGGOaGaeyOeI0IaaCyzamaaBaaaleaacaaIYaaabeaakiaacM cacaWGKbGaamyqamaaBaaaleaacaaIYaaabeaakiabgUcaRiaahsfa caGGOaGaeyOeI0IaaCyzamaaBaaaleaacaaIZaaabeaakiaacMcaca WGKbGaamyqamaaBaaaleaacaaIZaaabeaakiabgUcaRiabeg8aYjaa hkgacaWGKbGaamOvaiabg2da9iabeg8aYjaadsgacaWGwbGaaCyyaa aa@5E7B@

Recall that T( e i )=T( e i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHubGaaiikaiabgkHiTiaahwgada WgaaWcbaGaamyAaaqabaGccaGGPaGaeyypa0JaeyOeI0IaaCivaiaa cIcacaWHLbWaaSbaaSqaaiaadMgaaeqaaOGaaiykaaaa@3E35@  and divide through by d A n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGKbGaamyqamaaBaaaleaacaWGUb aabeaaaaa@3593@ :

T(n)T( e 1 ) d A 1 d A (n) T( e 2 ) d A 2 d A (n) T( e 3 ) d A 3 d A (n) +ρb dV d A (n) =ρ dV d A (n) a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHubGaaiikaiaah6gacaGGPaGaey OeI0IaaCivaiaacIcacaWHLbWaaSbaaSqaaiaaigdaaeqaaOGaaiyk amaalaaabaGaamizaiaadgeadaWgaaWcbaGaaGymaaqabaaakeaaca WGKbGaamyqamaaCaaaleqabaGaaiikaiaad6gacaGGPaaaaaaakiab gkHiTiaahsfacaGGOaGaaCyzamaaBaaaleaacaaIYaaabeaakiaacM cadaWcaaqaaiaadsgacaWGbbWaaSbaaSqaaiaaikdaaeqaaaGcbaGa amizaiaadgeadaahaaWcbeqaaiaacIcacaWGUbGaaiykaaaaaaGccq GHsislcaWHubGaaiikaiaahwgadaWgaaWcbaGaaG4maaqabaGccaGG PaWaaSaaaeaacaWGKbGaamyqamaaBaaaleaacaaIZaaabeaaaOqaai aadsgacaWGbbWaaWbaaSqabeaacaGGOaGaamOBaiaacMcaaaaaaOGa ey4kaSIaeqyWdiNaaCOyamaalaaabaGaamizaiaadAfaaeaacaWGKb GaamyqamaaCaaaleqabaGaaiikaiaad6gacaGGPaaaaaaakiabg2da 9iabeg8aYnaalaaabaGaamizaiaadAfaaeaacaWGKbGaamyqamaaCa aaleqabaGaaiikaiaad6gacaGGPaaaaaaakiaahggaaaa@6CED@

Finally, let d A n 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGKbGaamyqamaaBaaaleaacaWGUb aabeaakiabgkziUkaaicdaaaa@3844@ .  We can show (see Appendix D) that

d A 1 d A (n) = n 1 d A 2 d A (n) = n 2 d A 3 d A (n) = n 3 lim d A (n) 0 dV d A (n) =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWcaaqaaiaadsgacaWGbbWaaSbaaS qaaiaaigdaaeqaaaGcbaGaamizaiaadgeadaahaaWcbeqaaiaacIca caWGUbGaaiykaaaaaaGccqGH9aqpcaWGUbWaaSbaaSqaaiaaigdaae qaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVpaalaaabaGaamizaiaadgeadaWgaaWcbaGaaG OmaaqabaaakeaacaWGKbGaamyqamaaCaaaleqabaGaaiikaiaad6ga caGGPaaaaaaakiabg2da9iaad6gadaWgaaWcbaGaaGOmaaqabaGcca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7daWcaaqaaiaadsgacaWGbbWaaSbaaSqaaiaaiodaaeqaaaGcba GaamizaiaadgeadaahaaWcbeqaaiaacIcacaWGUbGaaiykaaaaaaGc cqGH9aqpcaWGUbWaaSbaaSqaaiaaiodaaeqaaOGaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8+aaCbeaeaa ciGGSbGaaiyAaiaac2gaaSqaaiaadsgacaWGbbWaaWbaaWqabeaaca GGOaGaamOBaiaacMcaaaWccqGHsgIRcaaIWaaabeaakmaalaaabaGa amizaiaadAfaaeaacaWGKbGaamyqamaaCaaaleqabaGaaiikaiaad6 gacaGGPaaaaaaakiabg2da9iaaicdaaaa@8D17@

so

T(n)=T( e 1 ) n 1 T( e 2 ) n 2 T( e 3 ) n 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHubGaaiikaiaah6gacaGGPaGaey ypa0JaaCivaiaacIcacaWHLbWaaSbaaSqaaiaaigdaaeqaaOGaaiyk aiaad6gadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWHubGaaiikai aahwgadaWgaaWcbaGaaGOmaaqabaGccaGGPaGaamOBamaaBaaaleaa caaIYaaabeaakiabgkHiTiaahsfacaGGOaGaaCyzamaaBaaaleaaca aIZaaabeaakiaacMcacaWGUbWaaSbaaSqaaiaaiodaaeqaaaaa@4AB9@

or, using index notation

T i (n)= T i ( e 1 ) n 1 + T i ( e 2 ) n 2 + T i ( e 3 ) n 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGubWaaSbaaSqaaiaadMgaaeqaaO Gaaiikaiaah6gacaGGPaGaeyypa0JaamivamaaBaaaleaacaWGPbaa beaakiaacIcacaWHLbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiaad6 gadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGubWaaSbaaSqaaiaa dMgaaeqaaOGaaiikaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGPa GaamOBamaaBaaaleaacaaIYaaabeaakiabgUcaRiaadsfadaWgaaWc baGaamyAaaqabaGccaGGOaGaaCyzamaaBaaaleaacaaIZaaabeaaki aacMcacaWGUbWaaSbaaSqaaiaaiodaaeqaaaaa@4F23@

The significance of this result is that the tractions acting on planes with normals in the e 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHLbWaaSbaaSqaaiaaigdaaeqaaa aa@349A@ , e 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHLbWaaSbaaSqaaiaaikdaaeqaaa aa@349B@ , and e 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHLbWaaSbaaSqaaiaaiodaaeqaaa aa@349C@  directions completely characterize the internal forces that act at a point.  Given these tractions, we can deduce the tractions acting on any other plane.  This leads directly to the definition of the Cauchy stress tensor in the next section.

 

 

5.3 The Cauchy (true) stress tensor

 

Consider a solid which deforms under external loading. Let { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaGadaqaaiaahwgadaWgaaWcbaGaaG ymaaqabaGccaGGSaGaaCyzamaaBaaaleaacaaIYaaabeaakiaacYca caWHLbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7bGaayzFaaaaaa@3BF6@  be a Cartesian basis.  Let T i ( e 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGubWaaSbaaSqaaiaadMgaaeqaaO GaaiikaiaahwgadaWgaaWcbaGaaGymaaqabaGccaGGPaaaaa@37FA@ , T i ( e 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGubWaaSbaaSqaaiaadMgaaeqaaO GaaiikaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGPaaaaa@37FB@ , T i ( e 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGubWaaSbaaSqaaiaadMgaaeqaaO GaaiikaiaahwgadaWgaaWcbaGaaG4maaqabaGccaGGPaaaaa@37FC@  denote the components of traction acting on planes with normals in the e 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHLbWaaSbaaSqaaiaaigdaaeqaaa aa@349A@ , e 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHLbWaaSbaaSqaaiaaikdaaeqaaa aa@349B@ , and e 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHLbWaaSbaaSqaaiaaiodaaeqaaa aa@349C@  directions, respectively, as outlined in the preceding section 

 

 Define the components of the Cauchy stress tensor  by

σ ij = T j ( e i ) { σ 11 = T 1 ( e 1 ) σ 12 = T 2 ( e 1 ) σ 13 = T 3 ( e 1 ) σ 21 = T 1 ( e 2 ) σ 22 = T 2 ( e 2 ) σ 23 = T 3 ( e 2 ) σ 31 = T 1 ( e 3 ) σ 32 = T 2 ( e 3 ) σ 33 = T 3 ( e 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakqaaceqaaiabeo8aZnaaBaaaleaacaWGPb GaamOAaaqabaGccqGH9aqpcaWGubWaaSbaaSqaaiaadQgaaeqaaOGa aiikaiaahwgadaWgaaWcbaGaamyAaaqabaGccaGGPaaabaGaeyyyIO 7aaiqaaqaabeqaaiabeo8aZnaaBaaaleaacaaIXaGaaGymaaqabaGc cqGH9aqpcaWGubWaaSbaaSqaaiaaigdaaeqaaOGaaiikaiaahwgada WgaaWcbaGaaGymaaqabaGccaGGPaGaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqaHdp WCdaWgaaWcbaGaaGymaiaaikdaaeqaaOGaeyypa0JaamivamaaBaaa leaacaaIYaaabeaakiaacIcacaWHLbWaaSbaaSqaaiaaigdaaeqaaO GaaiykaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabeo8aZnaaBaaaleaaca aIXaGaaG4maaqabaGccqGH9aqpcaWGubWaaSbaaSqaaiaaiodaaeqa aOGaaiikaiaahwgadaWgaaWcbaGaaGymaaqabaGccaGGPaaabaGaeq 4Wdm3aaSbaaSqaaiaaikdacaaIXaaabeaakiabg2da9iaadsfadaWg aaWcbaGaaGymaaqabaGccaGGOaGaaCyzamaaBaaaleaacaaIYaaabe aakiaacMcacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlabeo8aZnaaBaaaleaacaaIYa GaaGOmaaqabaGccqGH9aqpcaWGubWaaSbaaSqaaiaaikdaaeqaaOGa aiikaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGPaGaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8Uaeq4Wdm3aaSbaaSqaaiaaikdacaaIZaaabeaaki abg2da9iaadsfadaWgaaWcbaGaaG4maaqabaGccaGGOaGaaCyzamaa BaaaleaacaaIYaaabeaakiaacMcaaeaacqaHdpWCdaWgaaWcbaGaaG 4maiaaigdaaeqaaOGaeyypa0JaamivamaaBaaaleaacaaIXaaabeaa kiaacIcacaWHLbWaaSbaaSqaaiaaiodaaeqaaOGaaiykaiaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8Uaeq4Wdm3aaSbaaSqaaiaaiodacaaIYaaabeaakiabg2 da9iaadsfadaWgaaWcbaGaaGOmaaqabaGccaGGOaGaaCyzamaaBaaa leaacaaIZaaabeaakiaacMcacaaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqaH dpWCdaWgaaWcbaGaaG4maiaaiodaaeqaaOGaeyypa0JaamivamaaBa aaleaacaaIZaaabeaakiaacIcacaWHLbWaaSbaaSqaaiaaiodaaeqa aOGaaiykaaaacaGL7baaaaaa@FFC7@

Then, the traction  T i (n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGubWaaSbaaSqaaiaadMgaaeqaaO Gaaiikaiaah6gacaGGPaaaaa@3712@  acting on any plane with normal n follows as

T(n)=nσor      T i (n)= n j σ ji MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHubGaaiikaiaah6gacaGGPaGaey ypa0JaaCOBaiabgwSixlaaho8acaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8Uaae4BaiaabkhacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaa dsfadaWgaaWcbaGaamyAaaqabaGccaGGOaGaaCOBaiaacMcacqGH9a qpcaWGUbWaaSbaaSqaaiaadQgaaeqaaOGaeq4Wdm3aaSbaaSqaaiaa dQgacaWGPbaabeaaaaa@5FE4@

