MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakaa@3575@  

 

 

Chapter 3

 

Mathematics Review

 

 

 

3.1. Vectors

 

3.1.1 Definition

 

For the purposes of this text, a vector is an object which has magnitude and direction.  Examples include forces, electric fields, and the normal to a surface.  A vector is often represented pictorially as an arrow and symbolically by an underlined letter a _ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaadaaqaaiaadg gaaaaaaa@366B@  or using bold type .  Its magnitude is denoted  or .  There are two special cases of vectors: the unit vector n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHUbaaaa@366C@  has | n |=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaabdaqaaiaah6 gaaiaawEa7caGLiWoacqGH9aqpcaaIXaaaaa@3B4F@ ; and the null vector  has | 0 |=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaabdaqaaiaahc daaiaawEa7caGLiWoacqGH9aqpcaaIWaaaaa@3B10@ .

 

3.1.2 Vector Operations

 

 Addition

 

Let a and b be vectors.  Then c=a+b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHJbGaeyypa0 JaaCyyaiabgUcaRiaahkgaaaa@3A1E@  is also a vector.  The vector c may be shown diagramatically by placing arrows representing a and b head to tail, as shown in the figure.

 

 Multiplication

 

1.      Multiplication by a scalar. Let a be a vector, and  a scalar.  Then b=αa MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHIbGaeyypa0 JaeqySdeMaaGPaVlaahggaaaa@3B7A@  is a vector.  The direction of b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHIbaaaa@3660@  is parallel to a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHHbaaaa@365F@  and its magnitude is given by | b |=α| a | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaabdaqaaiaahk gaaiaawEa7caGLiWoacqGH9aqpcqaHXoqydaabdaqaaiaahggaaiaa wEa7caGLiWoaaaa@4033@ .

Note that you can form a unit vector n which is parallel to a by setting n= a | a | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHUbGaeyypa0 ZaaSaaaeaacaWHHbaabaWaaqWaaeaacaWHHbaacaGLhWUaayjcSdaa aaaa@3C78@ .

2.      Dot Product (also called the scalar product). Let a and b be two vectors.  The dot product of a and b is a scalar denoted by α=ab MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHXoqycqGH9a qpcaWHHbGaeyyXICTaaCOyaaaa@3C39@ , and is defined by

ab=| a || b |cosθ(a,b) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHHbGaeyyXIC TaaCOyaiabg2da9maaemaabaGaaCyyaaGaay5bSlaawIa7amaaemaa baGaaCOyaaGaay5bSlaawIa7aiGacogacaGGVbGaai4CaiabeI7aXj aacIcacaWHHbGaaiilaiaahkgacaGGPaaaaa@4B1A@ ,

where θ(a,b) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH4oqCcaGGOa GaaCyyaiaacYcacaWHIbGaaiykaaaa@3B09@  is the angle subtended by a and b. Note that ab=ba MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHHbGaeyyXIC TaaCOyaiabg2da9iaahkgacqGHflY1caWHHbaaaa@3EB9@ , and aa= | a | 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHHbGaeyyXIC TaaCyyaiabg2da9maaemaabaGaaCyyaaGaay5bSlaawIa7amaaCaaa leqabaGaaGOmaaaaaaa@3F8E@ .  If | a |0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaabdaqaaiaahg gaaiaawEa7caGLiWoacqGHGjsUcaaIWaaaaa@3C02@  and | b |0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaabdaqaaiaahk gaaiaawEa7caGLiWoacqGHGjsUcaaIWaaaaa@3C03@  then ab=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHHbGaeyyXIC TaaCOyaiabg2da9iaaicdaaaa@3B54@  if and only if cosθ(a,b)=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGJbGaai4Bai aacohacqaH4oqCcaGGOaGaaCyyaiaacYcacaWHIbGaaiykaiabg2da 9iaaicdaaaa@3F9C@ ; i.e. a and b are perpendicular.

3.      Cross Product (also called the vector product).  Let a and b be two vectors.  The cross product of a and b is a vector denoted by c=a×b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHJbGaeyypa0 JaaCyyaiabgEna0kaahkgaaaa@3B53@ The direction of c is perpendicular to a and b, and is chosen so that (a,b,c) form a right handed triad, Fig. 3.  The magnitude of c is given by

| c |=| a×b |=| a || b |sinθ(a,b) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaabdaqaaiaaho gaaiaawEa7caGLiWoacqGH9aqpdaabdaqaaiaahggacqGHxdaTcaWH IbaacaGLhWUaayjcSdGaeyypa0ZaaqWaaeaacaWHHbaacaGLhWUaay jcSdWaaqWaaeaacaWHIbaacaGLhWUaayjcSdGaci4CaiaacMgacaGG UbGaeqiUdeNaaiikaiaahggacaGGSaGaaCOyaiaacMcaaaa@5322@

Note that a×b=b×a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHHbGaey41aq RaaCOyaiabg2da9iabgkHiTiaahkgacqGHxdaTcaWHHbaaaa@3F40@  and a(a×b)=b(a×b)=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHHbGaeyyXIC TaaiikaiaahggacqGHxdaTcaWHIbGaaiykaiabg2da9iaahkgacqGH flY1caGGOaGaaCyyaiabgEna0kaahkgacaGGPaGaeyypa0JaaGimaa aa@492E@ .

 

 Some useful vector identities

a(b×c)=b(c×a)=c(a×b) a×(b×c)=(ac)b(ab)c (a×b)(c×d)=(ac)(bd)(bc)(ad) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaahggacq GHflY1caGGOaGaaCOyaiabgEna0kaahogacaGGPaGaeyypa0JaaCOy aiabgwSixlaacIcacaWHJbGaey41aqRaaCyyaiaacMcacqGH9aqpca WHJbGaeyyXICTaaiikaiaahggacqGHxdaTcaWHIbGaaiykaaqaaiaa hggacqGHxdaTcaGGOaGaaCOyaiabgEna0kaahogacaGGPaGaeyypa0 JaaiikaiaahggacqGHflY1caWHJbGaaiykaiaahkgacqGHsislcaGG OaGaaCyyaiabgwSixlaahkgacaGGPaGaaC4yaaqaaiaacIcacaWHHb Gaey41aqRaaCOyaiaacMcacqGHflY1caGGOaGaaC4yaiabgEna0kaa hsgacaGGPaGaeyypa0JaaiikaiaahggacqGHflY1caWHJbGaaiykai aacIcacaWHIbGaeyyXICTaaCizaiaacMcacqGHsislcaGGOaGaaCOy aiabgwSixlaahogacaGGPaGaaiikaiaahggacqGHflY1caWHKbGaai ykaaaaaa@8CB0@

 

3.1.3 Cartesian components of vectors

 

Let ( e 1 , e 2 , e 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaaCyzam aaBaaaleaacaaIXaaabeaakiaacYcacaWHLbWaaSbaaSqaaiaaikda aeqaaOGaaiilaiaahwgadaWgaaWcbaGaaG4maaqabaGccaGGPaaaaa@3DCE@  be three mutually perpendicular unit vectors which form a right handed triad, Fig. 4.  Then { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaahw gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaCyzamaaBaaaleaacaaI YaaabeaakiaacYcacaWHLbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7b GaayzFaaaaaa@3EA6@  are said to form and orthonormal basis. The vectors satisfy

| e 1 |=| e 2 |=| e 3 |=1 e 1 × e 2 = e 3 , e 1 × e 3 = e 2 e 2 × e 3 = e 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaabdaqaaiaahw gadaWgaaWcbaGaaGymaaqabaaakiaawEa7caGLiWoacqGH9aqpdaab daqaaiaahwgadaWgaaWcbaGaaGOmaaqabaaakiaawEa7caGLiWoacq GH9aqpdaabdaqaaiaahwgadaWgaaWcbaGaaG4maaqabaaakiaawEa7 caGLiWoacqGH9aqpcaaIXaGaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaahwgadaWgaaWcbaGa aGymaaqabaGccqGHxdaTcaWHLbWaaSbaaSqaaiaaikdaaeqaaOGaey ypa0JaaCyzamaaBaaaleaacaaIZaaabeaakiaacYcacaaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caWHLbWaaSbaaSqaaiaaigdaae qaaOGaey41aqRaaCyzamaaBaaaleaacaaIZaaabeaakiabg2da9iab gkHiTiaahwgadaWgaaWcbaGaaGOmaaqabaGccaaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaahwgadaWgaaWcbaGaaGOmaaqabaGccqGHxdaT caWHLbWaaSbaaSqaaiaaiodaaeqaaOGaeyypa0JaaCyzamaaBaaale aacaaIXaaabeaaaaa@8479@

We may express any vector a as a suitable combination of the unit vectors e 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHLbWaaSbaaS qaaiaaigdaaeqaaaaa@374A@ , e 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHLbWaaSbaaS qaaiaaikdaaeqaaaaa@374B@  and e 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHLbWaaSbaaS qaaiaaiodaaeqaaaaa@374C@ .  For example, we may write

a= a 1 e 1 + a 2 e 2 + a 3 e 3 = i=1 3 a i e i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHHbGaeyypa0 JaamyyamaaBaaaleaacaaIXaaabeaakiaahwgadaWgaaWcbaGaaGym aaqabaGccqGHRaWkcaWGHbWaaSbaaSqaaiaaikdaaeqaaOGaaCyzam aaBaaaleaacaaIYaaabeaakiabgUcaRiaadggadaWgaaWcbaGaaG4m aaqabaGccaWHLbWaaSbaaSqaaiaaiodaaeqaaOGaeyypa0ZaaabCae aacaWGHbWaaSbaaSqaaiaadMgaaeqaaOGaaCyzamaaBaaaleaacaWG PbaabeaaaeaacaWGPbGaeyypa0JaaGymaaqaaiaaiodaa0GaeyyeIu oaaaa@4F0C@

where  are scalars, called the components of a in the basis { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaahw gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaCyzamaaBaaaleaacaaI YaaabeaakiaacYcacaWHLbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7b GaayzFaaaaaa@3EA6@ .   The components of a have a simple physical interpretation.  For example, if we evaluate the dot product a e 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHHbGaeyyXIC TaaCyzamaaBaaaleaacaaIXaaabeaaaaa@3A7E@  we find that

a e 1 =( a 1 e 1 + a 2 e 2 + a 3 e 3 ) e 1 = a 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHHbGaeyyXIC TaaCyzamaaBaaaleaacaaIXaaabeaakiabg2da9iaacIcacaWGHbWa aSbaaSqaaiaaigdaaeqaaOGaaCyzamaaBaaaleaacaaIXaaabeaaki abgUcaRiaadggadaWgaaWcbaGaaGOmaaqabaGccaWHLbWaaSbaaSqa aiaaikdaaeqaaOGaey4kaSIaamyyamaaBaaaleaacaaIZaaabeaaki aahwgadaWgaaWcbaGaaG4maaqabaGccaGGPaGaeyyXICTaaCyzamaa BaaaleaacaaIXaaabeaakiabg2da9iaadggadaWgaaWcbaGaaGymaa qabaaaaa@50CF@

in view of the properties of the three vectors e 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHLbWaaSbaaS qaaiaaigdaaeqaaaaa@374A@ , e 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHLbWaaSbaaS qaaiaaikdaaeqaaaaa@374B@  and e 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHLbWaaSbaaS qaaiaaiodaaeqaaaaa@374C@ .  Recall that

a e 1 =| a || e 1 |cosθ(a, e 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHHbGaeyyXIC TaaCyzamaaBaaaleaacaaIXaaabeaakiabg2da9maaemaabaGaaCyy aaGaay5bSlaawIa7amaaemaabaGaaCyzamaaBaaaleaacaaIXaaabe aaaOGaay5bSlaawIa7aiGacogacaGGVbGaai4CaiabeI7aXjaacIca caWHHbGaaiilaiaahwgadaWgaaWcbaGaaGymaaqabaGccaGGPaaaaa@4DF6@

 

Then, noting that | e 1 |=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaabdaqaaiaahw gadaWgaaWcbaGaaGymaaqabaaakiaawEa7caGLiWoacqGH9aqpcaaI Xaaaaa@3C37@ , we have

a 1 =a e 1 =| a |cosθ(a, e 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaaigdaaeqaaOGaeyypa0JaaCyyaiabgwSixlaahwgadaWgaaWc baGaaGymaaqabaGccqGH9aqpdaabdaqaaiaahggaaiaawEa7caGLiW oaciGGJbGaai4BaiaacohacqaH4oqCcaGGOaGaaCyyaiaacYcacaWH LbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaaaa@4BD2@

 

Thus,  represents the projected length of the vector a  in the direction of e 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHLbWaaSbaaS qaaiaaigdaaeqaaaaa@374A@ , as illustrated in the figure.  Similarly, a 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaaikdaaeqaaaaa@3743@  and a 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaaiodaaeqaaaaa@3744@  may be shown to represent the projection of a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHHbaaaa@365F@  in the directions e 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHLbWaaSbaaS qaaiaaikdaaeqaaaaa@374B@  and , respectively.