 

To see this, recall the last result from the preceding section

T i (n)= T i ( e 1 ) n 1 + T i ( e 2 ) n 2 + T i ( e 3 ) n 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGubWaaSbaaSqaaiaadMgaaeqaaO Gaaiikaiaah6gacaGGPaGaeyypa0JaamivamaaBaaaleaacaWGPbaa beaakiaacIcacaWHLbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiaad6 gadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGubWaaSbaaSqaaiaa dMgaaeqaaOGaaiikaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGPa GaamOBamaaBaaaleaacaaIYaaabeaakiabgUcaRiaadsfadaWgaaWc baGaamyAaaqabaGccaGGOaGaaCyzamaaBaaaleaacaaIZaaabeaaki aacMcacaWGUbWaaSbaaSqaaiaaiodaaeqaaaaa@4F23@

and substitute for T i ( e j ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGubWaaSbaaSqaaiaadMgaaeqaaO GaaiikaiaahwgadaWgaaWcbaGaamOAaaqabaGccaGGPaaaaa@382E@  in terms of the components of the Cauchy stress tensor

T i (n)= σ 1i n 1 + σ 2i n 2 + σ 3i n 3 = n j σ ji MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGubWaaSbaaSqaaiaadMgaaeqaaO Gaaiikaiaah6gacaGGPaGaeyypa0Jaeq4Wdm3aaSbaaSqaaiaaigda caWGPbaabeaakiaad6gadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcq aHdpWCdaWgaaWcbaGaaGOmaiaadMgaaeqaaOGaamOBamaaBaaaleaa caaIYaaabeaakiabgUcaRiabeo8aZnaaBaaaleaacaaIZaGaamyAaa qabaGccaWGUbWaaSbaaSqaaiaaiodaaeqaaOGaeyypa0JaamOBamaa BaaaleaacaWGQbaabeaakiabeo8aZnaaBaaaleaacaWGQbGaamyAaa qabaaaaa@515E@

 

The Cauchy stress tensor completely characterizes the internal forces acting in a deformed solid.  The physical significance of the components of the stress tensor is illustrated in the figure: σ ji MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaamOAaiaadM gaaeqaaaaa@3691@  represents the ith component of traction acting on a plane with normal in the e j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHLbWaaSbaaSqaaiaadQgaaeqaaa aa@34CE@  direction.

 

Note the Cauchy stress represents force per unit area of the deformed solid.  In elementary strength of materials courses it is called `true stress,’ for this reason.

 

HEALTH WARNING: Some texts define stress as the transpose of the definition used here, so that T(n)=σnor      T i (n)= σ ij n j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHubGaaiikaiaah6gacaGGPaGaey ypa0JaaC4WdiabgwSixlaah6gacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8Uaae4BaiaabkhacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaa dsfadaWgaaWcbaGaamyAaaqabaGccaGGOaGaaCOBaiaacMcacqGH9a qpcqaHdpWCdaWgaaWcbaGaamyAaiaadQgaaeqaaOGaamOBamaaBaaa leaacaWGQbaabeaaaaa@5FE4@ .  In this case the first index for each stress component denotes the direction of traction, while the second denotes the normal to the plane.  We will see later that Cauchy stress is always symmetric, so there is no confusion if you use the wrong definition.  But some stress measures are not symmetric (see below) and in this case you need to be careful to check which convention the author has chosen.

 

 

Example: Consider a state of hydrostatic stress σ ij =p δ ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHdpWCdaWgaa WcbaGaamyAaiaadQgaaeqaaOGaeyypa0JaamiCaiabes7aKnaaBaaa leaacaWGPbGaamOAaaqabaaaaa@3EF4@ .  Show that the traction vector acting on any internal plane in the solid (or, more likely, fluid!) has magnitude p and direction normal to the plane.

 

The formula for the traction is

T i = n j σ ji = n j p δ ji =p n i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaWgaaWcbaGaamyAaaqabaGccq GH9aqpcaWGUbWaaSbaaSqaaiaadQgaaeqaaOGaeq4Wdm3aaSbaaSqa aiaadQgacaWGPbaabeaakiabg2da9iaad6gadaWgaaWcbaGaamOAaa qabaGccaWGWbGaeqiTdq2aaSbaaSqaaiaadQgacaWGPbaabeaakiab g2da9iaadchacaWGUbWaaSbaaSqaaiaadMgaaeqaaaaa@452C@

 

where we have used the rules of index notation a i = δ ij a j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadggadaWgaaWcbaGaamyAaaqabaGccq GH9aqpcqaH0oazdaWgaaWcbaGaamyAaiaadQgaaeqaaOGaamyyamaa BaaaleaacaWGQbaabeaaaaa@3931@   

 

Example:  A rigid, cubic solid is immersed in a fluid with mass density ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHbpGCaaa@3485@ . Recall that a stationary fluid exerts a compressive pressure of magnitude ρgh MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHbpGCcaWGNbGaamiAaaaa@365E@  at depth h.

 

(a) Write down expressions for the traction vector exerted by the fluid on each face of the cube.  You might find it convenient to take the origin for your coordinate system at the center of the cube, and take basis vectors { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaacUhacaWHLbWaaSbaaSqaaiaaigdaae qaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGSaGaaCyz amaaBaaaleaacaaIZaaabeaakiaac2haaaa@3978@  perpendicular to the cube faces.

 

Let e 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHLbWaaSbaaS qaaiaaiodaaeqaaaaa@374D@  be vertical, and origin at the center of the cube.

  • Top face: t=ρgH e 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH0bGaeyypa0 JaeyOeI0IaeqyWdiNaam4zaiaadIeacaWHLbWaaSbaaSqaaiaaioda aeqaaaaa@3DB6@  
  • Bottom face t=ρg(H+2a) e 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH0bGaeyypa0 JaeqyWdiNaam4zaiaacIcacaWGibGaey4kaSIaaGOmaiaadggacaGG PaGaaCyzamaaBaaaleaacaaIZaaabeaaaaa@40A6@
  • Side faces t=ρg(H+a x 3 ) e 1 ,ρg(H+a x 3 ) e 1 ,ρg(H+a x 3 ) e 2 ,ρg(H+a x 3 ) e 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH0bGaeyypa0 JaeyOeI0IaeqyWdiNaam4zaiaacIcacaWGibGaey4kaSIaamyyaiab gkHiTiaadIhadaWgaaWcbaGaaG4maaqabaGccaGGPaGaaCyzamaaBa aaleaacaaIXaaabeaakiaacYcacaaMc8UaaGPaVlaaykW7cqaHbpGC caWGNbGaaiikaiaadIeacqGHRaWkcaWGHbGaeyOeI0IaamiEamaaBa aaleaacaaIZaaabeaakiaacMcacaWHLbWaaSbaaSqaaiaaigdaaeqa aOGaaiilaiaaykW7caaMc8UaeyOeI0IaeqyWdiNaam4zaiaacIcaca WGibGaey4kaSIaamyyaiabgkHiTiaadIhadaWgaaWcbaGaaG4maaqa baGccaGGPaGaaCyzamaaBaaaleaacaaIYaaabeaakiaacYcacaaMc8 UaaGPaVlaaykW7cqaHbpGCcaWGNbGaaiikaiaadIeacqGHRaWkcaWG HbGaeyOeI0IaamiEamaaBaaaleaacaaIZaaabeaakiaacMcacaWHLb WaaSbaaSqaaiaaikdaaeqaaaaa@750B@

 

 

 

(b) Calculate the resultant force due to the tractions acting on the cube, and show that the vertical force is equal and opposite to the weight of fluid displaced by the cube. 

 

The integrals over the side faces are zero (the tractions on opposite faces are equal and opposite).

 

The resultant force of pressure on the top and bottom faces is

F=( 4ρgH a 2 +4ρg(H+2a) a 2 ) e 3 =8ρg a 3 e 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHgbGaeyypa0 ZaaeWaaeaacqGHsislcaaI0aGaeqyWdiNaam4zaiaadIeacaWGHbWa aWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGinaiabeg8aYjaadEgaca GGOaGaamisaiabgUcaRiaaikdacaWGHbGaaiykaiaadggadaahaaWc beqaaiaaikdaaaaakiaawIcacaGLPaaacaWHLbWaaSbaaSqaaiaaio daaeqaaOGaeyypa0JaaGioaiabeg8aYjaadEgacaWGHbWaaWbaaSqa beaacaaIZaaaaOGaamyzamaaBaaaleaacaaIZaaabeaaaaa@54A2@  

Example: A rectangular bar is loaded in a state of uniaxial tension, as shown in the figure.

 

(a) Write down the components of the stress tensor in the bar, using the basis vectors shown.

 

The only nonzero component of stress is acting parallel to the e 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaaGOmaaqabaaaaa@323E@  direction.   As a matrix, the stress tensor is

σ=[ 0 0 0 0 σ 0 0 0 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaaho8acqGH9aqpdaWadaqaauaabeqadm aaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaeq4W dmhabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaaaaiaawU facaGLDbaaaaa@3C59@

 

(b) Calculate the components of the normal vector to the plane ABCD shown, and hence deduce the components of the traction vector acting on this plane, expressing your answer as components in the basis shown, in terms of θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH4oqCaaa@372B@  

 

The normal vector is n=sinθ e 1 +cosθ e 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaah6gacqGH9aqpciGGZbGaaiyAaiaac6 gacqaH4oqCcaWHLbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaci4y aiaac+gacaGGZbGaeqiUdeNaaCyzamaaBaaaleaacaaIYaaabeaaaa a@4013@  

It follows that T=nσ=[ sinθ cosθ 0 ][ 0 0 0 0 σ 0 0 0 0 ]=[ 0 σcosθ 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahsfacqGH9aqpcaWHUbGaeyyXICTaaC 4Wdiabg2da9maadmaabaqbaeqabeWaaaqaaiGacohacaGGPbGaaiOB aiabeI7aXbqaaiGacogacaGGVbGaai4CaiabeI7aXbqaaiaaicdaaa aacaGLBbGaayzxaaWaamWaaeaafaqabeWadaaabaGaaGimaaqaaiaa icdaaeaacaaIWaaabaGaaGimaaqaaiabeo8aZbqaaiaaicdaaeaaca aIWaaabaGaaGimaaqaaiaaicdaaaaacaGLBbGaayzxaaGaeyypa0Za amWaaeaafaqabeqadaaabaGaaGimaaqaaiabeo8aZjGacogacaGGVb Gaai4CaiabeI7aXbqaaiaaicdaaaaacaGLBbGaayzxaaaaaa@5815@

 

 

(c) Compute the normal and tangential tractions acting on the plane shown.  What angle maximizes the magnitude of the tangential traction?

 

The normal component of traction is

T n =nT=σ cos 2 θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaWgaaWcbaGaamOBaaqabaGccq GH9aqpcaWHUbGaeyyXICTaaCivaiabg2da9iabeo8aZjGacogacaGG VbGaai4CamaaCaaaleqabaGaaGOmaaaakiabeI7aXbaa@3FD3@

The tangential component of traction is therefore

  τ=T T n n=[ 0 σcosθ 0 ]σ cos 2 θ[ sinθ cosθ 0 ] =[ 0 σcosθ(1 cos 2 θ) 0 ]=[ 0 σcosθsinθ 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaGaaCiXdiabg2da9iaahsfacqGHsi slcaWGubWaaSbaaSqaaiaad6gaaeqaaOGaaCOBaiabg2da9maadmaa baqbaeqabeWaaaqaaiaaicdaaeaacqaHdpWCciGGJbGaai4Baiaaco hacqaH4oqCaeaacaaIWaaaaaGaay5waiaaw2faaiabgkHiTiabeo8a ZjGacogacaGGVbGaai4CamaaCaaaleqabaGaaGOmaaaakiabeI7aXn aadmaabaqbaeqabeWaaaqaaiGacohacaGGPbGaaiOBaiabeI7aXbqa aiGacogacaGGVbGaai4CaiabeI7aXbqaaiaaicdaaaaacaGLBbGaay zxaaaabaGaeyypa0ZaamWaaeaafaqabeqadaaabaGaaGimaaqaaiab eo8aZjGacogacaGGVbGaai4CaiabeI7aXjaacIcacaaIXaGaeyOeI0 Iaci4yaiaac+gacaGGZbWaaWbaaSqabeaacaaIYaaaaOGaeqiUdeNa aiykaaqaaiaaicdaaaaacaGLBbGaayzxaaGaeyypa0ZaamWaaeaafa qabeqadaaabaGaaGimaaqaaiabeo8aZjGacogacaGGVbGaai4Caiab eI7aXjGacohacaGGPbGaaiOBaiabeI7aXbqaaiaaicdaaaaacaGLBb Gaayzxaaaaaaa@78E6@

The magnitude is greatest when σcosθsinθ=(σ/2)sin(2θ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZjGacogacaGGVbGaai4CaiabeI 7aXjGacohacaGGPbGaaiOBaiabeI7aXjabg2da9iaacIcacqaHdpWC caGGVaGaaGOmaiaacMcaciGGZbGaaiyAaiaac6gacaGGOaGaaGOmai abeI7aXjaacMcaaaa@4776@  is maximized, i.e. θ=π/4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeI7aXjabg2da9iabec8aWjaac+caca aI0aaaaa@3652@  .  The maximum shear traction is σ/2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZjaac+cacaaIYaaaaa@339A@  .

 

 

 

 

5.4 Other stress measures MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieqajugybabaaa aaaaaapeGaa83eGaaa@3723@  Kirchhoff, Nominal and Material stress tensors

 

Cauchy stress σ ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaamyAaiaadQ gaaeqaaaaa@3692@  (the actual force per unit area acting on an actual, deformed solid) is the most physical measure of internal force.  Other definitions of stress often appear in constitutive equations, however. 

 

The other stress measures regard forces as acting on the undeformed solid.  Consequently, to define them we must know not only what the deformed solid looks like, but also what it looked like before deformation.  The deformation is described by a displacement vector u(x) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWH1bGaaiikaiaahIhacaGGPaaaaa@361E@  and the associated deformation gradient

F=I+u F ij = δ ij + u i x j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHgbGaeyypa0JaaCysaiabgUcaRi aahwhacqGHxkcXcqGHhis0caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGgb WaaSbaaSqaaiaadMgacaWGQbaabeaakiabg2da9iabes7aKnaaBaaa leaacaWGPbGaamOAaaqabaGccqGHRaWkdaWcaaqaaiabgkGi2kaadw hadaWgaaWcbaGaamyAaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqa aiaadQgaaeqaaaaaaaa@5CF0@

as outlined in Section 2.1. In addition, let J=det(F) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGkbGaeyypa0Jaciizaiaacwgaca GG0bGaaiikaiaahAeacaGGPaaaaa@398E@

 

We then define the following stress measures

 

  Kirchhoff stress  τ=Jσ τ ij =J σ ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaqcaaSaaCiXdOGaeyypa0JaamOsaKaaal aaho8acaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabes8a0PWaaSba aSqaaiaadMgacaWGQbaabeaakiabg2da9iaadQeacqaHdpWCdaWgaa WcbaGaamyAaiaadQgaaeqaaaaa@4819@

 Nominal (First Piola-Kirchhoff) stress   S=J F 1 σ S ij =J F ik 1 σ kj MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4uaiabg2da9iaadQeacaWHgbWaaW baaSqabeaacqGHsislcaaIXaaaaOGaeyyXICDcaaSaaC4WdiaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam4uaO WaaSbaaSqaaiaadMgacaWGQbaabeaakiabg2da9iaadQeacaWGgbWa a0baaSqaaiaadMgacaWGRbaabaGaeyOeI0IaaGymaaaakiabeo8aZn aaBaaaleaacaWGRbGaamOAaaqabaaaaa@5407@

 Material (Second Piola-Kirchhoff) stress   Σ=J F 1 σ F T Σ ij =J F ik 1 σ kl F jl 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4Odiabg2da9iaadQeacaWHgbWaaW baaSqabeaacqGHsislcaaIXaaaaOGaeyyXICDcaaSaaC4WdiabgwSi xRGaaCOramaaCaaaleqabaGaeyOeI0IaamivaaaakiaaykW7caaMc8 UaaGPaVlaaykW7cqqHJoWudaWgaaWcbaGaamyAaiaadQgaaeqaaOGa eyypa0JaamOsaiaadAeadaqhaaWcbaGaamyAaiaadUgaaeaacqGHsi slcaaIXaaaaOGaeq4Wdm3aaSbaaSqaaiaadUgacaWGSbaabeaakiaa dAeadaqhaaWcbaGaamOAaiaadYgaaeaacqGHsislcaaIXaaaaaaa@587C@

 

The inverse relations are also useful MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  the one for Kirchhoff stress is obvious MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  the others are

σ= 1 J FS σ ij = 1 J F ik S kj MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaqcaaSaaC4Wdiabg2da9OWaaSaaaeaaca aIXaaabaGaamOsaaaacaWHgbGaeyyXICTaaC4uaKaaalaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7kiabeo8aZnaaBaaale aacaWGPbGaamOAaaqabaGccqGH9aqpjaaWcaaMc8UcdaWcaaqaaiaa igdaaeaacaWGkbaaaKaaalaadAeakmaaBaaaleaacaWGPbGaam4Aaa qabaqcaaSaam4uaOWaaSbaaSqaaiaadUgacaWGQbaabeaaaaa@5557@                σ= 1 J FΣ F T σ ij = 1 J F ik Σ kl F jl MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaqcaaSaaC4Wdiabg2da9OWaaSaaaeaaca aIXaaabaGaamOsaaaacaWHgbGaeyyXICTaaC4OdKaaalabgwSixRGa aCOramaaCaaaleqabaGaamivaaaakiaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8Uaeq4Wdm3aaSbaaSqaaiaadMga caWGQbaabeaakiabg2da9maalaaabaGaaGymaaqaaiaadQeaaaGaam OramaaDaaaleaacaWGPbGaam4Aaaqaaaaakiabfo6atnaaBaaaleaa caWGRbGaamiBaaqabaGccaWGgbWaa0baaSqaaiaadQgacaWGSbaaba aaaaaa@5AF5@

 

The Kirchoff stress has no obvious physical significance. 

 

The nominal stress tensor can be regarded as the internal force per unit undeformed area acting within a solid, as follows

1.      Visualize an element of area dA in the deformed solid, with normal n, which is subjected to a force d P (n) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgacaWHqbWaaWbaaSqabeaacaGGOa GaamOBaiaacMcaaaaaaa@34B3@  by the internal traction in the solid;

2.      Suppose that the element of area dA has started out as an element of area d A 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgacaWGbbWaaSbaaSqaaiaaicdaae qaaaaa@330D@  with normal n 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaah6gadaWgaaWcbaGaaGimaaqabaaaaa@3255@  in the undeformed solid, as shown in the figure;

3.      Then, the force d P (n) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgacaWHqbWaaWbaaSqabeaacaGGOa GaamOBaiaacMcaaaaaaa@34B3@  is related to the nominal stress by d P j (n) =d A 0 n i 0 S ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgacaWGqbWaa0baaSqaaiaadQgaae aacaGGOaGaaCOBaiaacMcaaaGccqGH9aqpcaWGKbGaamyqamaaBaaa leaacaaIWaaabeaakiaad6gadaqhaaWcbaGaamyAaaqaaiaaicdaaa GccaWGtbWaaSbaaSqaaiaadMgacaWGQbaabeaaaaa@3EF3@

 

To see this, note that one can show (see Appendix D) that

dAn=J F T d A 0 n 0 dA n i =J F ki 1 n k 0 d A 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgacaWGbbGaaCOBaiabg2da9iaadQ eacaWHgbWaaWbaaSqabeaacqGHsislcaWGubaaaOGaeyyXICTaamiz aiaadgeadaWgaaWcbaGaaGimaaqabaGccaWHUbWaaSbaaSqaaiaaic daaeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadsgacaWGbb GaamOBamaaDaaaleaacaWGPbaabaaaaOGaeyypa0JaamOsaiaadAea daqhaaWcbaGaam4AaiaadMgaaeaacqGHsislcaaIXaaaaOGaamOBam aaDaaaleaacaWGRbaabaGaaGimaaaakiaadsgacaWGbbWaaSbaaSqa aiaaicdaaeqaaaaa@622A@

Recall that the Cauchy stress is defined so that

d P i (n) =dA n j σ ji MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgacaWGqbWaa0baaSqaaiaadMgaae aacaGGOaGaaCOBaiaacMcaaaGccqGH9aqpcaWGKbGaamyqaiaad6ga daWgaaWcbaGaamOAaaqabaGccqaHdpWCdaWgaaWcbaGaamOAaiaadM gaaeqaaaaa@3E43@

Substituting for dA n j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgacaWGbbGaamOBamaaBaaaleaaca WGQbaabeaaaaa@3435@  and rearranging shows that

d P i (n) =Jd A 0 n k 0 ( F kj 1 σ ji )=d A 0 n k 0 S ki MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgacaWGqbWaa0baaSqaaiaadMgaae aacaGGOaGaaCOBaiaacMcaaaGccqGH9aqpcaWGkbGaamizaiaadgea daWgaaWcbaGaaGimaaqabaGccaWGUbWaa0baaSqaaiaadUgaaeaaca aIWaaaaOWaaeWaaeaacaWGgbWaa0baaSqaaiaadUgacaWGQbaabaGa eyOeI0IaaGymaaaakiabeo8aZnaaBaaaleaacaWGQbGaamyAaaqaba aakiaawIcacaGLPaaacqGH9aqpcaWGKbGaamyqamaaBaaaleaacaaI Waaabeaakiaad6gadaqhaaWcbaGaam4AaaqaaiaaicdaaaGccaWGtb WaaSbaaSqaaiaadUgacaWGPbaabeaaaaa@5025@

 

The material stress tensor can also be visualized as force per unit undeformed area, except that the forces are regarded as acting within the undeformed solid, rather than on the deformed solid.  Specifically

1.      The infinitesimal force d P (n) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgacaWHqbWaaWbaaSqabeaacaGGOa GaaCOBaiaacMcaaaaaaa@34A7@  is assumed to behave like an infinitesimal material fiber in the solid, in the sense that it is stretched and rotated just like an small vector dx in the solid

2.      This means that we can define a (fictitious) force in the reference configuration d P (n0) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgacaWHqbWaaWbaaSqabeaacaGGOa GaaCOBaiaaicdacaGGPaaaaaaa@3561@  that is related to d P (n) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgacaWHqbWaaWbaaSqabeaacaGGOa GaaCOBaiaacMcaaaaaaa@34A7@  by Fd P (n0) =d P (n) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahAeacqGHflY1caWGKbGaaCiuamaaCa aaleqabaGaaiikaiaah6gacaaIWaGaaiykaaaakiabg2da9iaadsga caWHqbWaaWbaaSqabeaacaGGOaGaaCOBaiaacMcaaaaaaa@3DC9@  or F ij d P j (n0) =d P i (n) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAeadaWgaaWcbaGaamyAaiaadQgaae qaaOGaamizaiaadcfadaWgaaWcbaGaamOAaaqabaGcdaahaaWcbeqa aiaacIcacaWHUbGaaGimaiaacMcaaaGccqGH9aqpcaWGKbGaamiuam aaBaaaleaacaWGPbaabeaakmaaCaaaleqabaGaaiikaiaah6gacaGG Paaaaaaa@3FCF@ .