 

The advantage of representing vectors in a Cartesian basis is that vector addition and multiplication can be expressed as simple operations on the components of the vectors.  For example, let a, b and c be vectors, with components ( a 1 , a 2 , a 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaamyyam aaBaaaleaacaaIXaaabeaakiaacYcacaWGHbWaaSbaaSqaaiaaikda aeqaaOGaaiilaiaadggadaWgaaWcbaGaaG4maaqabaGccaGGPaaaaa@3DB6@ , ( b 1 , b 2 , b 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaamOyam aaBaaaleaacaaIXaaabeaakiaacYcacaWGIbWaaSbaaSqaaiaaikda aeqaaOGaaiilaiaadkgadaWgaaWcbaGaaG4maaqabaGccaGGPaaaaa@3DB9@  and ( c 1 , c 2 , c 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaam4yam aaBaaaleaacaaIXaaabeaakiaacYcacaWGJbWaaSbaaSqaaiaaikda aeqaaOGaaiilaiaadogadaWgaaWcbaGaaG4maaqabaGccaGGPaaaaa@3DBC@ , respectively.  Then, it is straightforward to show that

c=a+b c 1 = a 1 + b 1 ; c 2 = a 2 + b 2 ; c 3 = a 3 + b 3 ab= i=1 3 a i b i c=a×b c 1 = a 2 b 3 a 3 b 2 ; c 2 = a 3 b 1 a 1 b 3 ; c 3 = a 1 b 2 a 2 b 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaaceqaaiaahogacq GH9aqpcaWHHbGaey4kaSIaaCOyaiaaykW7caaMc8UaaGPaVlaaykW7 cqGHuhY2caaMc8UaaGPaVlaaykW7caaMc8Uaam4yamaaBaaaleaaca aIXaaabeaakiabg2da9iaadggadaWgaaWcbaGaaGymaaqabaGccqGH RaWkcaWGIbWaaSbaaSqaaiaaigdaaeqaaOGaai4oaiaaykW7caaMc8 UaaGPaVlaaykW7caWGJbWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0Ja amyyamaaBaaaleaacaaIYaaabeaakiabgUcaRiaadkgadaWgaaWcba GaaGOmaaqabaGccaGG7aGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caWGJbWaaSbaaSqaaiaaiodaaeqaaOGaeyypa0JaamyyamaaBaaale aacaaIZaaabeaakiabgUcaRiaadkgadaWgaaWcbaGaaG4maaqabaaa keaacaWHHbGaeyyXICTaaCOyaiabg2da9maaqahabaGaamyyamaaBa aaleaacaWGPbaabeaakiaadkgadaWgaaWcbaGaamyAaaqabaaabaGa amyAaiabg2da9iaaigdaaeaacaaIZaaaniabggHiLdaakeaacaWHJb Gaeyypa0JaaCyyaiabgEna0kaahkgacaaMc8UaaGPaVlaaykW7caaM c8Uaeyi1HSTaaGPaVlaaykW7caaMc8UaaGPaVlaadogadaWgaaWcba GaaGymaaqabaGccqGH9aqpcaWGHbWaaSbaaSqaaiaaikdaaeqaaOGa amOyamaaBaaaleaacaaIZaaabeaakiabgkHiTiaadggadaWgaaWcba GaaG4maaqabaGccaWGIbWaaSbaaSqaaiaaikdaaeqaaOGaai4oaiaa ykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam4yamaaBaaaleaacaaIYa aabeaakiabg2da9iaadggadaWgaaWcbaGaaG4maaqabaGccaWGIbWa aSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaamyyamaaBaaaleaacaaIXa aabeaakiaadkgadaWgaaWcbaGaaG4maaqabaGccaGG7aGaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caWGJbWaaSbaaSqaaiaaiodaaeqaaO Gaeyypa0JaamyyamaaBaaaleaacaaIXaaabeaakiaadkgadaWgaaWc baGaaGOmaaqabaGccqGHsislcaWGHbWaaSbaaSqaaiaaikdaaeqaaO GaamOyamaaBaaaleaacaaIXaaabeaaaaaa@C473@

 

 

 

 

 

 

3.1.4 Change of basis

 

Let a be a vector, and let { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaahw gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaCyzamaaBaaaleaacaaI YaaabeaakiaacYcacaWHLbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7b GaayzFaaaaaa@3EA6@  be a Cartesian basis.  Suppose that the components of a in the basis { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaahw gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaCyzamaaBaaaleaacaaI YaaabeaakiaacYcacaWHLbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7b GaayzFaaaaaa@3EA6@  are known to be ( a 1 , a 2 , a 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaamyyam aaBaaaleaacaaIXaaabeaakiaacYcacaWGHbWaaSbaaSqaaiaaikda aeqaaOGaaiilaiaadggadaWgaaWcbaGaaG4maaqabaGccaGGPaaaaa@3DB6@ .  Now, suppose that we wish to compute the components of a in a second Cartesian basis, { m 1 , m 2 , m 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaah2 gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaCyBamaaBaaaleaacaaI YaaabeaakiaacYcacaWHTbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7b GaayzFaaaaaa@3EBE@ .  This means we wish to find components ( α 1 , α 2 , α 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaeqySde 2aaSbaaSqaaiaaigdaaeqaaOGaaiilaiabeg7aHnaaBaaaleaacaaI YaaabeaakiaacYcacqaHXoqydaWgaaWcbaGaaG4maaqabaGccaGGPa aaaa@3FE1@ , such that

a= α 1 m 1 + α 2 m 2 + α 3 m 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHHbGaeyypa0 JaeqySde2aaSbaaSqaaiaaigdaaeqaaOGaaCyBamaaBaaaleaacaaI XaaabeaakiabgUcaRiabeg7aHnaaBaaaleaacaaIYaaabeaakiaah2 gadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcqaHXoqydaWgaaWcbaGa aG4maaqabaGccaWHTbWaaSbaaSqaaiaaiodaaeqaaaaa@468A@

To do so, note that

α 1 =a m 1 = a 1 e 1 m 1 + a 2 e 2 m 1 + a 3 e 3 m 1 α 2 =a m 2 = a 1 e 1 m 2 + a 2 e 2 m 2 + a 3 e 3 m 2 α 3 =a m 3 = a 1 e 1 m 3 + a 2 e 2 m 3 + a 3 e 3 m 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiabeg7aHn aaBaaaleaacaaIXaaabeaakiabg2da9iaahggacqGHflY1caWHTbWa aSbaaSqaaiaaigdaaeqaaOGaeyypa0JaamyyamaaBaaaleaacaaIXa aabeaakiaahwgadaWgaaWcbaGaaGymaaqabaGccqGHflY1caWHTbWa aSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamyyamaaBaaaleaacaaIYa aabeaakiaahwgadaWgaaWcbaGaaGOmaaqabaGccqGHflY1caWHTbWa aSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamyyamaaBaaaleaacaaIZa aabeaakiaahwgadaWgaaWcbaGaaG4maaqabaGccqGHflY1caWHTbWa aSbaaSqaaiaaigdaaeqaaaGcbaGaeqySde2aaSbaaSqaaiaaikdaae qaaOGaeyypa0JaaCyyaiabgwSixlaah2gadaWgaaWcbaGaaGOmaaqa baGccqGH9aqpcaWGHbWaaSbaaSqaaiaaigdaaeqaaOGaaCyzamaaBa aaleaacaaIXaaabeaakiabgwSixlaah2gadaWgaaWcbaGaaGOmaaqa baGccqGHRaWkcaWGHbWaaSbaaSqaaiaaikdaaeqaaOGaaCyzamaaBa aaleaacaaIYaaabeaakiabgwSixlaah2gadaWgaaWcbaGaaGOmaaqa baGccqGHRaWkcaWGHbWaaSbaaSqaaiaaiodaaeqaaOGaaCyzamaaBa aaleaacaaIZaaabeaakiabgwSixlaah2gadaWgaaWcbaGaaGOmaaqa baaakeaacqaHXoqydaWgaaWcbaGaaG4maaqabaGccqGH9aqpcaWHHb GaeyyXICTaaCyBamaaBaaaleaacaaIZaaabeaakiabg2da9iaadgga daWgaaWcbaGaaGymaaqabaGccaWHLbWaaSbaaSqaaiaaigdaaeqaaO GaeyyXICTaaCyBamaaBaaaleaacaaIZaaabeaakiabgUcaRiaadgga daWgaaWcbaGaaGOmaaqabaGccaWHLbWaaSbaaSqaaiaaikdaaeqaaO GaeyyXICTaaCyBamaaBaaaleaacaaIZaaabeaakiabgUcaRiaadgga daWgaaWcbaGaaG4maaqabaGccaWHLbWaaSbaaSqaaiaaiodaaeqaaO GaeyyXICTaaCyBamaaBaaaleaacaaIZaaabeaaaaaa@9F24@

This transformation is conveniently written as a matrix operation

[ α ]=[ Q ][ a ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiabeg 7aHbGaay5waiaaw2faaiabg2da9maadmaabaGaamyuaaGaay5waiaa w2faamaadmaabaGaamyyaaGaay5waiaaw2faaaaa@3FAC@ ,

where [ α ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiabeg 7aHbGaay5waiaaw2faaaaa@3906@  is a matrix consisting of the components of a in the basis { m 1 , m 2 , m 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaah2 gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaCyBamaaBaaaleaacaaI YaaabeaakiaacYcacaWHTbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7b GaayzFaaaaaa@3EBE@ , [ a ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg gaaiaawUfacaGLDbaaaaa@384D@  is a matrix consisting of the components of a in the basis { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaahw gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaCyzamaaBaaaleaacaaI YaaabeaakiaacYcacaWHLbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7b GaayzFaaaaaa@3EA6@ , and  is a `rotation matrix’ as follows

[ α ]=[ α 1 α 2 α 3 ][ a ]=[ a 1 a 2 a 3 ][ Q ]=[ m 1 e 1 m 1 e 2 m 1 e 3 m 2 e 1 m 2 e 2 m 2 e 3 m 3 e 1 m 3 e 2 m 3 e 3 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiabeg 7aHbGaay5waiaaw2faaiabg2da9maadmaaeaqabeaacqaHXoqydaWg aaWcbaGaaGymaaqabaaakeaacqaHXoqydaWgaaWcbaGaaGOmaaqaba aakeaacqaHXoqydaWgaaWcbaGaaG4maaqabaaaaOGaay5waiaaw2fa aiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7daWadaqaaiaadggaaiaawUfacaGLDbaacqGH9aqp daWadaabaeqabaGaamyyamaaBaaaleaacaaIXaaabeaaaOqaaiaadg gadaWgaaWcbaGaaGOmaaqabaaakeaacaWGHbWaaSbaaSqaaiaaioda aeqaaaaakiaawUfacaGLDbaacaaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7daWa daqaaiaadgfaaiaawUfacaGLDbaacqGH9aqpdaWadaabaeqabaGaaC yBamaaBaaaleaacaaIXaaabeaakiabgwSixlaahwgadaWgaaWcbaGa aGymaaqabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca WHTbWaaSbaaSqaaiaaigdaaeqaaOGaeyyXICTaaCyzamaaBaaaleaa caaIYaaabeaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aah2gadaWgaaWcbaGaaGymaaqabaGccqGHflY1caWHLbWaaSbaaSqa aiaaiodaaeqaaaGcbaGaaCyBamaaBaaaleaacaaIYaaabeaakiabgw SixlaahwgadaWgaaWcbaGaaGymaaqabaGccaaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caWHTbWaaSbaaSqaaiaaikdaaeqaaOGaey yXICTaaCyzamaaBaaaleaacaaIYaaabeaakiaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaah2gadaWgaaWcbaGaaGOmaaqabaGccq GHflY1caWHLbWaaSbaaSqaaiaaiodaaeqaaaGcbaGaaCyBamaaBaaa leaacaaIZaaabeaakiabgwSixlaahwgadaWgaaWcbaGaaGymaaqaba GccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWHTbWaaSba aSqaaiaaiodaaeqaaOGaeyyXICTaaCyzamaaBaaaleaacaaIYaaabe aakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaah2gadaWg aaWcbaGaaG4maaqabaGccqGHflY1caWHLbWaaSbaaSqaaiaaiodaae qaaaaakiaawUfacaGLDbaaaaa@E501@

Note that the elements of  have a simple physical interpretation.  For example, m 1 e 1 =cosθ( m 1 , e 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHTbWaaSbaaS qaaiaaigdaaeqaaOGaeyyXICTaaCyzamaaBaaaleaacaaIXaaabeaa kiabg2da9iGacogacaGGVbGaai4CaiabeI7aXjaacIcacaWHTbWaaS baaSqaaiaaigdaaeqaaOGaaiilaiaahwgadaWgaaWcbaGaaGymaaqa baGccaGGPaaaaa@46E3@ , where θ( m 1 , e 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH4oqCcaGGOa GaaCyBamaaBaaaleaacaaIXaaabeaakiaacYcacaWHLbWaaSbaaSqa aiaaigdaaeqaaOGaaiykaaaa@3CFA@  is the angle between the m 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHTbWaaSbaaS qaaiaaigdaaeqaaaaa@3752@  and  axes.  Similarly m 1 e 2 =cosθ( m 1 , e 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHTbWaaSbaaS qaaiaaigdaaeqaaOGaeyyXICTaaCyzamaaBaaaleaacaaIYaaabeaa kiabg2da9iGacogacaGGVbGaai4CaiabeI7aXjaacIcacaWHTbWaaS baaSqaaiaaigdaaeqaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqa baGccaGGPaaaaa@46E5@  where θ( m 1 , e 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH4oqCcaGGOa GaaCyBamaaBaaaleaacaaIXaaabeaakiaacYcacaWHLbWaaSbaaSqa aiaaikdaaeqaaOGaaiykaaaa@3CFB@  is the angle between the m 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHTbWaaSbaaS qaaiaaigdaaeqaaaaa@3752@  and  axes.  In practice, we usually know the angles between the axes that make up the two bases, so it is simplest to assemble the elements of  by putting the cosines of the known angles in the appropriate places.