3.      This fictitious force is related to material stress by   d P i (n0) =d A 0 n j 0 Σ ji MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgacaWGqbWaa0baaSqaaiaadMgaae aacaGGOaGaaCOBaiaaicdacaGGPaaaaOGaeyypa0Jaamizaiaadgea daWgaaWcbaGaaGimaaqabaGccaWGUbWaa0baaSqaaiaadQgaaeaaca aIWaaaaOGaeu4Odm1aaSbaaSqaaiaadQgacaWGPbaabeaaaaa@4059@

 

To see this, substitute into the expression relating d P (n) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgacaWHqbWaaWbaaSqabeaacaGGOa GaamOBaiaacMcaaaaaaa@34B3@  to nominal stress to see that

F ik d P k (n0) =d A 0 n j 0 S ji MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAeadaWgaaWcbaGaamyAaiaadUgaae qaaOGaamizaiaadcfadaqhaaWcbaGaam4AaaqaaiaacIcacaWHUbGa aGimaiaacMcaaaGccqGH9aqpcaWGKbGaamyqamaaBaaaleaacaaIWa aabeaakiaad6gadaqhaaWcbaGaamOAaaqaaiaaicdaaaGccaWGtbWa aSbaaSqaaiaadQgacaWGPbaabeaaaaa@428E@

Finally multiply through by F li 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAeadaqhaaWcbaGaamiBaiaadMgaae aacqGHsislcaaIXaaaaaaa@34E7@ , note F li 1 F ik = δ lk MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAeadaqhaaWcbaGaamiBaiaadMgaae aacqGHsislcaaIXaaaaOGaamOramaaBaaaleaacaWGPbGaam4Aaaqa baGccqGH9aqpcqaH0oazdaWgaaWcbaGaamiBaiaadUgaaeqaaaaa@3C88@ , and rearrange to see that

d P l (n0) =d A 0 n j 0 S ji F li 1 =d A 0 n j 0 Σ jl MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgacaWGqbWaa0baaSqaaiaadYgaae aacaGGOaGaaCOBaiaaicdacaGGPaaaaOGaeyypa0Jaamizaiaadgea daWgaaWcbaGaaGimaaqabaGccaWGUbWaa0baaSqaaiaadQgaaeaaca aIWaaaaOGaam4uamaaBaaaleaacaWGQbGaamyAaaqabaGccaWGgbWa a0baaSqaaiaadYgacaWGPbaabaGaeyOeI0IaaGymaaaakiabg2da9i aadsgacaWGbbWaaSbaaSqaaiaaicdaaeqaaOGaamOBamaaDaaaleaa caWGQbaabaGaaGimaaaakiabfo6atnaaBaaaleaacaWGQbGaamiBaa qabaaaaa@4E4B@

where we have noted that Σ jl = S ji F li 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabfo6atnaaBaaaleaacaWGQbGaamiBaa qabaGccqGH9aqpcaWGtbWaaSbaaSqaaiaadQgacaWGPbaabeaakiaa dAeadaqhaaWcbaGaamiBaiaadMgaaeaacqGHsislcaaIXaaaaaaa@3C71@

 

In practice, it is best not to try to attach too much physical significance to these stress measures.  Cauchy stress is the best physical measure of internal force MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  it is the force per unit area acting inside the deformed solid.  The other stress measures are best regarded as generalized forces (in the sense of Lagrangian mechanics), which are work-conjugate to particular strain measures.  This means that the stress measure multiplied by the time derivative of the strain measure tells you the rate of work done by the forces.  When setting up any mechanics problem, we always work with conjugate measures of motion and forces.

 

Specifically, we shall show later that the rate of work W ˙ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqadEfagaGaaaaa@314D@  done by stresses acting on a small material element with volume d V 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgacaWGwbWaaSbaaSqaaiaaicdaae qaaaaa@3312@  in the undeformed solid (and volume dV MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgacaWGwbaaaa@323C@  in the deformed solid) can be computed as

W ˙ = D ij σ ij dV= D ij τ ji d V 0 = F ˙ ij S ji d V 0 = E ˙ ij Σ ji d V 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqadEfagaGaaiabg2da9iaadseadaWgaa WcbaGaamyAaiaadQgaaeqaaOGaeq4Wdm3aaSbaaSqaaiaadMgacaWG QbaabeaakiaadsgacaWGwbGaeyypa0JaamiramaaBaaaleaacaWGPb GaamOAaaqabaGccqaHepaDdaWgaaWcbaGaamOAaiaadMgaaeqaaOGa amizaiaadAfadaWgaaWcbaGaaGimaaqabaGccqGH9aqpceWGgbGbai aadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaam4uamaaBaaaleaacaWG QbGaamyAaaqabaGccaWGKbGaamOvamaaBaaaleaacaaIWaaabeaaki abg2da9iqadweagaGaamaaBaaaleaacaWGPbGaamOAaaqabaGccqqH JoWudaWgaaWcbaGaamOAaiaadMgaaeqaaOGaamizaiaadAfadaWgaa WcbaGaaGimaaqabaaaaa@58F0@

where D ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadseadaWgaaWcbaGaamyAaiaadQgaae qaaaaa@334A@  is the stretch rate tensor, F ˙ ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqadAeagaGaamaaBaaaleaacaWGPbGaam OAaaqabaaaaa@3355@  is the rate of change of deformation gradient, and E ˙ ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqadweagaGaamaaBaaaleaacaWGPbGaam OAaaqabaaaaa@3344@  is the rate of change of Lagrange strain tensor.  Note that Cauchy stress (and also Kirchhoff stress) is not conjugate to any convenient strain measure MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  this is the main reason that nominal and material stresses need to be defined.  The nominal stress is conjugate to the deformation gradient, while the material stress is conjugate to the Lagrange strain tensor. 

 

Example: An incompressible bar with unstretched length L is stretched to length λL MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeU7aSjaadYeaaaa@32ED@  by a uniaxial Cauchy (true) stress σ=σ e 1 e 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaaho8acqGH9aqpcqaHdpWCcaWHLbWaaS baaSqaaiaaigdaaeqaaOGaey4LIqSaaCyzamaaBaaaleaacaaIXaaa beaaaaa@3A3D@  .   Calculate the  nominal stress and material stress in the bar.   Compare the nominal stress with the formula from materials class S=F/ A 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofacqGH9aqpcaWGgbGaai4laiaadg eadaWgaaWcbaGaaGimaaqabaaaaa@3570@  

 

 

From Section 4.5 we know that the deformation gradient is

F ij = y i x j F 11 =λ F 22 = F 33 = 1 λ all other  F ij =0 F=[ λ 0 0 0 1/ λ 0 0 0 1/ λ ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaGaamOramaaBaaaleaacaWGPbGaam OAaaqabaGccqGH9aqpdaWcaaqaaiabgkGi2kaadMhadaWgaaWcbaGa amyAaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaadQgaaeqaaa aakiabgkDiElaadAeadaWgaaWcbaGaaGymaiaaigdaaeqaaOGaeyyp a0Jaeq4UdWMaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caWGgbWaaSbaaSqaaiaaikda caaIYaaabeaakiabg2da9iaadAeadaWgaaWcbaGaaG4maiaaiodaae qaaOGaeyypa0ZaaSaaaeaacaaIXaaabaWaaOaaaeaacqaH7oaBaSqa baaaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaabggacaqGSbGa aeiBaiaabccacaqGVbGaaeiDaiaabIgacaqGLbGaaeOCaiaabccaca WGgbWaaSbaaSqaaiaadMgacaWGQbaabeaakiabg2da9iaaicdaaeaa cqGHshI3caWHgbGaeyypa0ZaamWaaeaafaqabeWadaaabaGaeq4UdW gabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGymaiaac+cadaGc aaqaaiabeU7aSbWcbeaaaOqaaiaaicdaaeaacaaIWaaabaGaaGimaa qaaiaaigdacaGGVaWaaOaaaeaacqaH7oaBaSqabaaaaaGccaGLBbGa ayzxaaaaaaa@91DD@

We will need the inverse of F, which is (fortunately) easy to find for a diagonal matrix

 

F 1 =[ 1/λ 0 0 0 λ 0 0 0 λ ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabgkDiElaahAeadaahaaWcbeqaaiabgk HiTiaaigdaaaGccqGH9aqpdaWadaqaauaabeqadmaaaeaacaaIXaGa ai4laiabeU7aSbqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaamaaka aabaGaeq4UdWgaleqaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaa baWaaOaaaeaacqaH7oaBaSqabaaaaaGccaGLBbGaayzxaaaaaa@43B2@

Note that J=det(F)=1 (as expected, since the deformation is volume preserving)

As a matrix, the Cauchy stress is

σ=[ σ 0 0 0 0 0 0 0 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHdpGaeyypa0 ZaamWaaeaafaqabeWadaaabaGaeq4WdmhabaGaaGimaaqaaiaaicda aeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaa qaaiaaicdaaaaacaGLBbGaayzxaaaaaa@4166@

Hence, using the formula, the nominal stress is

S=J F 1 σ=[ 1/λ 0 0 0 λ 0 0 0 λ ][ σ 0 0 0 0 0 0 0 0 ]=[ λσ 0 0 0 0 0 0 0 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4uaiabg2da9iaadQeacaWHgbWaaW baaSqabeaacqGHsislcaaIXaaaaOGaeyyXICDcaaSaaC4WdiaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UccqGH9aqpdaWadaqaauaabeqadm aaaeaacaaIXaGaai4laiabeU7aSbqaaiaaicdaaeaacaaIWaaabaGa aGimaaqaamaakaaabaGaeq4UdWgaleqaaaGcbaGaaGimaaqaaiaaic daaeaacaaIWaaabaWaaOaaaeaacqaH7oaBaSqabaaaaaGccaGLBbGa ayzxaaWaamWaaeaafaqabeWadaaabaGaeq4WdmhabaGaaGimaaqaai aaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGa aGimaaqaaiaaicdaaaaacaGLBbGaayzxaaGaeyypa0ZaamWaaeaafa qabeWadaaabaGaeq4UdWMaeq4WdmhabaGaaGimaaqaaiaaicdaaeaa caaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaai aaicdaaaaacaGLBbGaayzxaaaaaa@6681@