 

Index notation provides another convenient way to write this transformation:

α i = Q ij a j , Q ij = e i m j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHXoqydaWgaa WcbaGaamyAaaqabaGccqGH9aqpcaWGrbWaaSbaaSqaaiaadMgacaWG QbaabeaakiaadggadaWgaaWcbaGaamOAaaqabaGccaGGSaGaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGrbWaaSbaaSqaaiaadM gacaWGQbaabeaakiabg2da9iaahwgadaWgaaWcbaGaamyAaaqabaGc cqGHflY1caWHTbWaaSbaaSqaaiaadQgaaeqaaaaa@5ED8@

You don’t need to know index notation in detail to understand this MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  all you need to know is that

Q ij a j j=1 3 Q ij a j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGrbWaaSbaaS qaaiaadMgacaWGQbaabeaakiaadggadaWgaaWcbaGaamOAaaqabaGc caaMc8UaeyyyIO7aaabCaeaacaWGrbWaaSbaaSqaaiaadMgacaWGQb aabeaakiaadggadaWgaaWcbaGaamOAaaqabaaabaGaamOAaiabg2da 9iaaigdaaeaacaaIZaaaniabggHiLdaaaa@484B@

 

The same approach may be used to find an expression for a i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaadMgaaeqaaaaa@3776@  in terms of α i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHXoqydaWgaa WcbaGaamyAaaqabaaaaa@382F@ .  If you work through the details, you will find that

[ a 1 a 2 a 3 ]=[ m 1 e 1 m 2 e 1 m 3 e 1 m 1 e 2 m 2 e 2 m 3 e 2 m 1 e 3 m 2 e 3 m 3 e 3 ][ α 1 α 2 α 3 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaabaeqaba GaamyyamaaBaaaleaacaaIXaaabeaaaOqaaiaadggadaWgaaWcbaGa aGOmaaqabaaakeaacaWGHbWaaSbaaSqaaiaaiodaaeqaaaaakiaawU facaGLDbaacaaMc8UaaGPaVlaaykW7cqGH9aqpdaWadaqaauaabeqa dmaaaeaacaWHTbWaaSbaaSqaaiaaigdaaeqaaOGaeyyXICTaaCyzam aaBaaaleaacaaIXaaabeaaaOqaaiaah2gadaWgaaWcbaGaaGOmaaqa baGccqGHflY1caWHLbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaaCyBam aaBaaaleaacaaIZaaabeaakiabgwSixlaahwgadaWgaaWcbaGaaGym aaqabaaakeaacaWHTbWaaSbaaSqaaiaaigdaaeqaaOGaeyyXICTaaC yzamaaBaaaleaacaaIYaaabeaaaOqaaiaah2gadaWgaaWcbaGaaGOm aaqabaGccqGHflY1caWHLbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaaC yBamaaBaaaleaacaaIZaaabeaakiabgwSixlaahwgadaWgaaWcbaGa aGOmaaqabaaakeaacaWHTbWaaSbaaSqaaiaaigdaaeqaaOGaeyyXIC TaaCyzamaaBaaaleaacaaIZaaabeaaaOqaaiaah2gadaWgaaWcbaGa aGOmaaqabaGccqGHflY1caWHLbWaaSbaaSqaaiaaiodaaeqaaaGcba GaaCyBamaaBaaaleaacaaIZaaabeaakiabgwSixlaahwgadaWgaaWc baGaaG4maaqabaaaaaGccaGLBbGaayzxaaGaaGPaVlaaykW7daWada abaeqabaGaeqySde2aaSbaaSqaaiaaigdaaeqaaaGcbaGaeqySde2a aSbaaSqaaiaaikdaaeqaaaGcbaGaeqySde2aaSbaaSqaaiaaiodaae qaaaaakiaawUfacaGLDbaaaaa@880C@

Comparing this result with the formula for α i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHXoqydaWgaa WcbaGaamyAaaqabaaaaa@382F@  in terms of a i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaadMgaaeqaaaaa@3776@ , we see that

[ a ]= [ Q ] T [ α ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg gaaiaawUfacaGLDbaacqGH9aqpdaWadaqaaiaadgfaaiaawUfacaGL DbaadaahaaWcbeqaaiaadsfaaaGcdaWadaqaaiabeg7aHbGaay5wai aaw2faaaaa@40BC@

where the superscript T denotes the transpose (rows and columns interchanged). The transformation matrix  is therefore orthogonal, and satisfies

[ Q ] 1 = [ Q ] T [ Q ] [ Q ] T = [ Q ] T [ Q ]=[ I ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg faaiaawUfacaGLDbaadaahaaWcbeqaaiabgkHiTiaaigdaaaGccqGH 9aqpdaWadaqaaiaadgfaaiaawUfacaGLDbaadaahaaWcbeqaaiaads faaaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7daWadaqaaiaadgfaaiaawU facaGLDbaadaWadaqaaiaadgfaaiaawUfacaGLDbaadaahaaWcbeqa aiaadsfaaaGccqGH9aqpdaWadaqaaiaadgfaaiaawUfacaGLDbaada ahaaWcbeqaaiaadsfaaaGcdaWadaqaaiaadgfaaiaawUfacaGLDbaa cqGH9aqpdaWadaqaaiaadMeaaiaawUfacaGLDbaaaaa@638B@

where [I] is the identity matrix.

 

3.1.5 Useful vector operations

 Calculating areas

The area of a triangle bounded by vectors a, b¸and b-a is

A= 1 2 |a×b| MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGbbGaeyypa0 JaaGPaVpaalaaabaGaaGymaaqaaiaaikdaaaGaaiiFaiaahggacqGH xdaTcaWHIbGaaiiFaaaa@403F@

The area of the parallelogram shown in the picture is 2A.

 

 Calculating angles

The angle between two vectors a and b is

θ= cos 1 ( ab/| a || b | ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH4oqCcqGH9a qpcaaMc8Uaci4yaiaac+gacaGGZbWaaWbaaSqabeaacqGHsislcaaI XaaaaOWaaeWaaeaacaWHHbGaeyyXICTaaCOyaiaac+cadaabdaqaai aahggaaiaawEa7caGLiWoadaabdaqaaiaahkgaaiaawEa7caGLiWoa aiaawIcacaGLPaaaaaa@4CE2@

 

 Calculating the normal to a surface.

If two vectors a and b can be found which are known to lie in the surface, then the unit normal to the surface is

n=± a×b | a×b | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHUbGaeyypa0 JaaGPaVlabgglaXoaalaaabaGaaCyyaiabgEna0kaahkgaaeaadaab daqaaiaahggacqGHxdaTcaWHIbaacaGLhWUaayjcSdaaaaaa@45F5@

If the surface is specified by a parametric equation of the form r=r(s,t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHYbGaeyypa0 JaaGPaVlaahkhacaGGOaGaam4CaiaacYcacaWG0bGaaiykaaaa@3DF6@ , where s and t are two parameters and r is the position vector of a point on the surface, then two vectors which lie in the plane may be computed from

a= r s ,b= r t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHHbGaeyypa0 ZaaSaaaeaacqGHciITcaWHYbaabaGaeyOaIyRaam4CaaaacaGGSaGa aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaahkgacq GH9aqpdaWcaaqaaiabgkGi2kaahkhaaeaacqGHciITcaWG0baaaaaa @4E72@

 

 Calculating Volumes

The volume of the parallelopiped defined by three vectors a, b, c is

V=|c( a×b )| MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGwbGaeyypa0 JaaiiFaiaaykW7caWHJbGaeyyXIC9aaeWaaeaacaWHHbGaey41aqRa aCOyaaGaayjkaiaawMcaaiaacYhaaaa@438C@

The volume of the tetrahedron shown outlined in red is V/6.

 

 

 

 

3.2 Vector Fields and Vector Calculus

 

 

3.2.1. Scalar field.

 

Let  { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaahw gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaCyzamaaBaaaleaacaaI YaaabeaakiaacYcacaWHLbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7b GaayzFaaaaaa@3EA6@  be a Cartesian basis with origin O in three dimensional space.  Let

r= x 1 e 1 + x 2 e 2 + x 3 e 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHYbGaeyypa0 JaaGPaVlaadIhadaWgaaWcbaGaaGymaaqabaGccaWHLbWaaSbaaSqa aiaaigdaaeqaaOGaey4kaSIaamiEamaaBaaaleaacaaIYaaabeaaki aahwgadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWG4bWaaSbaaSqa aiaaiodaaeqaaOGaaCyzamaaBaaaleaacaaIZaaabeaaaaa@4628@

denote the position vector of a point in space.  A scalar field is a scalar valued function of position in space.  A scalar field is a function of the components of the position vector, and so may be expressed as ϕ( x 1 , x 2 , x 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHvpGzcaGGOa GaamiEamaaBaaaleaacaaIXaaabeaakiaacYcacaWG4bWaaSbaaSqa aiaaikdaaeqaaOGaaiilaiaadIhadaWgaaWcbaGaaG4maaqabaGcca GGPaaaaa@3FC3@ . The value of  at a particular point in space must be independent of the choice of basis vectors.  A scalar field may be a function of time (and possibly other parameters) as well as position in space.

 

 

 

3.2.2. Vector field

 

Let  { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaahw gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaCyzamaaBaaaleaacaaI YaaabeaakiaacYcacaWHLbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7b GaayzFaaaaaa@3EA6@  be a Cartesian basis with origin O in three dimensional space.  Let

r= x 1 e 1 + x 2 e 2 + x 3 e 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHYbGaeyypa0 JaaGPaVlaadIhadaWgaaWcbaGaaGymaaqabaGccaWHLbWaaSbaaSqa aiaaigdaaeqaaOGaey4kaSIaamiEamaaBaaaleaacaaIYaaabeaaki aahwgadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWG4bWaaSbaaSqa aiaaiodaaeqaaOGaaCyzamaaBaaaleaacaaIZaaabeaaaaa@4628@

denote the position vector of a point in space.  A vector field is a vector valued function of position in space.  A vector field is a function of the components of the position vector, and so may be expressed as v( x 1 , x 2 , x 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH2bGaaiikai aadIhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamiEamaaBaaaleaa caaIYaaabeaakiaacYcacaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaai ykaaaa@3EFA@ .  The vector may also be expressed as components in the basis { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaahw gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaCyzamaaBaaaleaacaaI YaaabeaakiaacYcacaWHLbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7b GaayzFaaGaaGPaVdaa@4031@

v( x 1 , x 2 , x 3 )= v 1 ( x 1 , x 2 , x 3 ) e 1 + v 2 ( x 1 , x 2 , x 3 ) e 2 + v 3 ( x 1 , x 2 , x 3 ) e 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH2bGaaiikai aadIhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamiEamaaBaaaleaa caaIYaaabeaakiaacYcacaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaai ykaiabg2da9iaadAhadaWgaaWcbaGaaGymaaqabaGccaGGOaGaamiE amaaBaaaleaacaaIXaaabeaakiaacYcacaWG4bWaaSbaaSqaaiaaik daaeqaaOGaaiilaiaadIhadaWgaaWcbaGaaG4maaqabaGccaGGPaGa aCyzamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadAhadaWgaaWcba GaaGOmaaqabaGccaGGOaGaamiEamaaBaaaleaacaaIXaaabeaakiaa cYcacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaiilaiaadIhadaWgaa WcbaGaaG4maaqabaGccaGGPaGaaCyzamaaBaaaleaacaaIYaaabeaa kiabgUcaRiaadAhadaWgaaWcbaGaaG4maaqabaGccaGGOaGaamiEam aaBaaaleaacaaIXaaabeaakiaacYcacaWG4bWaaSbaaSqaaiaaikda aeqaaOGaaiilaiaadIhadaWgaaWcbaGaaG4maaqabaGccaGGPaGaaC yzamaaBaaaleaacaaIZaaabeaaaaa@66B3@

The magnitude and direction of  at a particular point in space is independent of the choice of basis vectors.   A vector field may be a function of time (and possibly other parameters) as well as position in space.

 

 

3.2.3. Change of basis for scalar fields.

Let { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaahw gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaCyzamaaBaaaleaacaaI YaaabeaakiaacYcacaWHLbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7b GaayzFaaaaaa@3EA6@  be a Cartesian basis with origin O in three dimensional space. Express the position vector of a point relative to O in { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaahw gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaCyzamaaBaaaleaacaaI YaaabeaakiaacYcacaWHLbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7b GaayzFaaaaaa@3EA6@  as

r= x 1 e 1 + x 2 e 2 + x 3 e 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHYbGaeyypa0 JaaGPaVlaadIhadaWgaaWcbaGaaGymaaqabaGccaWHLbWaaSbaaSqa aiaaigdaaeqaaOGaey4kaSIaamiEamaaBaaaleaacaaIYaaabeaaki aahwgadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWG4bWaaSbaaSqa aiaaiodaaeqaaOGaaCyzamaaBaaaleaacaaIZaaabeaaaaa@4628@

and let ϕ( x 1 , x 2 , x 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHvpGzcaGGOa GaamiEamaaBaaaleaacaaIXaaabeaakiaacYcacaWG4bWaaSbaaSqa aiaaikdaaeqaaOGaaiilaiaadIhadaWgaaWcbaGaaG4maaqabaGcca GGPaGaaGPaVdaa@414E@  be a scalar field.