The material stress is

Σ=J F 1 σ F T =[ σ/λ 0 0 0 0 0 0 0 0 ][ 1/λ 0 0 0 λ 0 0 0 λ ]=[ σ/ λ 2 0 0 0 0 0 0 0 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4Odiabg2da9iaadQeacaWHgbWaaW baaSqabeaacqGHsislcaaIXaaaaOGaeyyXICDcaaSaaC4WdiabgwSi xRGaaCOramaaCaaaleqabaGaeyOeI0IaamivaaaakiaaykW7caaMc8 UaaGPaVlabg2da9maadmaabaqbaeqabmWaaaqaaiabeo8aZjaac+ca cqaH7oaBaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaaba GaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaaaaiaawUfacaGL DbaadaWadaqaauaabeqadmaaaeaacaaIXaGaai4laiabeU7aSbqaai aaicdaaeaacaaIWaaabaGaaGimaaqaamaakaaabaGaeq4UdWgaleqa aaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaWaaOaaaeaacqaH7o aBaSqabaaaaaGccaGLBbGaayzxaaGaeyypa0ZaamWaaeaafaqabeWa daaabaGaeq4WdmNaai4laiabeU7aSnaaCaaaleqabaGaaGOmaaaaaO qaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaa baGaaGimaaqaaiaaicdaaeaacaaIWaaaaaGaay5waiaaw2faaaaa@6CE1@

 

For comparison, in material class we learn that in uniaxial tension the ‘nominal’ stress is force per unit undeformed area S=F/ A 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofacqGH9aqpcaWGgbGaai4laiaadg eadaWgaaWcbaGaaGimaaqabaaaaa@3570@  ; ‘true’ stress is force per unit deformed area σ=F/A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZjabg2da9iaadAeacaGGVaGaam yqaaaa@3575@  .  Since the volume of the bar is constant we know that AλL= A 0 LA/ A 0 =1/λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadgeacqaH7oaBcaWGmbGaeyypa0Jaam yqamaaBaaaleaacaaIWaaabeaakiaadYeacqGHshI3caWGbbGaai4l aiaadgeadaWgaaWcbaGaaGimaaqabaGccqGH9aqpcaaIXaGaai4lai abeU7aSbaa@40F4@    So S=σ/λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofacqGH9aqpcqaHdpWCcaGGVaGaeq 4UdWgaaa@3670@  , which agrees with the formula that grown-ups use.

 

 

Example: The figure shows the reference and deformed configurations for a solid.  The out-of-plane dimensions are unchanged.  Points a and b are the positions of points A and B after deformation.  The Cauchy stress in the solid is σ m 1 m 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHdpWCcaWHTb WaaSbaaSqaaiaaigdaaeqaaOGaey4LIqSaaCyBamaaBaaaleaacaaI Xaaabeaaaaa@3D06@  .  Determine:

 

 

(a) The components of Cauchy stress in { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGG7bGaaCyzam aaBaaaleaacaaIXaaabeaakiaacYcacaWHLbWaaSbaaSqaaiaaikda aeqaaOGaaiilaiaahwgadaWgaaWcbaGaaG4maaqabaGccaGG9baaaa@3E76@

 

We can do this with the basis change formulas for tensors.    The general formula is

[ S 11 (e) S 12 (e) S 13 (e) S 21 (e) S 22 (e) S 23 (e) S 31 (e) S 32 (e) S 33 (e) ]=[ m 1 e 1 m 2 e 1 m 3 e 1 m 1 e 2 m 2 e 2 m 3 e 2 m 1 e 3 m 2 e 3 m 3 e 3 ][ S 11 (m) S 12 (m) S 13 (m) S 21 (m) S 22 (m) S 23 (m) S 31 (m) S 32 (m) S 33 (m) ][ m 1 e 1 m 1 e 2 m 1 e 3 m 2 e 1 m 2 e 2 m 2 e 3 m 3 e 1 m 3 e 2 m 3 e 3 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaauaabe qadmaaaeaacaWGtbWaa0baaSqaaiaaigdacaaIXaaabaGaaiikaiaa hwgacaGGPaaaaaGcbaGaam4uamaaDaaaleaacaaIXaGaaGOmaaqaai aacIcacaWHLbGaaiykaaaaaOqaaiaadofadaqhaaWcbaGaaGymaiaa iodaaeaacaGGOaGaaCyzaiaacMcaaaaakeaacaWGtbWaa0baaSqaai aaikdacaaIXaaabaGaaiikaiaahwgacaGGPaaaaaGcbaGaam4uamaa DaaaleaacaaIYaGaaGOmaaqaaiaacIcacaWHLbGaaiykaaaaaOqaai aadofadaqhaaWcbaGaaGOmaiaaiodaaeaacaGGOaGaaCyzaiaacMca aaaakeaacaWGtbWaa0baaSqaaiaaiodacaaIXaaabaGaaiikaiaahw gacaGGPaaaaaGcbaGaam4uamaaDaaaleaacaaIZaGaaGOmaaqaaiaa cIcacaWHLbGaaiykaaaaaOqaaiaadofadaqhaaWcbaGaaG4maiaaio daaeaacaGGOaGaaCyzaiaacMcaaaaaaaGccaGLBbGaayzxaaGaeyyp a0ZaamWaaqaabeqaaiaah2gadaWgaaWcbaGaaGymaaqabaGccqGHfl Y1caWHLbWaaSbaaSqaaiaaigdaaeqaaOGaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaCyBamaaBaaaleaacaaIYaaabeaakiabgw SixlaahwgadaWgaaWcbaGaaGymaaqabaGccaaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caWHTbWaaSbaaSqaaiaaiodaaeqaaOGaey yXICTaaCyzamaaBaaaleaacaaIXaaabeaaaOqaaiaah2gadaWgaaWc baGaaGymaaqabaGccqGHflY1caWHLbWaaSbaaSqaaiaaikdaaeqaaO GaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaCyBamaaBaaa leaacaaIYaaabeaakiabgwSixlaahwgadaWgaaWcbaGaaGOmaaqaba GccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWHTbWaaSba aSqaaiaaiodaaeqaaOGaeyyXICTaaCyzamaaBaaaleaacaaIYaaabe aaaOqaaiaah2gadaWgaaWcbaGaaGymaaqabaGccqGHflY1caWHLbWa aSbaaSqaaiaaiodaaeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaCyBamaaBaaaleaacaaIYaaabeaakiabgwSixlaahwga daWgaaWcbaGaaG4maaqabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caWHTbWaaSbaaSqaaiaaiodaaeqaaOGaeyyXICTaaCyz amaaBaaaleaacaaIZaaabeaaaaGccaGLBbGaayzxaaWaamWaaeaafa qabeWadaaabaGaam4uamaaDaaaleaacaaIXaGaaGymaaqaaiaacIca caWHTbGaaiykaaaaaOqaaiaadofadaqhaaWcbaGaaGymaiaaikdaae aacaGGOaGaaCyBaiaacMcaaaaakeaacaWGtbWaa0baaSqaaiaaigda caaIZaaabaGaaiikaiaah2gacaGGPaaaaaGcbaGaam4uamaaDaaale aacaaIYaGaaGymaaqaaiaacIcacaWHTbGaaiykaaaaaOqaaiaadofa daqhaaWcbaGaaGOmaiaaikdaaeaacaGGOaGaaCyBaiaacMcaaaaake aacaWGtbWaa0baaSqaaiaaikdacaaIZaaabaGaaiikaiaah2gacaGG PaaaaaGcbaGaam4uamaaDaaaleaacaaIZaGaaGymaaqaaiaacIcaca WHTbGaaiykaaaaaOqaaiaadofadaqhaaWcbaGaaG4maiaaikdaaeaa caGGOaGaaCyBaiaacMcaaaaakeaacaWGtbWaa0baaSqaaiaaiodaca aIZaaabaGaaiikaiaah2gacaGGPaaaaaaaaOGaay5waiaaw2faamaa dmaaeaqabeaacaWHTbWaaSbaaSqaaiaaigdaaeqaaOGaeyyXICTaaC yzamaaBaaaleaacaaIXaaabeaakiaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaah2gadaWgaaWcbaGaaGymaaqabaGccqGHflY1ca WHLbWaaSbaaSqaaiaaikdaaeqaaOGaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaCyBamaaBaaaleaacaaIXaaabeaakiabgwSixl aahwgadaWgaaWcbaGaaG4maaqabaaakeaacaWHTbWaaSbaaSqaaiaa ikdaaeqaaOGaeyyXICTaaCyzamaaBaaaleaacaaIXaaabeaakiaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaah2gadaWgaaWcbaGa aGOmaaqabaGccqGHflY1caWHLbWaaSbaaSqaaiaaikdaaeqaaOGaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaCyBamaaBaaaleaa caaIYaaabeaakiabgwSixlaahwgadaWgaaWcbaGaaG4maaqabaaake aacaWHTbWaaSbaaSqaaiaaiodaaeqaaOGaeyyXICTaaCyzamaaBaaa leaacaaIXaaabeaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaah2gadaWgaaWcbaGaaG4maaqabaGccqGHflY1caWHLbWaaSba aSqaaiaaikdaaeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaCyBamaaBaaaleaacaaIZaaabeaakiabgwSixlaahwgadaWg aaWcbaGaaG4maaqabaaaaOGaay5waiaaw2faaaaa@71A1@

Substituting the numbers

[ S 11 (e) S 12 (e) S 13 (e) S 21 (e) S 22 (e) S 23 (e) S 31 (e) S 32 (e) S 33 (e) ]=[ 1/ 2 1/ 2 0 1/ 2 1/ 2 0 001 ][ σ 0 0 0 0 0 0 0 0 ][ 1/ 2 1/ 2 0 1/ 2 1/ 2 0 001 ] =[ 1/ 2 1/ 2 0 1/ 2 1/ 2 0 001 ][ σ/ 2 σ/ 2 0 0 0 0 0 0 0 ] =[ σ/2 σ/2 0 σ/2 σ/2 0 0 0 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaamaadmaaba qbaeqabmWaaaqaaiaadofadaqhaaWcbaGaaGymaiaaigdaaeaacaGG OaGaaCyzaiaacMcaaaaakeaacaWGtbWaa0baaSqaaiaaigdacaaIYa aabaGaaiikaiaahwgacaGGPaaaaaGcbaGaam4uamaaDaaaleaacaaI XaGaaG4maaqaaiaacIcacaWHLbGaaiykaaaaaOqaaiaadofadaqhaa WcbaGaaGOmaiaaigdaaeaacaGGOaGaaCyzaiaacMcaaaaakeaacaWG tbWaa0baaSqaaiaaikdacaaIYaaabaGaaiikaiaahwgacaGGPaaaaa GcbaGaam4uamaaDaaaleaacaaIYaGaaG4maaqaaiaacIcacaWHLbGa aiykaaaaaOqaaiaadofadaqhaaWcbaGaaG4maiaaigdaaeaacaGGOa GaaCyzaiaacMcaaaaakeaacaWGtbWaa0baaSqaaiaaiodacaaIYaaa baGaaiikaiaahwgacaGGPaaaaaGcbaGaam4uamaaDaaaleaacaaIZa GaaG4maaqaaiaacIcacaWHLbGaaiykaaaaaaaakiaawUfacaGLDbaa cqGH9aqpdaWadaabaeqabaGaaGymaiaac+cadaGcaaqaaiaaikdaaS qabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabgkHiTiaaigda caGGVaWaaOaaaeaacaaIYaaaleqaaOGaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaIWaaabaGaaGymaiaac+ca daGcaaqaaiaaikdaaSqabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGymaiaac+cadaGc aaqaaiaaikdaaSqabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGimaaqaaiaaicdacaaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaicdacaaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaIXaaaaiaawUfacaGLDbaadaWadaqaau aabeqadmaaaeaacqaHdpWCaeaacaaIWaaabaGaaGimaaqaaiaaicda aeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaa aaaiaawUfacaGLDbaadaWadaabaeqabaGaaGymaiaac+cadaGcaaqa aiaaikdaaSqabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaIXaGaai4lamaakaaabaGaaGOmaaWcbeaakiaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGimaaqaaiabgk HiTiaaigdacaGGVaWaaOaaaeaacaaIYaaaleqaaOGaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGymaiaac+cadaGcaaqaaiaaik daaSqabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGimaaqaaiaaicda caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaicdacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaIXaaaaiaawUfacaGLDbaaaeaaca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 Uaeyypa0ZaamWaaqaabeqaaiaaigdacaGGVaWaaOaaaeaacaaIYaaa leqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGHsislcaaIXa Gaai4lamaakaaabaGaaGOmaaWcbeaakiaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGimaaqaaiaaigdacaGGVa WaaOaaaeaacaaIYaaaleqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaigdacaGGVaWaaO aaaeaacaaIYaaaleqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaicdaaeaacaaIWaGaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaIWaGaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGymaaaacaGLBbGaayzxaaWaamWaaeaa faqabeWadaaabaGaeq4WdmNaai4lamaakaaabaGaaGOmaaWcbeaaaO qaaiabeo8aZjaac+cadaGcaaqaaiaaikdaaSqabaaakeaacaaIWaaa baGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaae aacaaIWaaaaaGaay5waiaaw2faaaqaaiaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGH9aqpdaWadaqaauaa beqadmaaaeaacqaHdpWCcaGGVaGaaGOmaaqaaiabeo8aZjaac+caca aIYaaabaGaaGimaaqaaiabeo8aZjaac+cacaaIYaaabaGaeq4WdmNa ai4laiaaikdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWa aaaaGaay5waiaaw2faaaaaaa@831B@