Let { m 1 , m 2 , m 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaah2 gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaCyBamaaBaaaleaacaaI YaaabeaakiaacYcacaWHTbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7b GaayzFaaGaaGPaVdaa@4049@  be a second Cartesian basis, with origin P.  Let c OP MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHJbGaeyyyIO 7aa8HaaeaacaWGpbGaamiuaaGaay51GaGaaGPaVdaa@3D12@  denote the position vector of  P relative to O. Express the position vector of a point relative to P in { m 1 , m 2 , m 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaah2 gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaCyBamaaBaaaleaacaaI YaaabeaakiaacYcacaWHTbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7b GaayzFaaGaaGPaVdaa@4049@  as

p= ξ 1 m 1 + ξ 2 m 2 + ξ 3 m 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHWbGaeyypa0 JaeqOVdG3aaSbaaSqaaiaaigdaaeqaaOGaaCyBamaaBaaaleaacaaI XaaabeaakiabgUcaRiabe67a4naaBaaaleaacaaIYaaabeaakiaah2 gadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcqaH+oaEdaWgaaWcbaGa aG4maaqabaGccaWHTbWaaSbaaSqaaiaaiodaaeqaaaaa@4705@

 

To find ϕ( ξ 1 , ξ 2 , ξ 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHvpGzcaGGOa GaeqOVdG3aaSbaaSqaaiaaigdaaeqaaOGaaiilaiabe67a4naaBaaa leaacaaIYaaabeaakiaacYcacqaH+oaEdaWgaaWcbaGaaG4maaqaba GccaGGPaGaaGPaVdaa@43A0@ , use the following procedure.  First, express  p as components in the basis { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaahw gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaCyzamaaBaaaleaacaaI YaaabeaakiaacYcacaWHLbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7b GaayzFaaaaaa@3EA6@ , using the procedure outlined in Section 1.4:

p= p 1 e 1 + p 2 e 2 + p 3 e 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHWbGaeyypa0 JaamiCamaaBaaaleaacaaIXaaabeaakiaahwgadaWgaaWcbaGaaGym aaqabaGccqGHRaWkcaWGWbWaaSbaaSqaaiaaikdaaeqaaOGaaCyzam aaBaaaleaacaaIYaaabeaakiabgUcaRiaadchadaWgaaWcbaGaaG4m aaqabaGccaWHLbWaaSbaaSqaaiaaiodaaeqaaaaa@4483@

where

p 1 = ξ 1 e 1 m 1 + ξ 2 e 2 m 1 + ξ 3 e 3 m 1 p 2 = ξ 1 e 1 m 2 + ξ 2 e 2 m 2 + ξ 3 e 3 m 2 p 3 = ξ 1 e 1 m 3 + ξ 2 e 2 m 3 + ξ 3 e 3 m 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaadchada WgaaWcbaGaaGymaaqabaGccqGH9aqpcqaH+oaEdaWgaaWcbaGaaGym aaqabaGccaWHLbWaaSbaaSqaaiaaigdaaeqaaOGaeyyXICTaaCyBam aaBaaaleaacaaIXaaabeaakiabgUcaRiabe67a4naaBaaaleaacaaI YaaabeaakiaahwgadaWgaaWcbaGaaGOmaaqabaGccqGHflY1caWHTb WaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeqOVdG3aaSbaaSqaaiaa iodaaeqaaOGaaCyzamaaBaaaleaacaaIZaaabeaakiabgwSixlaah2 gadaWgaaWcbaGaaGymaaqabaaakeaacaWGWbWaaSbaaSqaaiaaikda aeqaaOGaeyypa0JaeqOVdG3aaSbaaSqaaiaaigdaaeqaaOGaaCyzam aaBaaaleaacaaIXaaabeaakiabgwSixlaah2gadaWgaaWcbaGaaGOm aaqabaGccqGHRaWkcqaH+oaEdaWgaaWcbaGaaGOmaaqabaGccaWHLb WaaSbaaSqaaiaaikdaaeqaaOGaeyyXICTaaCyBamaaBaaaleaacaaI YaaabeaakiabgUcaRiabe67a4naaBaaaleaacaaIZaaabeaakiaahw gadaWgaaWcbaGaaG4maaqabaGccqGHflY1caWHTbWaaSbaaSqaaiaa ikdaaeqaaaGcbaGaamiCamaaBaaaleaacaaIZaaabeaakiabg2da9i abe67a4naaBaaaleaacaaIXaaabeaakiaahwgadaWgaaWcbaGaaGym aaqabaGccqGHflY1caWHTbWaaSbaaSqaaiaaiodaaeqaaOGaey4kaS IaeqOVdG3aaSbaaSqaaiaaikdaaeqaaOGaaCyzamaaBaaaleaacaaI YaaabeaakiabgwSixlaah2gadaWgaaWcbaGaaG4maaqabaGccqGHRa WkcqaH+oaEdaWgaaWcbaGaaG4maaqabaGccaWHLbWaaSbaaSqaaiaa iodaaeqaaOGaeyyXICTaaCyBamaaBaaaleaacaaIZaaabeaaaaaa@9285@

or, using index notation

p i = Q ij ξ j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGWbWaaSbaaS qaaiaadMgaaeqaaOGaeyypa0JaamyuamaaBaaaleaacaWGPbGaamOA aaqabaGccqaH+oaEdaWgaaWcbaGaamOAaaqabaaaaa@3E5B@

where the transformation matrix Q ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGrbWaaSbaaS qaaiaadMgacaWGQbaabeaaaaa@3854@  is defined in Sect 1.4.

Now, express c as components in { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaahw gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaCyzamaaBaaaleaacaaI YaaabeaakiaacYcacaWHLbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7b GaayzFaaaaaa@3EA6@ , and note that

r=p+c x 1 e 1 + x 2 e 2 + x 3 e 3 = p 1 e 1 + p 2 e 2 + p 3 e 3 + c 1 e 1 + c 2 e 2 + c 3 e 3 x 1 = p 1 + c 1 , x 2 = p 2 + c 2 , x 3 = p 3 + c 3 x i = Q ij ξ j + c i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaCOCaiab g2da9iaahchacqGHRaWkcaWHJbaabaGaeyO0H4TaaGPaVlaaykW7ca WG4bWaaSbaaSqaaiaaigdaaeqaaOGaaCyzamaaBaaaleaacaaIXaaa beaakiabgUcaRiaadIhadaWgaaWcbaGaaGOmaaqabaGccaWHLbWaaS baaSqaaiaahkdaaeqaaOGaey4kaSIaamiEamaaBaaaleaacaaIZaaa beaakiaahwgadaWgaaWcbaGaaG4maaqabaGccqGH9aqpcaWGWbWaaS baaSqaaiaaigdaaeqaaOGaaCyzamaaBaaaleaacaaIXaaabeaakiab gUcaRiaadchadaWgaaWcbaGaaGOmaaqabaGccaWHLbWaaSbaaSqaai aahkdaaeqaaOGaey4kaSIaamiCamaaBaaaleaacaaIZaaabeaakiaa hwgadaWgaaWcbaGaaG4maaqabaGccqGHRaWkcaWGJbWaaSbaaSqaai aaigdaaeqaaOGaaCyzamaaBaaaleaacaaIXaaabeaakiabgUcaRiaa dogadaWgaaWcbaGaaGOmaaqabaGccaWHLbWaaSbaaSqaaiaahkdaae qaaOGaey4kaSIaam4yamaaBaaaleaacaaIZaaabeaakiaahwgadaWg aaWcbaGaaG4maaqabaaakeaacqGHshI3caWG4bWaaSbaaSqaaiaaig daaeqaaOGaeyypa0JaamiCamaaBaaaleaacaaIXaaabeaakiabgUca RiaadogadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadIhadaWgaaWcbaGaaGOm aaqabaGccqGH9aqpcaWGWbWaaSbaaSqaaiaaikdaaeqaaOGaey4kaS Iaam4yamaaBaaaleaacaaIYaaabeaakiaacYcacaaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaamiEamaaBaaaleaacaaIZa aabeaakiabg2da9iaadchadaWgaaWcbaGaaG4maaqabaGccqGHRaWk caWGJbWaaSbaaSqaaiaaiodaaeqaaaGcbaGaeyO0H4TaamiEamaaBa aaleaacaWGPbaabeaakiabg2da9iaadgfadaWgaaWcbaGaamyAaiaa dQgaaeqaaOGaeqOVdG3aaSbaaSqaaiaadQgaaeqaaOGaey4kaSIaam 4yamaaBaaaleaacaWGPbaabeaaaaaa@B38A@

so that

ϕ( x 1 , x 2 , x 3 )=ϕ( p 1 + c 1 , p 2 + c 2 , p 3 + c 3 ) =ϕ( Q 1j ξ j + c 1 , Q 2j ξ j + c 2 , Q 3j ξ j + c 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiabew9aMj aacIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadIhadaWg aaWcbaGaaGOmaaqabaGccaGGSaGaamiEamaaBaaaleaacaaIZaaabe aakiaacMcacqGH9aqpcqaHvpGzcaGGOaGaamiCamaaBaaaleaacaaI XaaabeaakiabgUcaRiaadogadaWgaaWcbaGaaGymaaqabaGccaGGSa GaamiCamaaBaaaleaacaaIYaaabeaakiabgUcaRiaadogadaWgaaWc baGaaGOmaaqabaGccaGGSaGaamiCamaaBaaaleaacaaIZaaabeaaki abgUcaRiaadogadaWgaaWcbaGaaG4maaqabaGccaGGPaaabaGaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7cqGH9aqpcqaHvpGzcaGGOaGaamyu amaaBaaaleaacaaIXaGaamOAaaqabaGccqaH+oaEdaWgaaWcbaGaam OAaaqabaGccqGHRaWkcaWGJbWaaSbaaSqaaiaaigdaaeqaaOGaaiil aiaadgfadaWgaaWcbaGaaGOmaiaadQgaaeqaaOGaeqOVdG3aaSbaaS qaaiaadQgaaeqaaOGaey4kaSIaam4yamaaBaaaleaacaaIYaaabeaa kiaacYcacaWGrbWaaSbaaSqaaiaaiodacaWGQbaabeaakiabe67a4n aaBaaaleaacaWGQbaabeaakiabgUcaRiaadogadaWgaaWcbaGaaG4m aaqabaGccaGGPaaaaaa@9E91@

 

3.2.4. Change of basis for vector fields.

Let { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaahw gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaCyzamaaBaaaleaacaaI YaaabeaakiaacYcacaWHLbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7b GaayzFaaaaaa@3EA6@  be a Cartesian basis with origin O in three dimensional space. Express the position vector of a point relative to O in { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaahw gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaCyzamaaBaaaleaacaaI YaaabeaakiaacYcacaWHLbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7b GaayzFaaaaaa@3EA6@  as

r= x 1 e 1 + x 2 e 2 + x 3 e 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHYbGaeyypa0 JaamiEamaaBaaaleaacaaIXaaabeaakiaahwgadaWgaaWcbaGaaGym aaqabaGccqGHRaWkcaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaCyzam aaBaaaleaacaaIYaaabeaakiabgUcaRiaadIhadaWgaaWcbaGaaG4m aaqabaGccaWHLbWaaSbaaSqaaiaaiodaaeqaaaaa@449D@

and let v( x 1 , x 2 , x 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH2bGaaiikai aadIhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamiEamaaBaaaleaa caaIYaaabeaakiaacYcacaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaai ykaaaa@3EFA@  be a vector  field, with components

v( x 1 , x 2 , x 3 )= v 1 ( x 1 , x 2 , x 3 ) e 1 + v 2 ( x 1 , x 2 , x 3 ) e 2 + v 3 ( x 1 , x 2 , x 3 ) e 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH2bGaaiikai aadIhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamiEamaaBaaaleaa caaIYaaabeaakiaacYcacaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaai ykaiabg2da9iaadAhadaWgaaWcbaGaaGymaaqabaGccaGGOaGaamiE amaaBaaaleaacaaIXaaabeaakiaacYcacaWG4bWaaSbaaSqaaiaaik daaeqaaOGaaiilaiaadIhadaWgaaWcbaGaaG4maaqabaGccaGGPaGa aCyzamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadAhadaWgaaWcba GaaGOmaaqabaGccaGGOaGaamiEamaaBaaaleaacaaIXaaabeaakiaa cYcacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaiilaiaadIhadaWgaa WcbaGaaG4maaqabaGccaGGPaGaaCyzamaaBaaaleaacaaIYaaabeaa kiabgUcaRiaadAhadaWgaaWcbaGaaG4maaqabaGccaGGOaGaamiEam aaBaaaleaacaaIXaaabeaakiaacYcacaWG4bWaaSbaaSqaaiaaikda aeqaaOGaaiilaiaadIhadaWgaaWcbaGaaG4maaqabaGccaGGPaGaaC yzamaaBaaaleaacaaIZaaabeaaaaa@66B3@

Let { m 1 , m 2 , m 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaah2 gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaCyBamaaBaaaleaacaaI YaaabeaakiaacYcacaWHTbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7b GaayzFaaaaaa@3EBE@  be a second Cartesian basis, with origin P.  Let c OP MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHJbGaeyyyIO 7aa8HaaeaacaWGpbGaamiuaaGaay51Gaaaaa@3B87@  denote the position vector of  P relative to O. Express the position vector of a point relative to P in { m 1 , m 2 , m 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaah2 gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaCyBamaaBaaaleaacaaI YaaabeaakiaacYcacaWHTbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7b GaayzFaaaaaa@3EBE@  as

p= ξ 1 m 1 + ξ 2 m 2 + ξ 3 m 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHWbGaeyypa0 JaeqOVdG3aaSbaaSqaaiaaigdaaeqaaOGaaCyBamaaBaaaleaacaaI XaaabeaakiabgUcaRiabe67a4naaBaaaleaacaaIYaaabeaakiaah2 gadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcqaH+oaEdaWgaaWcbaGa aG4maaqabaGccaWHTbWaaSbaaSqaaiaaiodaaeqaaaaa@4705@

 