 

 

Alternatively we can solve the problem with Dyadic notation

σ m 1 m 1 = 1 2 σ( e 1 + e 2 )( e 1 + e 2 )= 1 2 σ e 1 e 1 + 1 2 σ( e 1 e 2 + e 2 e 1 )+ 1 2 σ e 2 e 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHdpWCcaWHTb WaaSbaaSqaaiaaigdaaeqaaOGaey4LIqSaaCyBamaaBaaaleaacaaI Xaaabeaakiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaGaeq4Wdm NaaiikaiaahwgadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWHLbWa aSbaaSqaaiaaikdaaeqaaOGaaiykaiabgEPielaacIcacaWHLbWaaS baaSqaaiaaigdaaeqaaOGaey4kaSIaaCyzamaaBaaaleaacaaIYaaa beaakiaacMcacqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaaiabeo 8aZjaahwgadaWgaaWcbaGaaGymaaqabaGccqGHxkcXcaWHLbWaaSba aSqaaiaaigdaaeqaaOGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaa aacqaHdpWCdaqadaqaaiaahwgadaWgaaWcbaGaaGymaaqabaGccqGH xkcXcaWHLbWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaaCyzamaaBa aaleaacaaIYaaabeaakiabgEPielaahwgadaWgaaWcbaGaaGymaaqa baaakiaawIcacaGLPaaacqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYa aaaiabeo8aZjaahwgadaWgaaWcbaGaaGOmaaqabaGccqGHxkcXcaWH LbWaaSbaaSqaaiaaikdaaeqaaaaa@7586@

 

 

 

(b) The components of Nominal stress S in both { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGG7bGaaCyzam aaBaaaleaacaaIXaaabeaakiaacYcacaWHLbWaaSbaaSqaaiaaikda aeqaaOGaaiilaiaahwgadaWgaaWcbaGaaG4maaqabaGccaGG9baaaa@3E76@  and { m 1 , m 2 , m 3 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGG7bGaaCyBam aaBaaaleaacaaIXaaabeaakiaacYcacaWHTbWaaSbaaSqaaiaaikda aeqaaOGaaiilaiaah2gadaWgaaWcbaGaaG4maaqabaGccaGG9baaaa@3E8E@ .   What is the nominal stress in the mixed basis S ij e i m j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGtbWaaSbaaS qaaiaadMgacaWGQbaabeaakiaahwgadaWgaaWcbaGaamyAaaqabaGc cqGHxkcXcaWHTbWaaSbaaSqaaiaadQgaaeqaaaaa@3E8D@  ?

 

 

Recall that by definition S=J F 1 σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4uaiabg2da9iaadQeacaWHgbWaaW baaSqabeaacqGHsislcaaIXaaaaOGaeyyXICDcaaSaaC4WdiaaykW7 aaa@3C1A@

 

We can use the results from HW2:

·         recall F=RU=VR F 1 = U 1 R T = R T V 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHgbGaeyypa0 JaaCOuaiaahwfacqGH9aqpcaWHwbGaaCOuaiabgkDiElaahAeadaah aaWcbeqaaiabgkHiTiaaigdaaaGccqGH9aqpcaWHvbWaaWbaaSqabe aacqGHsislcaaIXaaaaOGaaCOuamaaCaaaleqabaGaamivaaaakiab g2da9iaahkfadaahaaWcbeqaaiaadsfaaaGccaWHwbWaaWbaaSqabe aacqGHsislcaaIXaaaaaaa@4C22@  

·         recall V has components in m 1 , m 2 , m 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyBamaaBa aaleaacaaIXaaabeaakiaacYcacaWHTbWaaSbaaSqaaiaaikdaaeqa aOGaaiilaiaah2gadaWgaaWcbaGaaG4maaqabaaaaa@3D05@

[ 2 0 0 1/4 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaadmaabaqbae qabiGaaaqaaiaaikdaaeaacaaIWaaabaGaaGimaaqaaiaaigdacaGG VaGaaGinaaaaaiaawUfacaGLDbaaaaa@3C98@

·         R has components

1 2 [ 1 1 1 1 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaaqaamaakaaabaGaaGOmaaWcbeaaaaGcdaWadaqaauaabeqaciaa aeaacaaIXaaabaGaeyOeI0IaaGymaaqaaiaaigdaaeaacaaIXaaaaa Gaay5waiaaw2faaaaa@3DC1@

 

Therefore

R T V 1 = 1 2 [ 1 1 1 1 ][ 1/2 0 0 4 ]= 1 2 [ 1/2 4 1/2 4 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahkfadaahaa WcbeqaaiaadsfaaaGccaWHwbWaaWbaaSqabeaacqGHsislcaaIXaaa aOGaeyypa0ZaaSaaaeaacaaIXaaabaWaaOaaaeaacaaIYaaaleqaaa aakmaadmaabaqbaeqabiGaaaqaaiaaigdaaeaacaaIXaaabaGaeyOe I0IaaGymaaqaaiaaigdaaaaacaGLBbGaayzxaaWaamWaaeaafaqabe GacaaabaGaaGymaiaac+cacaaIYaaabaGaaGimaaqaaiaaicdaaeaa caaI0aaaaaGaay5waiaaw2faaiabg2da9maalaaabaGaaGymaaqaam aakaaabaGaaGOmaaWcbeaaaaGcdaWadaqaauaabeqaciaaaeaacaaI XaGaai4laiaaikdaaeaacaaI0aaabaGaeyOeI0IaaGymaiaac+caca aIYaaabaGaaGinaaaaaiaawUfacaGLDbaaaaa@553F@

 

S follows as

S=J F 1 σ= 1 2 1 2 [ 1/2 4 1/2 4 ][ σ 0 0 0 ]= 1 2 2 [ σ/2 0 σ/2 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahofacqGH9a qpcaWGkbGaaCOramaaCaaaleqabaGaeyOeI0IaaGymaaaakiaaho8a cqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaamaalaaabaGaaGymaa qaamaakaaabaGaaGOmaaWcbeaaaaGcdaWadaqaauaabeqaciaaaeaa caaIXaGaai4laiaaikdaaeaacaaI0aaabaGaeyOeI0IaaGymaiaac+ cacaaIYaaabaGaaGinaaaaaiaawUfacaGLDbaadaWadaqaauaabeqa ciaaaeaacqaHdpWCaeaacaaIWaaabaGaaGimaaqaaiaaicdaaaaaca GLBbGaayzxaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmamaakaaa baGaaGOmaaWcbeaaaaGcdaWadaqaauaabeqaciaaaeaacqaHdpWCca GGVaGaaGOmaaqaaiaaicdaaeaacqGHsislcqaHdpWCcaGGVaGaaGOm aaqaaiaaicdaaaaacaGLBbGaayzxaaaaaa@5E08@

 

 

We can write this in Dyadic notation as

S= σ 4 2 ( m 1 m 1 m 2 m 1 ) = σ 4 2 [ 1 2 ( e 1 + e 2 )( e 1 + e 2 ) 1 2 ( e 1 + e 2 )( e 1 + e 2 ) ] = σ 4 2 1 2 [ e 1 e 1 + e 2 e 2 + e 2 e 1 + e 1 e 2 + e 1 e 1 e 2 e 2 e 1 e 2 + e 2 e 1 ] = σ 4 2 [ e 1 e 1 + e 2 e 1 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaahofacq GH9aqpdaWcaaqaaiabeo8aZbqaaiaaisdadaGcaaqaaiaaikdaaSqa baaaaOGaaiikaiaah2gadaWgaaWcbaGaaGymaaqabaGccqGHxkcXca WHTbWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaaCyBamaaBaaaleaa caaIYaaabeaakiabgEPielaah2gadaWgaaWcbaGaaGymaaqabaGcca GGPaaabaGaeyypa0ZaaSaaaeaacqaHdpWCaeaacaaI0aWaaOaaaeaa caaIYaaaleqaaaaakmaadmaabaWaaSaaaeaacaaIXaaabaGaaGOmaa aacaGGOaGaaCyzamaaBaaaleaacaaIXaaabeaakiabgUcaRiaahwga daWgaaWcbaGaaGOmaaqabaGccaGGPaGaey4LIqSaaiikaiaahwgada WgaaWcbaGaaGymaaqabaGccqGHRaWkcaWHLbWaaSbaaSqaaiaaikda aeqaaOGaaiykaiabgkHiTmaalaaabaGaaGymaaqaaiaaikdaaaGaai ikaiabgkHiTiaahwgadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWH LbWaaSbaaSqaaiaaikdaaeqaaOGaaiykaiabgEPielaacIcacaWHLb WaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaaCyzamaaBaaaleaacaaI YaaabeaakiaacMcaaiaawUfacaGLDbaaaeaacqGH9aqpdaWcaaqaai abeo8aZbqaaiaaisdadaGcaaqaaiaaikdaaSqabaaaaOWaaSaaaeaa caaIXaaabaGaaGOmaaaadaWadaqaaiaahwgadaWgaaWcbaGaaGymaa qabaGccqGHxkcXcaWHLbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIa aCyzamaaBaaaleaacaaIYaaabeaakiabgEPielaahwgadaWgaaWcba GaaGOmaaqabaGccqGHRaWkcaWHLbWaaSbaaSqaaiaaikdaaeqaaOGa ey4LIqSaaCyzamaaBaaaleaacaaIXaaabeaakiabgUcaRiaahwgada WgaaWcbaGaaGymaaqabaGccqGHxkcXcaWHLbWaaSbaaSqaaiaaikda aeqaaOGaey4kaSIaaCyzamaaBaaaleaacaaIXaaabeaakiabgEPiel aahwgadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWHLbWaaSbaaSqa aiaaikdaaeqaaOGaey4LIqSaaCyzamaaBaaaleaacaaIYaaabeaaki abgkHiTiaahwgadaWgaaWcbaGaaGymaaqabaGccqGHxkcXcaWHLbWa aSbaaSqaaiaaikdaaeqaaOGaey4kaSIaaCyzamaaBaaaleaacaaIYa aabeaakiabgEPielaahwgadaWgaaWcbaGaaGymaaqabaaakiaawUfa caGLDbaaaeaacqGH9aqpdaWcaaqaaiabeo8aZbqaaiaaisdadaGcaa qaaiaaikdaaSqabaaaaOWaamWaaeaacaWHLbWaaSbaaSqaaiaaigda aeqaaOGaey4LIqSaaCyzamaaBaaaleaacaaIXaaabeaakiabgUcaRi aahwgadaWgaaWcbaGaaGOmaaqabaGccqGHxkcXcaWHLbWaaSbaaSqa aiaaigdaaeqaaaGccaGLBbGaayzxaaaaaaa@BF64@

 

In the mixed basis S= σ 4 e 1 m 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHtbGaeyypa0 ZaaSaaaeaacqaHdpWCaeaacaaI0aaaaiaahwgadaWgaaWcbaGaaGym aaqabaGccqGHxkcXcaWHTbWaaSbaaSqaaiaaigdaaeqaaaaa@3FAE@  

 

 

(c)    The components of material stress in both { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGG7bGaaCyzam aaBaaaleaacaaIXaaabeaakiaacYcacaWHLbWaaSbaaSqaaiaaikda aeqaaOGaaiilaiaahwgadaWgaaWcbaGaaG4maaqabaGccaGG9baaaa@3E76@  and { m 1 , m 2 , m 3 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGG7bGaaCyBam aaBaaaleaacaaIXaaabeaakiaacYcacaWHTbWaaSbaaSqaaiaaikda aeqaaOGaaiilaiaah2gadaWgaaWcbaGaaG4maaqabaGccaGG9baaaa@3E8E@

 

By definition Σ=J F 1 σ F T =J R T V 1 σ V 1 R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHJoGaeyypa0 JaamOsaiaahAeadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaWHdpGa aCOramaaCaaaleqabaGaeyOeI0Iaamivaaaakiabg2da9iaadQeaca WHsbWaaWbaaSqabeaacaWGubaaaOGaaCOvamaaCaaaleqabaGaeyOe I0IaaGymaaaakiaaho8acaWHwbWaaWbaaSqabeaacqGHsislcaaIXa aaaOGaaCOuaaaa@4AA9@  

 

Note that in the { m 1 , m 2 , m 3 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGG7bGaaCyBam aaBaaaleaacaaIXaaabeaakiaacYcacaWHTbWaaSbaaSqaaiaaikda aeqaaOGaaiilaiaah2gadaWgaaWcbaGaaG4maaqabaGccaGG9baaaa@3E8E@  basis

J V 1 σ V 1 = 1 2 [ 1/2 0 0 4 ][ σ 0 0 0 ][ 1/2 0 0 4 ]= 1 2 [ σ/4 0 0 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQeacaWHwb WaaWbaaSqabeaacqGHsislcaaIXaaaaOGaeq4WdmNaaCOvamaaCaaa leqabaGaeyOeI0IaaGymaaaakiabg2da9maalaaabaGaaGymaaqaai aaikdaaaWaamWaaeaafaqabeGacaaabaGaaGymaiaac+cacaaIYaaa baGaaGimaaqaaiaaicdaaeaacaaI0aaaaaGaay5waiaaw2faamaadm aabaqbaeqabiGaaaqaaiabeo8aZbqaaiaaicdaaeaacaaIWaaabaGa aGimaaaaaiaawUfacaGLDbaadaWadaqaauaabeqaciaaaeaacaaIXa Gaai4laiaaikdaaeaacaaIWaaabaGaaGimaaqaaiaaisdaaaaacaGL BbGaayzxaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaadaWada qaauaabeqaciaaaeaacqaHdpWCcaGGVaGaaGinaaqaaiaaicdaaeaa caaIWaaabaGaaGimaaaaaiaawUfacaGLDbaaaaa@5D75@   σ 8 m 1 m 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqGHHjIUdaWcaa qaaiabeo8aZbqaaiaaiIdaaaGaaCyBamaaBaaaleaacaaIXaaabeaa kiabgEPielaah2gadaWgaaWcbaGaaGymaaqabaaaaa@3FA1@  

Note also e i = R T m i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHLbWaaSbaaS qaaiaadMgaaeqaaOGaeyypa0JaaCOuamaaCaaaleqabaGaamivaaaa kiaah2gadaWgaaWcbaGaamyAaaqabaaaaa@3C89@  .  Hence

Σ= σ 8 e 1 e 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHJoGaeyypa0 ZaaSaaaeaacqaHdpWCaeaacaaI4aaaaiaahwgadaWgaaWcbaGaaGym aaqabaGccqGHxkcXcaWHLbWaaSbaaSqaaiaaigdaaeqaaaaa@3FFD@  

 

It follows that

Σ= σ 8 1 2 ( m 1 m 2 )( m 1 m 2 )= σ 16 ( m 1 m 1 + m 1 m 1 m 1 m 2 m 2 m 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHJoGaeyypa0 ZaaSaaaeaacqaHdpWCaeaacaaI4aaaamaalaaabaGaaGymaaqaaiaa ikdaaaGaaiikaiaah2gadaWgaaWcbaGaaGymaaqabaGccqGHsislca WHTbWaaSbaaSqaaiaaikdaaeqaaOGaaiykaiabgEPielaacIcacaWH TbWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaaCyBamaaBaaaleaaca aIYaaabeaakiaacMcacqGH9aqpdaWcaaqaaiabeo8aZbqaaiaaigda caaI2aaaaiaacIcacaWHTbWaaSbaaSqaaiaaigdaaeqaaOGaey4LIq SaaCyBamaaBaaaleaacaaIXaaabeaakiabgUcaRiaah2gadaWgaaWc baGaaGymaaqabaGccqGHxkcXcaWHTbWaaSbaaSqaaiaaigdaaeqaaO GaeyOeI0IaaCyBamaaBaaaleaacaaIXaaabeaakiabgEPielaah2ga daWgaaWcbaGaaGOmaaqabaGccqGHsislcaWHTbWaaSbaaSqaaiaaik daaeqaaOGaey4LIqSaaCyBamaaBaaaleaacaaIXaaabeaakiaacMca aaa@69C0@

 

 

 

5.5 Stress measures for infinitesimal deformations

 

For a problem involving infinitesimal deformation (where shape changes are characterized by the infinitesimal strain tensor and rotation tensor) all the stress measures defined in the preceding section are approximately equal.

σ ij τ ij S ij Σ ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaWGPbGaamOAaa qabaGccqGHijYUcqaHepaDdaWgaaWcbaGaamyAaiaadQgaaeqaaOGa eyisISRaam4uamaaBaaaleaacaWGPbGaamOAaaqabaGccqGHijYUcq qHJoWudaWgaaWcbaGaamyAaiaadQgaaeqaaaaa@43A1@

To see this, write the deformation gradient as F ij = δ ij + u i / x j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAeadaWgaaWcbaGaamyAaiaadQgaae qaaOGaeyypa0JaeqiTdq2aaSbaaSqaaiaadMgacaWGQbaabeaakiab gUcaRiabgkGi2kaadwhadaWgaaWcbaGaamyAaaqabaGccaGGVaGaey OaIyRaamiEamaaBaaaleaacaWGQbaabeaaaaa@409B@ ; recall that J=det(F)1+ u k / x k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadQeacqGH9aqpciGGKbGaaiyzaiaacs hacaGGOaGaaCOraiaacMcacqGHijYUcaaIXaGaey4kaSIaeyOaIyRa amyDamaaBaaaleaacaWGRbaabeaakiaac+cacqGHciITcaWG4bWaaS baaSqaaiaadUgaaeqaaaaa@4236@ , and finally assume that for infinitesimal motions u i / x j <<1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabgkGi2kaadwhadaWgaaWcbaGaamyAaa qabaGccaGGVaGaeyOaIyRaamiEamaaBaaaleaacaWGQbaabeaakiab gYda8iabgYda8iaaigdaaaa@3AEA@ .  Substituting into the formulas relating Cauchy stress, Nominal stress and Material stress, we see that

σ ij = 1 J F ik S kj 1 1+ u p / x p ( δ ip + u i x p ) S pj = S pj +... S pj MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaWGkbaaaiaadAeadaWg aaWcbaGaamyAaiaadUgaaeqaaOGaam4uamaaBaaaleaacaWGRbGaam OAaaqabaGccqGHijYUdaWcaaqaaiaaigdaaeaacaaIXaGaey4kaSIa eyOaIyRaamyDamaaBaaaleaacaWGWbaabeaakiaac+cacqGHciITca WG4bWaaSbaaSqaaiaadchaaeqaaaaakmaabmaabaGaeqiTdq2aaSba aSqaaiaadMgacaWGWbaabeaakiabgUcaRmaalaaabaGaeyOaIyRaam yDamaaBaaaleaacaWGPbaabeaaaOqaaiabgkGi2kaadIhadaWgaaWc baGaamiCaaqabaaaaaGccaGLOaGaayzkaaGaam4uamaaBaaaleaaca WGWbGaamOAaaqabaGccqGH9aqpcaWGtbWaaSbaaSqaaiaadchacaWG QbaabeaakiabgUcaRiaac6cacaGGUaGaaiOlaiabgIKi7kaadofada WgaaWcbaGaamiCaiaadQgaaeqaaaaa@6455@

The same procedure will show that material stress and Cauchy stress are approximately equal, to within a term of order u i / x j <<1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabgkGi2kaadwhadaWgaaWcbaGaamyAaa qabaGccaGGVaGaeyOaIyRaamiEamaaBaaaleaacaWGQbaabeaakiab gYda8iabgYda8iaaigdaaaa@3AEA@

 

 

5.6 Principal Stresses and directions

 

For any stress measure, the principal stresses σ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaWGPbaabeaaaa a@3345@  and their directions n (i) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaah6gadaahaaWcbeqaaiaacIcacaWGPb Gaaiykaaaaaaa@33D3@ , with i=1..3 are defined such that

n (i) σ= σ i n (i) or     n j (i) σ jk = σ i n k (i) (no sum on i) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaah6gadaahaaWcbeqaaiaacIcacaWGPb GaaiykaaaakiabgwSixNaaGkaaho8akiabg2da9iabeo8aZnaaBaaa leaacaWGPbaabeaakiaah6gadaahaaWcbeqaaiaacIcacaWGPbGaai ykaaaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caqGVbGaaeOCaiaabccacaqGGaGaaeiiaiaabccacaWGUbWaa0baaS qaaiaadQgaaeaacaGGOaGaamyAaiaacMcaaaGccqaHdpWCdaWgaaWc baGaamOAaiaadUgaaeqaaOGaeyypa0Jaeq4Wdm3aaSbaaSqaaiaadM gaaeqaaOGaamOBamaaDaaaleaacaWGRbaabaGaaiikaiaadMgacaGG PaaaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aacIcacaqGUbGaae4BaiaabccacaqGZbGaaeyDaiaab2gacaqGGaGa ae4Baiaab6gacaqGGaGaamyAaiaacMcaaaa@74F2@

Clearly,

  1. The principal stresses are the (left) eigenvalues of the stress tensor
  2. The principal stress directions are the (left) eigenvectors of the stress tensor

 

The term `left’ eigenvector and eigenvalue indicates that the vector multiplies the tensor on the left. We will see later that Cauchy stress and material stress are both symmetric.  For a symmetric tensor the left and right eigenvalues and vectors are the same.