To express the vector field as components in { m 1 , m 2 , m 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaah2 gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaCyBamaaBaaaleaacaaI YaaabeaakiaacYcacaWHTbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7b GaayzFaaaaaa@3EBE@  and as a function of the components of p, use the following procedure.  First, express ( v 1 , v 2 , v 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaamODam aaBaaaleaacaaIXaaabeaakiaacYcacaWG2bWaaSbaaSqaaiaaikda aeqaaOGaaiilaiaadAhadaWgaaWcbaGaaG4maaqabaGccaGGPaaaaa@3DF5@  in terms of ( ξ 1 , ξ 2 , ξ 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaeqOVdG 3aaSbaaSqaaiaaigdaaeqaaOGaaiilaiabe67a4naaBaaaleaacaaI YaaabeaakiaacYcacqaH+oaEdaWgaaWcbaGaaG4maaqabaGccaGGPa aaaa@404D@  using the procedure outlined for scalar fields in the preceding section

v k ( x 1 , x 2 , x 3 )= v k ( p 1 + c 1 , p 2 + c 2 , p 3 + c 3 ) = v k ( Q 1j ξ j + c 1 , Q 2j ξ j + c 2 , Q 3j ξ j + c 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaadAhada WgaaWcbaGaam4AaaqabaGccaGGOaGaamiEamaaBaaaleaacaaIXaaa beaakiaacYcacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaiilaiaadI hadaWgaaWcbaGaaG4maaqabaGccaGGPaGaeyypa0JaamODamaaBaaa leaacaWGRbaabeaakiaacIcacaWGWbWaaSbaaSqaaiaaigdaaeqaaO Gaey4kaSIaam4yamaaBaaaleaacaaIXaaabeaakiaacYcacaWGWbWa aSbaaSqaaiaaikdaaeqaaOGaey4kaSIaam4yamaaBaaaleaacaaIYa aabeaakiaacYcacaWGWbWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIa am4yamaaBaaaleaacaaIZaaabeaakiaacMcaaeaacaaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlabg2da9iaadAhadaWgaaWcbaGaam4Aaaqaba GccaGGOaGaamyuamaaBaaaleaacaaIXaGaamOAaaqabaGccqaH+oaE daWgaaWcbaGaamOAaaqabaGccqGHRaWkcaWGJbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaadgfadaWgaaWcbaGaaGOmaiaadQgaaeqaaOGa eqOVdG3aaSbaaSqaaiaadQgaaeqaaOGaey4kaSIaam4yamaaBaaale aacaaIYaaabeaakiaacYcacaWGrbWaaSbaaSqaaiaaiodacaWGQbaa beaakiabe67a4naaBaaaleaacaWGQbaabeaakiabgUcaRiaadogada WgaaWcbaGaaG4maaqabaGccaGGPaaaaaa@9F9C@

for k=1,2,3.  Now, find the components  of v in { m 1 , m 2 , m 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaah2 gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaCyBamaaBaaaleaacaaI YaaabeaakiaacYcacaWHTbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7b GaayzFaaaaaa@3EBE@  using the procedure outlined in Section 1.4.  Using index notation, the result is

v= Q 1i v i ( Q 1j ξ j + c 1 , Q 2j ξ j + c 2 , Q 3j ξ j + c 3 ) e 1 + Q 2i v i ( Q 1j ξ j + c 1 , Q 2j ξ j + c 2 , Q 3j ξ j + c 3 ) e 2 + Q 2i v i ( Q 1j ξ j + c 1 , Q 2j ξ j + c 2 , Q 3j ξ j + c 3 ) e 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaahAhacq GH9aqpcaWGrbWaaSbaaSqaaiaaigdacaWGPbaabeaakiaadAhadaWg aaWcbaGaamyAaaqabaGccaGGOaGaamyuamaaBaaaleaacaaIXaGaam OAaaqabaGccqaH+oaEdaWgaaWcbaGaamOAaaqabaGccqGHRaWkcaWG JbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadgfadaWgaaWcbaGaaG OmaiaadQgaaeqaaOGaeqOVdG3aaSbaaSqaaiaadQgaaeqaaOGaey4k aSIaam4yamaaBaaaleaacaaIYaaabeaakiaacYcacaWGrbWaaSbaaS qaaiaaiodacaWGQbaabeaakiabe67a4naaBaaaleaacaWGQbaabeaa kiabgUcaRiaadogadaWgaaWcbaGaaG4maaqabaGccaGGPaGaaCyzam aaBaaaleaacaaIXaaabeaaaOqaaiaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlabgUcaRiaadgfadaWgaaWcbaGaaGOmaiaadMgaae qaaOGaamODamaaBaaaleaacaWGPbaabeaakiaacIcacaWGrbWaaSba aSqaaiaaigdacaWGQbaabeaakiabe67a4naaBaaaleaacaWGQbaabe aakiabgUcaRiaadogadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamyu amaaBaaaleaacaaIYaGaamOAaaqabaGccqaH+oaEdaWgaaWcbaGaam OAaaqabaGccqGHRaWkcaWGJbWaaSbaaSqaaiaaikdaaeqaaOGaaiil aiaadgfadaWgaaWcbaGaaG4maiaadQgaaeqaaOGaeqOVdG3aaSbaaS qaaiaadQgaaeqaaOGaey4kaSIaam4yamaaBaaaleaacaaIZaaabeaa kiaacMcacaWHLbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8Uaey4kaSIaamyuamaaBaaaleaa caaIYaGaamyAaaqabaGccaWG2bWaaSbaaSqaaiaadMgaaeqaaOGaai ikaiaadgfadaWgaaWcbaGaaGymaiaadQgaaeqaaOGaeqOVdG3aaSba aSqaaiaadQgaaeqaaOGaey4kaSIaam4yamaaBaaaleaacaaIXaaabe aakiaacYcacaWGrbWaaSbaaSqaaiaaikdacaWGQbaabeaakiabe67a 4naaBaaaleaacaWGQbaabeaakiabgUcaRiaadogadaWgaaWcbaGaaG OmaaqabaGccaGGSaGaamyuamaaBaaaleaacaaIZaGaamOAaaqabaGc cqaH+oaEdaWgaaWcbaGaamOAaaqabaGccqGHRaWkcaWGJbWaaSbaaS qaaiaaiodaaeqaaOGaaiykaiaahwgadaWgaaWcbaGaaG4maaqabaaa aaa@B33C@

 

 

3.2.5. Time derivatives of vectors

 

Let a(t) be a vector whose magnitude and direction vary with time, t.  Suppose that { i,j,k } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaahM gacaGGSaGaaCOAaiaacYcacaWHRbaacaGL7bGaayzFaaaaaa@3BDF@  is a fixed basis, i.e. independent of time.  We may express a(t) in terms of components ( a x , a y , a z ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaamyyam aaBaaaleaacaWG4baabeaakiaacYcacaWGHbWaaSbaaSqaaiaadMha aeqaaOGaaiilaiaadggadaWgaaWcbaGaamOEaaqabaGccaGGPaaaaa@3E7C@  in the basis { i,j,k } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaahM gacaGGSaGaaCOAaiaacYcacaWHRbaacaGL7bGaayzFaaaaaa@3BDF@  as

.

The time derivative of a is defined using the usual rules of calculus

a ˙ (t)= d dt a(t)= lim 0 a(t+)a(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWHHbGbaiaaca GGOaGaamiDaiaacMcacqGH9aqpdaWcaaqaaiaadsgaaeaacaWGKbGa amiDaaaacaWHHbGaaiikaiaadshacaGGPaGaeyypa0ZaaCbeaeaaci GGSbGaaiyAaiaac2gaaSqaaiabgIGiolabgkziUkaaicdaaeqaaOWa aSaaaeaacaWHHbGaaiikaiaadshacqGHRaWkcqGHiiIZcaGGPaGaey OeI0IaaCyyaiaacIcacaWG0bGaaiykaaqaaiabgIGiodaaaaa@537A@ ,

or in component form as

a ˙ (t)= a ˙ x i+ a ˙ y j+ a ˙ z k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWHHbGbaiaaca GGOaGaamiDaiaacMcacqGH9aqpceWGHbGbaiaadaWgaaWcbaGaamiE aaqabaGccaWHPbGaey4kaSIabmyyayaacaWaaSbaaSqaaiaadMhaae qaaOGaaCOAaiabgUcaRiqadggagaGaamaaBaaaleaacaWG6baabeaa kiaahUgaaaa@44C6@

The definition of the time derivative of a vector may be used to show the following rules

d dt [ α(t)a(t) ]= α ˙ (t)a(t)+α(t) a ˙ (t) d dt [ a(t)b(t) ]= a ˙ (t)b(t)+a(t) b ˙ (t) d dt [ a(t)×b(t) ]= a ˙ (t)×b(t)+a(t)× b ˙ (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaamaalaaaba GaamizaaqaaiaadsgacaWG0baaamaadmaabaGaeqySdeMaaiikaiaa dshacaGGPaGaaCyyaiaacIcacaWG0bGaaiykaaGaay5waiaaw2faai abg2da9iqbeg7aHzaacaGaaiikaiaadshacaGGPaGaaCyyaiaacIca caWG0bGaaiykaiabgUcaRiabeg7aHjaacIcacaWG0bGaaiykaiqahg gagaGaaiaacIcacaWG0bGaaiykaaqaamaalaaabaGaamizaaqaaiaa dsgacaWG0baaamaadmaabaGaaCyyaiaacIcacaWG0bGaaiykaiabgw SixlaahkgacaGGOaGaamiDaiaacMcaaiaawUfacaGLDbaacqGH9aqp ceWHHbGbaiaacaGGOaGaamiDaiaacMcacqGHflY1caWHIbGaaiikai aadshacaGGPaGaey4kaSIaaCyyaiaacIcacaWG0bGaaiykaiabgwSi xlqahkgagaGaaiaacIcacaWG0bGaaiykaaqaamaalaaabaGaamizaa qaaiaadsgacaWG0baaamaadmaabaGaaCyyaiaacIcacaWG0bGaaiyk aiabgEna0kaahkgacaGGOaGaamiDaiaacMcaaiaawUfacaGLDbaacq GH9aqpceWHHbGbaiaacaGGOaGaamiDaiaacMcacqGHxdaTcaWHIbGa aiikaiaadshacaGGPaGaey4kaSIaaCyyaiaacIcacaWG0bGaaiykai abgEna0kqahkgagaGaaiaacIcacaWG0bGaaiykaaaaaa@9352@

 

 

3.2.6. Using a rotating basis

 

It is often convenient to express position vectors as components in a basis which rotates with time.  To write equations of motion one must evaluate time derivatives of rotating vectors.

 

Let { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaahw gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaCyzamaaBaaaleaacaaI YaaabeaakiaacYcacaWHLbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7b GaayzFaaaaaa@3EA6@  be a basis which rotates with instantaneous angular velocity Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHPoaaaa@36AA@ .  Then,

d e 1 dt =Ω× e 1 , d e 2 dt =Ω× e 2 , d e 3 dt =Ω× e 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWcaaqaaiaads gacaWHLbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaamizaiaadshaaaGa eyypa0JaaCyQdiabgEna0kaahwgadaWgaaWcbaGaaGymaaqabaGcca GGSaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVpaa laaabaGaamizaiaahwgadaWgaaWcbaGaaGOmaaqabaaakeaacaWGKb GaamiDaaaacqGH9aqpcaWHPoGaey41aqRaaCyzamaaBaaaleaacaaI YaaabeaakiaacYcacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7daWcaaqaaiaadsgacaWHLbWaaSbaaSqaaiaaiodaaeqaaaGcbaGa amizaiaadshaaaGaeyypa0JaaCyQdiabgEna0kaahwgadaWgaaWcba GaaG4maaqabaaaaa@6BA1@

 

 

3.2.7. Gradient of a scalar field.

 

Let  be a scalar field in three dimensional space.  The gradient of  is a vector field denoted by  or ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHvpGzcqGHhi s0aaa@38C3@ , and is defined so that

(ϕ)a= lim 0 ϕ(r+a)ϕ(r) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaeqy1dy Maey4bIeTaaiykaiabgwSixlaahggacqGH9aqpdaWfqaqaaiGacYga caGGPbGaaiyBaaWcbaGaeyicI4SaeyOKH4QaaGimaaqabaGcdaWcaa qaaiabew9aMjaacIcacaWHYbGaey4kaSIaeyicI4SaaGPaVlaahgga caGGPaGaeyOeI0Iaeqy1dyMaaiikaiaahkhacaGGPaaabaGaeyicI4 maaaaa@5528@

for every position r in space and for every vector a.

 

Let   be a Cartesian basis with origin O in three dimensional space.  Let

r= x 1 e 1 + x 2 e 2 + x 3 e 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHYbGaeyypa0 JaamiEamaaBaaaleaacaaIXaaabeaakiaahwgadaWgaaWcbaGaaGym aaqabaGccqGHRaWkcaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaCyzam aaBaaaleaacaaIYaaabeaakiabgUcaRiaadIhadaWgaaWcbaGaaG4m aaqabaGccaWHLbWaaSbaaSqaaiaaiodaaeqaaaaa@449D@

denote the position vector of a point in space.  Express  as a function of the components of r ϕ=ϕ( x 1 , x 2 , x 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHvpGzcqGH9a qpcqaHvpGzcaGGOaGaamiEamaaBaaaleaacaaIXaaabeaakiaacYca caWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaiilaiaadIhadaWgaaWcba GaaG4maaqabaGccaGGPaaaaa@4291@ .  The gradient of   in this basis is then given by

ϕ= ϕ x 1 e 1 + ϕ x 2 e 2 + ϕ x 3 e 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHvpGzcqGHhi s0cqGH9aqpdaWcaaqaaiabgkGi2kabew9aMbqaaiabgkGi2kaadIha daWgaaWcbaGaaGymaaqabaaaaOGaaCyzamaaBaaaleaacaaIXaaabe aakiabgUcaRmaalaaabaGaeyOaIyRaeqy1dygabaGaeyOaIyRaamiE amaaBaaaleaacaaIYaaabeaaaaGccaWHLbWaaSbaaSqaaiaaikdaae qaaOGaey4kaSYaaSaaaeaacqGHciITcqaHvpGzaeaacqGHciITcaWG 4bWaaSbaaSqaaiaaiodaaeqaaaaakiaahwgadaWgaaWcbaGaaG4maa qabaaaaa@54DC@

 

3.2.8. Gradient of a vector field

 

Let v be a vector field in three dimensional space.  The gradient of v is a tensor field denoted by grad(v) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaqGNbGaaeOCai aabggacaqGKbGaaiikaiaahAhacaGGPaaaaa@3B77@  or v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqGHhis0caWH2b aaaa@37FA@ , and is defined so that

(v)a= lim 0 v(r+a)v(r) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaey4bIe TaaCODaiaacMcacqGHflY1caWHHbGaeyypa0ZaaCbeaeaaciGGSbGa aiyAaiaac2gaaSqaaiabgIGiolabgkziUkaaicdaaeqaaOWaaSaaae aacaWH2bGaaiikaiaahkhacqGHRaWkcqGHiiIZcaaMc8UaaCyyaiaa cMcacqGHsislcaWH2bGaaiikaiaahkhacaGGPaaabaGaeyicI4maaa aa@52CD@

for every position r in space and for every vector a.

 

Let  { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaahw gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaCyzamaaBaaaleaacaaI YaaabeaakiaacYcacaWHLbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7b GaayzFaaaaaa@3EA6@  be a Cartesian basis with origin O in three dimensional space.  Let

r= x 1 e 1 + x 2 e 2 + x 3 e 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHYbGaeyypa0 JaamiEamaaBaaaleaacaaIXaaabeaakiaahwgadaWgaaWcbaGaaGym aaqabaGccqGHRaWkcaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaCyzam aaBaaaleaacaaIYaaabeaakiabgUcaRiaadIhadaWgaaWcbaGaaG4m aaqabaGccaWHLbWaaSbaaSqaaiaaiodaaeqaaaaa@449D@

denote the position vector of a point in space.  Express v as a function of the components of r, so that v=v( x 1 , x 2 , x 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH2bGaeyypa0 JaaCODaiaacIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaa dIhadaWgaaWcbaGaaGOmaaqabaGccaGGSaGaamiEamaaBaaaleaaca aIZaaabeaakiaacMcaaaa@40FF@ .  The gradient of  v in this basis is then given by

v=[ v 1 x 1 v 1 x 2 v 1 x 3 v 2 x 1 v 2 x 2 v 2 x 3 v 3 x 1 v 3 x 2 v 3 x 3 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqGHhis0caWH2b Gaeyypa0ZaamWaaeaafaqabeWadaaabaWaaSaaaeaacqGHciITcaWG 2bWaaSbaaSqaaiaaigdaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaale aacaaIXaaabeaaaaaakeaadaWcaaqaaiabgkGi2kaadAhadaWgaaWc baGaaGymaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaaikdaae qaaaaaaOqaamaalaaabaGaeyOaIyRaamODamaaBaaaleaacaaIXaaa beaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaaG4maaqabaaaaaGcba WaaSaaaeaacqGHciITcaWG2bWaaSbaaSqaaiaaikdaaeqaaaGcbaGa eyOaIyRaamiEamaaBaaaleaacaaIXaaabeaaaaaakeaadaWcaaqaai abgkGi2kaadAhadaWgaaWcbaGaaGOmaaqabaaakeaacqGHciITcaWG 4bWaaSbaaSqaaiaaikdaaeqaaaaaaOqaamaalaaabaGaeyOaIyRaam ODamaaBaaaleaacaaIYaaabeaaaOqaaiabgkGi2kaadIhadaWgaaWc baGaaG4maaqabaaaaaGcbaWaaSaaaeaacqGHciITcaWG2bWaaSbaaS qaaiaaiodaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaaIXaaa beaaaaaakeaadaWcaaqaaiabgkGi2kaadAhadaWgaaWcbaGaaG4maa qabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaaikdaaeqaaaaaaOqa amaalaaabaGaeyOaIyRaamODamaaBaaaleaacaaIZaaabeaaaOqaai abgkGi2kaadIhadaWgaaWcbaGaaG4maaqabaaaaaaaaOGaay5waiaa w2faaaaa@7781@

Alternatively, in index notation

[ v ] ij v i x j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiabgE GirlaahAhaaiaawUfacaGLDbaadaWgaaWcbaGaamyAaiaadQgaaeqa aOGaeyyyIO7aaSaaaeaacqGHciITcaWG2bWaaSbaaSqaaiaadMgaae qaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaWGQbaabeaaaaaaaa@44DB@

 

3.2.9. Divergence of a vector field

 

Let v be a vector field in three dimensional space.  The divergence of v is a scalar field denoted by div(v) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaqGKbGaaeyAai aabAhacaGGOaGaaCODaiaacMcaaaa@3A99@  or v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqGHhis0cqGHfl Y1caWH2baaaa@3A44@ .  Formally, it is defined as trace(grad(v)) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaqG0bGaaeOCai aabggacaqGJbGaaeyzaiaabIcacaqGNbGaaeOCaiaabggacaqGKbGa aeikaiaahAhacaqGPaGaaeykaaaa@416A@  (the trace of a tensor is the sum of its diagonal terms). 

 

Let   be a Cartesian basis with origin O in three dimensional space.  Let

r= x 1 e 1 + x 2 e 2 + x 3 e 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHYbGaeyypa0 JaamiEamaaBaaaleaacaaIXaaabeaakiaahwgadaWgaaWcbaGaaGym aaqabaGccqGHRaWkcaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaCyzam aaBaaaleaacaaIYaaabeaakiabgUcaRiaadIhadaWgaaWcbaGaaG4m aaqabaGccaWHLbWaaSbaaSqaaiaaiodaaeqaaaaa@449D@

denote the position vector of a point in space.  Express v as a function of the components of r: v=v( x 1 , x 2 , x 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH2bGaeyypa0 JaaCODaiaacIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaa dIhadaWgaaWcbaGaaGOmaaqabaGccaGGSaGaamiEamaaBaaaleaaca aIZaaabeaakiaacMcaaaa@40FF@ . The divergence of v is then

 

div(v)= v 1 x 1 + v 2 x 2 + v 3 x 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaqGKbGaaeyAai aabAhacaqGOaGaaCODaiaabMcacaqG9aWaaSaaaeaacqGHciITcaWG 2bWaaSbaaSqaaiaaigdaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaale aacaaIXaaabeaaaaGccqGHRaWkdaWcaaqaaiabgkGi2kaadAhadaWg aaWcbaGaaGOmaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaaik daaeqaaaaakiabgUcaRmaalaaabaGaeyOaIyRaamODamaaBaaaleaa caaIZaaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaaG4maaqaba aaaaaa@5139@

 

 

3.2.10. Curl of a vector field.

 

Let v be a vector field in three dimensional space.  The curl of  v  is a vector field denoted by curl(v) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaqGJbGaaeyDai aabkhacaqGSbGaaiikaiaahAhacaGGPaaaaa@3B8F@  or ×v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqGHhis0cqGHxd aTcaWH2baaaa@3A11@ .  It is best defined in terms of its components in a given basis, although its magnitude and direction are not dependent on the choice of basis.

 

Let  { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaahw gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaCyzamaaBaaaleaacaaI YaaabeaakiaacYcacaWHLbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7b GaayzFaaaaaa@3EA6@  be a Cartesian basis with origin O in three dimensional space.  Let

r= x 1 e 1 + x 2 e 2 + x 3 e 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHYbGaeyypa0 JaamiEamaaBaaaleaacaaIXaaabeaakiaahwgadaWgaaWcbaGaaGym aaqabaGccqGHRaWkcaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaCyzam aaBaaaleaacaaIYaaabeaakiabgUcaRiaadIhadaWgaaWcbaGaaG4m aaqabaGccaWHLbWaaSbaaSqaaiaaiodaaeqaaaaa@449D@

denote the position vector of a point in space.  Express v as a function of the components of r  v=v( x 1 , x 2 , x 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH2bGaeyypa0 JaaCODaiaacIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaa dIhadaWgaaWcbaGaaGOmaaqabaGccaGGSaGaamiEamaaBaaaleaaca aIZaaabeaakiaacMcaaaa@40FF@ . The curl of  v in this basis is then given by

×v=| e 1 e 2 e 3 x 1 x 2 x 3 v 1 v 2 v 3 |=( v 3 x 2 v 2 x 3 ) e 1 +( v 1 x 3 v 3 x 1 ) e 2 +( v 2 x 1 v 1 x 2 ) e 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqGHhis0cqGHxd aTcaWH2bGaeyypa0ZaaqWaaeaafaqabeWadaaabaGaaCyzamaaBaaa leaacaaIXaaabeaaaOqaaiaahwgadaWgaaWcbaGaaGOmaaqabaaake aacaWHLbWaaSbaaSqaaiaaiodaaeqaaaGcbaWaaSaaaeaacqGHciIT aeaacqGHciITcaWG4bWaaSbaaSqaaiaaigdaaeqaaaaaaOqaamaala aabaGaeyOaIylabaGaeyOaIyRaamiEamaaBaaaleaacaaIYaaabeaa aaaakeaadaWcaaqaaiabgkGi2cqaaiabgkGi2kaadIhadaWgaaWcba GaaG4maaqabaaaaaGcbaGaamODamaaBaaaleaacaaIXaaabeaaaOqa aiaadAhadaWgaaWcbaGaaGOmaaqabaaakeaacaWG2bWaaSbaaSqaai aaiodaaeqaaaaaaOGaay5bSlaawIa7aiabg2da9maabmaabaWaaSaa aeaacqGHciITcaWG2bWaaSbaaSqaaiaaiodaaeqaaaGcbaGaeyOaIy RaamiEamaaBaaaleaacaaIYaaabeaaaaGccqGHsisldaWcaaqaaiab gkGi2kaadAhadaWgaaWcbaGaaGOmaaqabaaakeaacqGHciITcaWG4b WaaSbaaSqaaiaaiodaaeqaaaaaaOGaayjkaiaawMcaaiaahwgadaWg aaWcbaGaaGymaaqabaGccqGHRaWkdaqadaqaamaalaaabaGaeyOaIy RaamODamaaBaaaleaacaaIXaaabeaaaOqaaiabgkGi2kaadIhadaWg aaWcbaGaaG4maaqabaaaaOGaeyOeI0YaaSaaaeaacqGHciITcaWG2b WaaSbaaSqaaiaaiodaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaa caaIXaaabeaaaaaakiaawIcacaGLPaaacaWHLbWaaSbaaSqaaiaaik daaeqaaOGaey4kaSYaaeWaaeaadaWcaaqaaiabgkGi2kaadAhadaWg aaWcbaGaaGOmaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaaig daaeqaaaaakiabgkHiTmaalaaabaGaeyOaIyRaamODamaaBaaaleaa caaIXaaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaaGOmaaqaba aaaaGccaGLOaGaayzkaaGaaCyzamaaBaaaleaacaaIZaaabeaaaaa@902A@

Using index notation, this may be expressed as

[ ×v ] i = ijk v j x k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiabgE GirlabgEna0kaahAhaaiaawUfacaGLDbaadaWgaaWcbaGaamyAaaqa baGccqGH9aqpcqGHiiIZdaWgaaWcbaGaamyAaiaadQgacaWGRbaabe aakmaalaaabaGaeyOaIyRaamODamaaBaaaleaacaWGQbaabeaaaOqa aiabgkGi2kaadIhadaWgaaWcbaGaam4Aaaqabaaaaaaa@49C9@

 

 

3.2.11 The Divergence Theorem.

 

Let V be a closed region in three dimensional space, bounded by an orientable surface S. Let n  denote the unit vector normal to S, taken so that n points out of V. Let u be a vector field which is continuous and has continuous first partial derivatives in some domain containing T.  Then

V div(u) dV= S un dA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWdrbqaaiaabs gacaqGPbGaaeODaiaabIcacaWH1bGaaeykaaWcbaGaamOvaaqab0Ga ey4kIipakiaaykW7caWGKbGaamOvaiabg2da9maapefabaGaaCyDai abgwSixlaah6gaaSqaaiaadofaaeqaniabgUIiYdGccaaMc8Uaamiz aiaadgeaaaa@4CBF@

alternatively, expressed in index notation

V u i x i dV= S u i n i dA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWdrbqaamaala aabaGaeyOaIyRaamyDamaaBaaaleaacaWGPbaabeaaaOqaaiabgkGi 2kaadIhadaWgaaWcbaGaamyAaaqabaaaaOGaamizaiaadAfacqGH9a qpdaWdrbqaaiaadwhadaWgaaWcbaGaamyAaaqabaGccaWGUbWaaSba aSqaaiaadMgaaeqaaOGaamizaiaadgeaaSqaaiaadofaaeqaniabgU IiYdaaleaacaWGwbaabeqdcqGHRiI8aaaa@4B85@

For a proof of this extremely useful theorem consult e.g. Kreyzig, Advanced Engineering Mathematics, Wiley, New York, (1998).