 

Note that the eigenvectors of a symmetric tensor are orthogonal.  Consequently, the principal Cauchy or material stresses can be visualized as tractions acting normal to the faces of a cube. The principal directions specify the orientation of this special cube.

 

One can also show that if σ 1 > σ 2 > σ 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8XjY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaO GaeyOpa4Jaeq4Wdm3aaSbaaSqaaiaaikdaaeqaaOGaeyOpa4Jaeq4W dm3aaSbaaSqaaiaaiodaaeqaaaaa@3AF2@ , then σ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8XjY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaa aa@3377@  is the largest normal traction acting on any plane passing through the point of interest, while σ 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8YjY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaiodaaeqaaa aa@3389@  is the lowest.  This is helpful in defining damage criteria for brittle materials, which fail when the stress acting normal to a material plane reaches a critical magnitude.

In the same vein, the largest shear stress can be shown to act on the plane with unit normal vector m shear =( m 1 + m 3 )/ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaah2gadaWgaaWcbaGaae4CaiaabIgaca qGLbGaaeyyaiaabkhaaeqaaOGaeyypa0JaeyOeI0Iaaiikaiaah2ga daWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWHTbWaaSbaaSqaaiaaio daaeqaaOGaaiykaiaac+cadaGcaaqaaiaaikdaaSqabaaaaa@3FBE@  (at 45o to the m 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaaIXaaabeaaaa a@32AC@  and m 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaaIZaaabeaaaa a@32AE@  axes), and its magnitude is τ max = 1 2 ( σ 1 σ 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiXdq3aaSbaaSqaaiaab2gacaqGHb GaaeiEaaqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaaiaa cIcacqaHdpWCdaWgaaWcbaGaaGymaaqabaGccqGHsislcqaHdpWCda WgaaWcbaGaaG4maaqabaGccaGGPaaaaa@3FD6@ .  This observation is useful for defining yield criteria for metal polycrystals, which begin to deform plastically when the shear stress acting on a material plane reaches a critical value.

 

5.7 Hydrostatic and Deviatoric Stress; von Mises effective stress

 

Given the Cauchy stress tensor σ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabjo8aZbaa@3230@ , the following may be defined:

 

The Hydrostatic stress is defined as σ h =trace(σ)/3 σ kk /3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaWGObaabeaaki abg2da9iaabshacaqGYbGaaeyyaiaabogacaqGLbGaaeikaiaaho8a caGGPaGaai4laiaaiodacqGHHjIUcqaHdpWCdaWgaaWcbaGaam4Aai aadUgaaeqaaOGaai4laiaaiodaaaa@441B@

The Deviatoric stress tensor is defined as σ ij = σ ij σ h δ ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqbeo8aZzaafaWaaSbaaSqaaiaadMgaca WGQbaabeaakiabg2da9iabeo8aZnaaBaaaleaacaWGPbGaamOAaaqa baGccqGHsislcqaHdpWCdaWgaaWcbaGaamiAaaqabaGccqaH0oazda WgaaWcbaGaamyAaiaadQgaaeqaaaaa@40A7@

The Von-Mises effective stress is defined as σ e = 3 2 σ : σ = 3 2 σ ij σ ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaWGLbaabeaaki abg2da9maakaaabaWaaSaaaeaacaaIZaaabaGaaGOmaaaaceWHdpGb auaacaGG6aGabC4WdyaafaaaleqaaOGaeyypa0ZaaOaaaeaadaWcaa qaaiaaiodaaeaacaaIYaaaaiqbeo8aZzaafaWaaSbaaSqaaiaadMga caWGQbaabeaakiqbeo8aZzaafaWaaSbaaSqaaiaadMgacaWGQbaabe aaaeqaaaaa@43CC@

 

The hydrostatic stress is a measure of the pressure exerted by a state of stress.  Pressure acts so as to change the volume of a material element.

 

The deviatoric stress is a measure of the shearing exerted by a state of stress. Shear stress tends to distort a solid, without changing its volume.

 

The Von-Mises effective stress can be regarded as a uniaxial equivalent of a multi-axial stress state.  It is used in many failure or yield criteria.  Thus, if a material is known to fail in a uniaxial tensile test (with σ 11 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaaIXaGaaGymaa qabaaaaa@33CD@  the only nonzero stress component) when σ 11 = σ crit MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaaIXaGaaGymaa qabaGccqGH9aqpcqaHdpWCdaWgaaWcbaGaam4yaiaadkhacaWGPbGa amiDaaqabaaaaa@3A92@ , it will fail when σ e = σ crit MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaWGLbaabeaaki abg2da9iabeo8aZnaaBaaaleaacaWGJbGaamOCaiaadMgacaWG0baa beaaaaa@3A06@  under multi-axial loading (with several σ ij 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaWGPbGaamOAaa qabaGccqGHGjsUcaaIWaaaaa@36BF@  )

 

The hydrostatic stress and von Mises stress can also be expressed in terms of principal stresses as

σ h =( σ 1 + σ 2 + σ 3 )/3 σ e = 1 2 { ( σ 1 σ 2 ) 2 + ( σ 1 σ 3 ) 2 + ( σ 2 σ 3 ) 2 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaGaeq4Wdm3aaSbaaSqaaiaadIgaae qaaOGaeyypa0ZaaeWaaeaacqaHdpWCdaWgaaWcbaGaaGymaaqabaGc cqGHRaWkcqaHdpWCdaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcqaHdp WCdaWgaaWcbaGaaG4maaqabaaakiaawIcacaGLPaaacaGGVaGaaG4m aaqaaiabeo8aZnaaBaaaleaacaWGLbaabeaakiabg2da9maakaaaba WaaSaaaeaacaaIXaaabaGaaGOmaaaadaGadaqaamaabmaabaGaeq4W dm3aaSbaaSqaaiaaigdaaeqaaOGaeyOeI0Iaeq4Wdm3aaSbaaSqaai aaikdaaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGa ey4kaSYaaeWaaeaacqaHdpWCdaWgaaWcbaGaaGymaaqabaGccqGHsi slcqaHdpWCdaWgaaWcbaGaaG4maaqabaaakiaawIcacaGLPaaadaah aaWcbeqaaiaaikdaaaGccqGHRaWkdaqadaqaaiabeo8aZnaaBaaale aacaaIYaaabeaakiabgkHiTiabeo8aZnaaBaaaleaacaaIZaaabeaa aOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaOGaay5Eaiaaw2 haaaWcbeaaaaaa@6530@

 

The hydrostatic and von Mises stresses are invariants of the stress tensor MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  they have the same value regardless of the basis chosen to define the stress components.

 

 

 

 

 

 

 

Example: Show that the von-Mises effective stress σ e = 3 2 σ : σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHdpWCdaWgaa WcbaGaamyzaaqabaGccqGH9aqpdaGcaaqaamaalaaabaGaaG4maaqa aiaaikdaaaGabC4WdyaafaGaaiOoaiqaho8agaqbaaWcbeaaaaa@3E76@   is invariant under a change of basis.

 

 

We have

σ =σtrace(σ)I/3 σ : σ =σ:σ2trace (σ) 2 /3+trace (σ) 2 /3=σ:σtrace (σ) 2 /3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiqaho8aga qbaiabg2da9iaaho8acqGHsislcaWG0bGaamOCaiaadggacaWGJbGa amyzaiaacIcacaWHdpGaaiykaiaahMeacaGGVaGaaG4maaqaaiqaho 8agaqbaiaacQdaceWHdpGbauaacqGH9aqpcaWHdpGaaiOoaiaaho8a cqGHsislcaaIYaGaamiDaiaadkhacaWGHbGaam4yaiaadwgacaGGOa GaaC4WdiaacMcadaahaaWcbeqaaiaaikdaaaGccaGGVaGaaG4maiab gUcaRiaadshacaWGYbGaamyyaiaadogacaWGLbGaaiikaiaaho8aca GGPaWaaWbaaSqabeaacaaIYaaaaOGaai4laiaaiodacqGH9aqpcaWH dpGaaiOoaiaaho8acqGHsislcaWG0bGaamOCaiaadggacaWGJbGaam yzaiaacIcacaWHdpGaaiykamaaCaaaleqabaGaaGOmaaaakiaac+ca caaIZaaaaaa@7074@

 

We already know that the contraction σ:σ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaaho8acaGG6aGaaC4Wdaaa@33C4@   and trace are invariant, so the von Mises stress must be invariant.

 

In index notation

σ e (m) = Q ki σ kl Q lj Q pi σ pq Q qj Q ki σ kl Q li = σ e (e) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHdpWCdaqhaa WcbaGaamyzaaqaaiaacIcacaWHTbGaaiykaaaakiabg2da9maakaaa baGaamyuamaaBaaaleaacaWGRbGaamyAaaqabaGccqaHdpWCdaWgaa WcbaGaam4AaiaadYgaaeqaaOGaamyuamaaBaaaleaacaWGSbGaamOA aaqabaGccaWGrbWaaSbaaSqaaiaadchacaWGPbaabeaakiabeo8aZn aaBaaaleaacaWGWbGaamyCaaqabaGccaWGrbWaaSbaaSqaaiaadgha caWGQbaabeaakiabgkHiTiaadgfadaWgaaWcbaGaam4AaiaadMgaae qaaOGaeq4Wdm3aaSbaaSqaaiaadUgacaWGSbaabeaakiaadgfadaWg aaWcbaGaamiBaiaadMgaaeqaaaqabaGccqGH9aqpcqaHdpWCdaqhaa WcbaGaamyzaaqaaiaacIcacaWHLbGaaiykaaaaaaa@5FF6@

 

 

 

 

5.8 Stresses near an external surface or edge MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieqajugybabaaa aaaaaapeGaa83eGaaa@3723@  boundary conditions on stresses

 

Note that at an external surface at which tractions are prescribed, some components of stress are known.  Specifically, let n denote a unit vector normal to the surface, and let t denote the traction (force per unit area) acting on the surface.  Then the Cauchy stress at the surface must satisfy

n i σ ij = t j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGUbWaaSbaaSqaaiaadMgaaeqaaO Gaeq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaakiabg2da9iaadsha daWgaaWcbaGaamOAaaqabaaaaa@3BCD@

 

For example, suppose that a surface with normal in the e 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHLbWaaSbaaSqaaiaaikdaaeqaaa aa@349C@  direction is subjected to no loading.  Then (noting that n i = δ i2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGUbWaaSbaaSqaaiaadMgaaeqaaO Gaeyypa0JaeqiTdq2aaSbaaSqaaiaadMgacaaIYaaabeaaaaa@395E@  ) it follows that σ 2i =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaaGOmaiaadM gaaeqaaOGaeyypa0JaaGimaaaa@3829@ . In addition, two of the principal stress directions must be parallel to the surface; the third (with zero stress) must be perpendicular to the surface.

 

The stress state at an edge is even simpler.  Suppose that surfaces with normals in the e 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHLbWaaSbaaSqaaiaaikdaaeqaaa aa@349C@  and e 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHLbWaaSbaaSqaaiaaigdaaeqaaa aa@349B@  are traction free.  Then σ 1i = σ 2i =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaaGymaiaadM gaaeqaaOGaeyypa0Jaeq4Wdm3aaSbaaSqaaiaaikdacaWGPbaabeaa kiabg2da9iaaicdaaaa@3CD1@ , so that 6 stress components are known to be zero.