 

 

 

3.3 MATRICES

 

3.3.1 Definition

 

An (n×m) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaamOBai abgEna0kaad2gacaGGPaaaaa@3ACA@  matrix [A] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGBbGaamyqai aac2faaaa@37FB@  is a set of numbers, arranged in m rows and n columns

[ A ]=[ a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n a m1 a m2 a m3 a mn ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaacqGH9aqpdaWadaabaeqabaGaamyyamaaBaaa leaacaaIXaGaaGymaaqabaGccaaMc8UaaGPaVlaaykW7caWGHbWaaS baaSqaaiaaigdacaaIYaaabeaakiaaykW7caaMc8UaaGPaVlaadgga daWgaaWcbaGaaGymaiaaiodaaeqaaOGaaGPaVlaaykW7cqWIVlctca aMc8UaaGPaVlaadggadaWgaaWcbaGaaGymaiaad6gaaeqaaaGcbaGa amyyamaaBaaaleaacaaIYaGaaGymaaqabaGccaaMc8UaaGPaVlaayk W7caWGHbWaaSbaaSqaaiaaikdacaaIYaaabeaakiaaykW7caaMc8Ua aGPaVlaadggadaWgaaWcbaGaaGOmaiaaiodaaeqaaOGaaGPaVlaayk W7cqWIVlctcaaMc8UaaGPaVlaadggadaWgaaWcbaGaaGOmaiaad6ga aeqaaaGcbaGaaGPaVlaaykW7cqWIUlstcaaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabl6UinjaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaeSO7I0KaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlablgVipjaaykW7caaMc8UaaGPaVlabl6Uinbqaaiaadggada WgaaWcbaGaamyBaiaaigdaaeqaaOGaaGPaVlaaykW7caaMc8Uaamyy amaaBaaaleaacaWGTbGaaGOmaaqabaGccaaMc8UaaGPaVlaaykW7ca WGHbWaaSbaaSqaaiaad2gacaaIZaaabeaakiaaykW7caaMc8UaeS47 IWKaaGPaVlaaykW7caWGHbWaaSbaaSqaaiaad2gacaWGUbaabeaaaa GccaGLBbGaayzxaaaaaa@C92B@

 

 A square matrix has equal numbers of rows and columns

 A diagonal matrix is a square matrix with elements such that  for

 The identity matrix [ I ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadM eaaiaawUfacaGLDbaaaaa@3835@  is a diagonal matrix for which all diagonal elements a ii =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaadMgacaWGPbaabeaakiabg2da9iaaigdaaaa@3A2E@

 A symmetric matrix is a square matrix with elements such that a ij = a ji MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaadMgacaWGQbaabeaakiabg2da9iaadggadaWgaaWcbaGaamOA aiaadMgaaeqaaaaa@3C63@

 A skew symmetric matrix is a square matrix with elements such that a ij = a ji MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaadMgacaWGQbaabeaakiabg2da9iabgkHiTiaadggadaWgaaWc baGaamOAaiaadMgaaeqaaaaa@3D50@

 

 

3.3.2 Matrix operations

 

 Addition  Let  [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaaaaa@382D@  and [ B ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadk eaaiaawUfacaGLDbaaaaa@382E@  be two matrices of order (m×n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaamyBai abgEna0kaad6gacaGGPaaaaa@3ACA@  with elements a ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaadMgacaWGQbaabeaaaaa@3864@  and b ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGIbWaaSbaaS qaaiaadMgacaWGQbaabeaaaaa@3865@ .  Then

[ C ]=[ A ]+[ B ] c ij = a ij + b ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaado eaaiaawUfacaGLDbaacqGH9aqpdaWadaqaaiaadgeaaiaawUfacaGL DbaacqGHRaWkdaWadaqaaiaadkeaaiaawUfacaGLDbaacqGHuhY2ca WGJbWaaSbaaSqaaiaadMgacaWGQbaabeaakiabg2da9iaadggadaWg aaWcbaGaamyAaiaadQgaaeqaaOGaey4kaSIaamOyamaaBaaaleaaca WGPbGaamOAaaqabaaaaa@4CB0@

 

 

 Multiplication by a scalar.  Let [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaaaaa@382D@  be a matrix with elements a ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaadMgacaWGQbaabeaaaaa@3864@ , and let k be a scalar.  Then

[ B ]=k[ A ] b ij =k a ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadk eaaiaawUfacaGLDbaacqGH9aqpcaWGRbWaamWaaeaacaWGbbaacaGL BbGaayzxaaGaeyi1HSTaamOyamaaBaaaleaacaWGPbGaamOAaaqaba GccqGH9aqpcaWGRbGaamyyamaaBaaaleaacaWGPbGaamOAaaqabaaa aa@4717@

 

 

 Multiplication by a matrix. Let [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaaaaa@382D@  be a matrix of order (m×n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaamyBai abgEna0kaad6gacaGGPaaaaa@3ACA@  with elements a ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaadMgacaWGQbaabeaaaaa@3864@ , and let [ B ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadk eaaiaawUfacaGLDbaaaaa@382E@  be a matrix of order (p×q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaamiCai abgEna0kaadghacaGGPaaaaa@3AD0@  with elements .  The product [ C ]=[ A ][ B ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaado eaaiaawUfacaGLDbaacqGH9aqpdaWadaqaaiaadgeaaiaawUfacaGL DbaadaWadaqaaiaadkeaaiaawUfacaGLDbaaaaa@3EA6@  is defined only if n=p, and is an (m×q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaamyBai abgEna0kaadghacaGGPaaaaa@3ACD@  matrix such that

[ C ]=[ A ][ B ] c ij = k=1 n a ik b kj MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaado eaaiaawUfacaGLDbaacqGH9aqpdaWadaqaaiaadgeaaiaawUfacaGL DbaadaWadaqaaiaadkeaaiaawUfacaGLDbaacqGHuhY2caWGJbWaaS baaSqaaiaadMgacaWGQbaabeaakiabg2da9maaqahabaGaamyyamaa BaaaleaacaWGPbGaam4AaaqabaGccaWGIbWaaSbaaSqaaiaadUgaca WGQbaabeaaaeaacaWGRbGaeyypa0JaaGymaaqaaiaad6gaa0Gaeyye Iuoaaaa@50CA@

Note that multiplication is distributive and associative, but not commutative, i.e.

[ A ]( [ B ]+[ C ] )=[ A ][ B ]+[ A ][ C ][ A ]( [ B ][ C ] )=( [ A ][ B ] )[ C ][ A ][ B ][ B ][ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaadaqadaqaamaadmaabaGaamOqaaGaay5waiaa w2faaiabgUcaRmaadmaabaGaam4qaaGaay5waiaaw2faaaGaayjkai aawMcaaiabg2da9maadmaabaGaamyqaaGaay5waiaaw2faamaadmaa baGaamOqaaGaay5waiaaw2faaiabgUcaRmaadmaabaGaamyqaaGaay 5waiaaw2faamaadmaabaGaam4qaaGaay5waiaaw2faaiaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVpaadmaabaGaamyqaaGaay5wai aaw2faamaabmaabaWaamWaaeaacaWGcbaacaGLBbGaayzxaaWaamWa aeaacaWGdbaacaGLBbGaayzxaaaacaGLOaGaayzkaaGaeyypa0Zaae WaaeaadaWadaqaaiaadgeaaiaawUfacaGLDbaadaWadaqaaiaadkea aiaawUfacaGLDbaaaiaawIcacaGLPaaadaWadaqaaiaadoeaaiaawU facaGLDbaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVpaadmaabaGaamyqaaGaay5waiaaw2faamaadmaabaGaam OqaaGaay5waiaaw2faaiabgcMi5oaadmaabaGaamOqaaGaay5waiaa w2faamaadmaabaGaamyqaaGaay5waiaaw2faaaaa@8387@

The multiplication of a vector by a matrix is a particularly important operation.  Let b and c be two vectors with n components, which we think of as (1×n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaaGymai abgEna0kaad6gacaGGPaaaaa@3A93@  matrices.  Let [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaaaaa@382D@  be an (m×n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaamyBai abgEna0kaad6gacaGGPaaaaa@3ACA@  matrix.  Thus

b=[ b 1 b 2 b 3 b n ]c=[ c 1 c 2 c 3 c n ][ A ]=[ a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n a m1 a m2 a m3 a mn ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHIbGaeyypa0 ZaamWaaqaabeqaaiaadkgadaWgaaWcbaGaaGymaaqabaaakeaacaWG IbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaamOyamaaBaaaleaacaaIZa aabeaaaOqaaiaaykW7caaMc8UaeSO7I0eabaGaamOyamaaBaaaleaa caWGUbaabeaaaaGccaGLBbGaayzxaaGaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWH JbGaeyypa0ZaamWaaqaabeqaaiaadogadaWgaaWcbaGaaGymaaqaba aakeaacaWGJbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaam4yamaaBaaa leaacaaIZaaabeaaaOqaaiaaykW7caaMc8UaeSO7I0eabaGaam4yam aaBaaaleaacaWGUbaabeaaaaGccaGLBbGaayzxaaGaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7daWadaqaaiaadgeaaiaawUfacaGLDbaacqGH9aqpdaWadaab aeqabaGaamyyamaaBaaaleaacaaIXaGaaGymaaqabaGccaaMc8UaaG PaVlaaykW7caWGHbWaaSbaaSqaaiaaigdacaaIYaaabeaakiaaykW7 caaMc8UaaGPaVlaadggadaWgaaWcbaGaaGymaiaaiodaaeqaaOGaaG PaVlaaykW7cqWIVlctcaaMc8UaaGPaVlaadggadaWgaaWcbaGaaGym aiaad6gaaeqaaaGcbaGaamyyamaaBaaaleaacaaIYaGaaGymaaqaba GccaaMc8UaaGPaVlaaykW7caWGHbWaaSbaaSqaaiaaikdacaaIYaaa beaakiaaykW7caaMc8UaaGPaVlaadggadaWgaaWcbaGaaGOmaiaaio daaeqaaOGaaGPaVlaaykW7cqWIVlctcaaMc8UaaGPaVlaadggadaWg aaWcbaGaaGOmaiaad6gaaeqaaaGcbaGaaGPaVlaaykW7cqWIUlstca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlab l6UinjaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaeSO7I0KaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlablgVipjaaykW7caaMc8UaaGPaVl abl6UinbqaaiaadggadaWgaaWcbaGaamyBaiaaigdaaeqaaOGaaGPa VlaaykW7caaMc8UaamyyamaaBaaaleaacaWGTbGaaGOmaaqabaGcca aMc8UaaGPaVlaaykW7caWGHbWaaSbaaSqaaiaad2gacaaIZaaabeaa kiaaykW7caaMc8UaeS47IWKaaGPaVlaaykW7caWGHbWaaSbaaSqaai aad2gacaWGUbaabeaaaaGccaGLBbGaayzxaaaaaa@0C3A@

Now,

c=[ A ]b c i = j=1 n a ij b j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHJbGaeyypa0 ZaamWaaeaacaWGbbaacaGLBbGaayzxaaGaaCOyaiaaykW7caaMc8Ua eyi1HSTaaGPaVlaaykW7caaMc8Uaam4yamaaBaaaleaacaWGPbaabe aakiabg2da9maaqahabaGaamyyamaaBaaaleaacaWGPbGaamOAaaqa baGccaWGIbWaaSbaaSqaaiaadQgaaeqaaaqaaiaadQgacqGH9aqpca aIXaaabaGaamOBaaqdcqGHris5aaaa@5304@

i.e.

c 1 = a 11 b 1 + a 12 b 2 + a 13 b 3 + a 1n b n c 2 = a 21 b 1 + a 22 b 2 + a 23 b 3 + a 2n b n c m = a m1 b 1 + a m2 b 2 + a m3 b 3 + a mn b n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaadogada WgaaWcbaGaaGymaaqabaGccqGH9aqpcaWGHbWaaSbaaSqaaiaaigda caaIXaaabeaakiaadkgadaWgaaWcbaGaaGymaaqabaGccqGHRaWkca WGHbWaaSbaaSqaaiaaigdacaaIYaaabeaakiaadkgadaWgaaWcbaGa aGOmaaqabaGccqGHRaWkcaWGHbWaaSbaaSqaaiaaigdacaaIZaaabe aakiaadkgadaWgaaWcbaGaaG4maaqabaGccqGHRaWkcaaMc8UaaGPa VlaaykW7cqWIVlctcaaMc8UaaGPaVlaaykW7caWGHbWaaSbaaSqaai aaigdacaWGUbaabeaakiaadkgadaWgaaWcbaGaamOBaaqabaaakeaa caWGJbWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaamyyamaaBaaale aacaaIYaGaaGymaaqabaGccaWGIbWaaSbaaSqaaiaaigdaaeqaaOGa ey4kaSIaamyyamaaBaaaleaacaaIYaGaaGOmaaqabaGccaWGIbWaaS baaSqaaiaaikdaaeqaaOGaey4kaSIaamyyamaaBaaaleaacaaIYaGa aG4maaqabaGccaWGIbWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaaG PaVlaaykW7caaMc8UaeS47IWKaaGPaVlaaykW7caaMc8Uaamyyamaa BaaaleaacaaIYaGaamOBaaqabaGccaWGIbWaaSbaaSqaaiaad6gaae qaaaGcbaGaaGPaVlaaykW7cqWIUlstaeaacaWGJbWaaSbaaSqaaiaa d2gaaeqaaOGaeyypa0JaamyyamaaBaaaleaacaWGTbGaaGymaaqaba GccaWGIbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamyyamaaBaaa leaacaWGTbGaaGOmaaqabaGccaWGIbWaaSbaaSqaaiaaikdaaeqaaO Gaey4kaSIaamyyamaaBaaaleaacaWGTbGaaG4maaqabaGccaWGIbWa aSbaaSqaaiaaiodaaeqaaOGaey4kaSIaaGPaVlaaykW7caaMc8UaeS 47IWKaaGPaVlaaykW7caaMc8UaamyyamaaBaaaleaacaWGTbGaamOB aaqabaGccaWGIbWaaSbaaSqaaiaad6gaaeqaaaaaaa@A409@

 

 Transpose. Let [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaaaaa@382D@  be a matrix of order (m×n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaamyBai abgEna0kaad6gacaGGPaaaaa@3ACA@  with elements a ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaadMgacaWGQbaabeaaaaa@3864@ .  The transpose of [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaaaaa@382D@  is denoted [ A ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaadaahaaWcbeqaaiaadsfaaaaaaa@3933@ .  If [ B ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadk eaaiaawUfacaGLDbaaaaa@382E@  is an (n×m) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaamOBai abgEna0kaad2gacaGGPaaaaa@3ACA@  matrix such that [ B ]= [ A ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadk eaaiaawUfacaGLDbaacqGH9aqpdaWadaqaaiaadgeaaiaawUfacaGL DbaadaahaaWcbeqaaiaadsfaaaaaaa@3CF2@ , then b ij = a ji MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGIbWaaSbaaS qaaiaadMgacaWGQbaabeaakiabg2da9iaadggadaWgaaWcbaGaamOA aiaadMgaaeqaaaaa@3C64@ , i.e.

[ A ] T = [ a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n a m1 a m2 a m3 a mn ] T =[ a 11 a 21 a 31 a n1 a 12 a 22 a 3 2 a n2 a 1m a 2m a 3m a nm ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaadaahaaWcbeqaaiaadsfaaaGccqGH9aqpdaWa daabaeqabaGaamyyamaaBaaaleaacaaIXaGaaGymaaqabaGccaaMc8 UaaGPaVlaaykW7caWGHbWaaSbaaSqaaiaaigdacaaIYaaabeaakiaa ykW7caaMc8UaaGPaVlaadggadaWgaaWcbaGaaGymaiaaiodaaeqaaO GaaGPaVlaaykW7cqWIVlctcaaMc8UaaGPaVlaadggadaWgaaWcbaGa aGymaiaad6gaaeqaaaGcbaGaamyyamaaBaaaleaacaaIYaGaaGymaa qabaGccaaMc8UaaGPaVlaaykW7caWGHbWaaSbaaSqaaiaaikdacaaI YaaabeaakiaaykW7caaMc8UaaGPaVlaadggadaWgaaWcbaGaaGOmai aaiodaaeqaaOGaaGPaVlaaykW7cqWIVlctcaaMc8UaaGPaVlaadgga daWgaaWcbaGaaGOmaiaad6gaaeqaaaGcbaGaaGPaVlaaykW7cqWIUl stcaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa Vlabl6UinjaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaeSO7I0KaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlablgVipjaaykW7caaMc8UaaG PaVlabl6UinbqaaiaadggadaWgaaWcbaGaamyBaiaaigdaaeqaaOGa aGPaVlaaykW7caaMc8UaamyyamaaBaaaleaacaWGTbGaaGOmaaqaba GccaaMc8UaaGPaVlaaykW7caWGHbWaaSbaaSqaaiaad2gacaaIZaaa beaakiaaykW7caaMc8UaeS47IWKaaGPaVlaaykW7caWGHbWaaSbaaS qaaiaad2gacaWGUbaabeaaaaGccaGLBbGaayzxaaWaaWbaaSqabeaa caWGubaaaOGaeyypa0ZaamWaaqaabeqaaiaadggadaWgaaWcbaGaaG ymaiaaigdaaeqaaOGaaGPaVlaaykW7caaMc8UaamyyamaaBaaaleaa caaIYaGaaGymaaqabaGccaaMc8UaaGPaVlaaykW7caWGHbWaaSbaaS qaaiaaiodacaaIXaaabeaakiaaykW7caaMc8UaeS47IWKaaGPaVlaa ykW7caWGHbWaaSbaaSqaaiaad6gacaaIXaaabeaaaOqaaiaadggada WgaaWcbaGaaGymaiaaikdaaeqaaOGaaGPaVlaaykW7caaMc8Uaamyy amaaBaaaleaacaaIYaGaaGOmaaqabaGccaaMc8UaaGPaVlaaykW7ca WGHbWaaSbaaSqaaiaaiodaaeqaaOWaaSbaaSqaaiaaikdaaeqaaOGa aGPaVlaaykW7cqWIVlctcaaMc8UaaGPaVlaadggadaWgaaWcbaGaam OBaiaaikdaaeqaaaGcbaGaaGPaVlaaykW7cqWIUlstcaaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabl6Uinjaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaeSO7I0KaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlablgVipjaaykW7caaMc8UaaGPaVlabl6Uinbqa aiaadggadaWgaaWcbaGaaGymaiaad2gaaeqaaOGaaGPaVlaaykW7ca aMc8UaamyyamaaBaaaleaacaaIYaGaamyBaaqabaGccaaMc8UaaGPa VlaaykW7caWGHbWaaSbaaSqaaiaaiodacaWGTbaabeaakiaaykW7ca aMc8UaeS47IWKaaGPaVlaaykW7caWGHbWaaSbaaSqaaiaad6gacaWG TbaabeaaaaGccaGLBbGaayzxaaaaaa@5C7F@

Note that

( [ A ][ B ] ) T = [ B ] T [ A ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaamaadm aabaGaamyqaaGaay5waiaaw2faamaadmaabaGaamOqaaGaay5waiaa w2faaaGaayjkaiaawMcaamaaCaaaleqabaGaamivaaaakiabg2da9m aadmaabaGaamOqaaGaay5waiaaw2faamaaCaaaleqabaGaamivaaaa kmaadmaabaGaamyqaaGaay5waiaaw2faamaaCaaaleqabaGaamivaa aaaaa@460C@

 

 Determinant  The determinant is defined only for a square matrix.  Let [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaaaaa@382D@  be a (2×2) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaaGOmai abgEna0kaaikdacaGGPaaaaa@3A5D@  matrix with components a ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaadMgacaWGQbaabeaaaaa@3864@ .  The determinant of  [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaaaaa@382D@  is denoted by det[ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGKbGaaiyzai aacshadaWadaqaaiaadgeaaiaawUfacaGLDbaaaaa@3AF8@  or | A | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaabdaqaaiaadg eaaiaawEa7caGLiWoaaaa@395D@  and is given by

| A |=| a 11 a 12 a 21 a 22 |= a 11 a 22 a 12 a 21 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaabdaqaaiaadg eaaiaawEa7caGLiWoacqGH9aqpdaabdaabaeqabaGaamyyamaaBaaa leaacaaIXaGaaGymaaqabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caWGHbWaaSbaaSqaaiaaigda caaIYaaabeaaaOqaaiaadggadaWgaaWcbaGaaGOmaiaaigdaaeqaaO GaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaamyyamaaBaaaleaacaaIYaGaaGOmaaqabaaaaOGaay5bSl aawIa7aiabg2da9iaadggadaWgaaWcbaGaaGymaiaaigdaaeqaaOGa amyyamaaBaaaleaacaaIYaGaaGOmaaqabaGccqGHsislcaWGHbWaaS baaSqaaiaaigdacaaIYaaabeaakiaadggadaWgaaWcbaGaaGOmaiaa igdaaeqaaaaa@6FD3@

Now, let [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaaaaa@382D@  be an ( n×n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaaiaad6 gacqGHxdaTcaWGUbaacaGLOaGaayzkaaaaaa@3AFB@  matrix.  Define the minors M ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGnbWaaSbaaS qaaiaadMgacaWGQbaabeaaaaa@3850@  of [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaaaaa@382D@  as the determinant formed by omitting the ith row and jth column of [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaaaaa@382D@ .  For example, the minors M 11 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGnbWaaSbaaS qaaiaaigdacaaIXaaabeaaaaa@37E9@  and M 12 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGnbWaaSbaaS qaaiaaigdacaaIYaaabeaaaaa@37EA@  for a ( 3×3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaaiaaio dacqGHxdaTcaaIZaaacaGLOaGaayzkaaaaaa@3A8F@  matrix are computed as follows.   Let

[ A ]=[ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaacqGH9aqpdaWadaabaeqabaGaamyyamaaBaaa leaacaaIXaGaaGymaaqabaGccaaMc8UaaGPaVlaaykW7caWGHbWaaS baaSqaaiaaigdacaaIYaaabeaakiaaykW7caaMc8UaaGPaVlaaykW7 caWGHbWaaSbaaSqaaiaaigdacaaIZaaabeaaaOqaaiaadggadaWgaa WcbaGaaGOmaiaaigdaaeqaaOGaaGPaVlaaykW7caaMc8Uaamyyamaa BaaaleaacaaIYaGaaGOmaaqabaGccaaMc8UaaGPaVlaaykW7caWGHb WaaSbaaSqaaiaaikdacaaIZaaabeaakiaaykW7aeaacaWGHbWaaSba aSqaaiaaiodacaaIXaaabeaakiaaykW7caaMc8UaaGPaVlaadggada WgaaWcbaGaaG4maiaaikdaaeqaaOGaaGPaVlaaykW7caaMc8Uaamyy amaaBaaaleaacaaIZaGaaG4maaqabaaaaOGaay5waiaaw2faaaaa@713D@

Then

M 11 =| a 22 a 23 a 32 a 33 |= a 22 a 33 a 32 a 23 M 12 =| a 21 a 23 a 31 a 33 |= a 21 a 33 a 31 a 23 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGnbWaaSbaaS qaaiaaigdacaaIXaaabeaakiabg2da9maaemaaeaqabeaacaWGHbWa aSbaaSqaaiaaikdacaaIYaaabeaakiaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadggadaWgaaWcbaGa aGOmaiaaiodaaeqaaaGcbaGaamyyamaaBaaaleaacaaIZaGaaGOmaa qabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caWGHbWaaSbaaSqaaiaaiodacaaIZaaabeaaaaGcca GLhWUaayjcSdGaeyypa0JaamyyamaaBaaaleaacaaIYaGaaGOmaaqa baGccaWGHbWaaSbaaSqaaiaaiodacaaIZaaabeaakiabgkHiTiaadg gadaWgaaWcbaGaaG4maiaaikdaaeqaaOGaamyyamaaBaaaleaacaaI YaGaaG4maaqabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaamytamaaBaaaleaacaaIXaGaaGOmaaqabaGccqGH9aqp daabdaabaeqabaGaamyyamaaBaaaleaacaaIYaGaaGymaaqabaGcca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caWGHbWaaSbaaSqaaiaaikdacaaIZaaabeaaaOqaaiaadggada WgaaWcbaGaaG4maiaaigdaaeqaaOGaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaamyyamaaBaaaleaaca aIZaGaaG4maaqabaaaaOGaay5bSlaawIa7aiabg2da9iaadggadaWg aaWcbaGaaGOmaiaaigdaaeqaaOGaamyyamaaBaaaleaacaaIZaGaaG 4maaqabaGccqGHsislcaWGHbWaaSbaaSqaaiaaiodacaaIXaaabeaa kiaadggadaWgaaWcbaGaaGOmaiaaiodaaeqaaaaa@B251@

Define the cofactors C ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGdbWaaSbaaS qaaiaadMgacaWGQbaabeaaaaa@3846@  of [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaaaaa@382D@  as

C ij = ( 1 ) i+j M ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGdbWaaSbaaS qaaiaadMgacaWGQbaabeaakiabg2da9maabmaabaGaeyOeI0IaaGym aaGaayjkaiaawMcaamaaCaaaleqabaGaamyAaiabgUcaRiaadQgaaa GccaWGnbWaaSbaaSqaaiaadMgacaWGQbaabeaaaaa@4258@

Then, the determinant of the ( n×n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaaiaad6 gacqGHxdaTcaWGUbaacaGLOaGaayzkaaaaaa@3AFB@  matrix [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaaaaa@382D@  is computed as follows

| A |= j=1 n a ij C ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaabdaqaaiaadg eaaiaawEa7caGLiWoacqGH9aqpdaaeWbqaaiaadggadaWgaaWcbaGa amyAaiaadQgaaeqaaOGaam4qamaaBaaaleaacaWGPbGaamOAaaqaba aabaGaamOAaiabg2da9iaaigdaaeaacaWGUbaaniabggHiLdaaaa@4607@

The result is the same whichever row i is chosen for the expansion.  For the particular case of a ( 3×3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaaiaaio dacqGHxdaTcaaIZaaacaGLOaGaayzkaaaaaa@3A8F@  matrix

det[ A ]=det[ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ]= a 11 ( a 22 a 33 a 23 a 32 )+ a 12 ( a 23 a 31 a 21 a 33 )+ a 13 ( a 21 a 32 a 31 a 22 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGKbGaaiyzai aacshadaWadaqaaiaadgeaaiaawUfacaGLDbaacqGH9aqpciGGKbGa aiyzaiaacshadaWadaabaeqabaGaamyyamaaBaaaleaacaaIXaGaaG ymaaqabaGccaaMc8UaaGPaVlaaykW7caWGHbWaaSbaaSqaaiaaigda caaIYaaabeaakiaaykW7caaMc8UaaGPaVlaaykW7caWGHbWaaSbaaS qaaiaaigdacaaIZaaabeaaaOqaaiaadggadaWgaaWcbaGaaGOmaiaa igdaaeqaaOGaaGPaVlaaykW7caaMc8UaamyyamaaBaaaleaacaaIYa GaaGOmaaqabaGccaaMc8UaaGPaVlaaykW7caWGHbWaaSbaaSqaaiaa ikdacaaIZaaabeaakiaaykW7aeaacaWGHbWaaSbaaSqaaiaaiodaca aIXaaabeaakiaaykW7caaMc8UaaGPaVlaadggadaWgaaWcbaGaaG4m aiaaikdaaeqaaOGaaGPaVlaaykW7caaMc8UaamyyamaaBaaaleaaca aIZaGaaG4maaqabaaaaOGaay5waiaaw2faaiabg2da9iaadggadaWg aaWcbaGaaGymaiaaigdaaeqaaOGaaiikaiaadggadaWgaaWcbaGaaG OmaiaaikdaaeqaaOGaamyyamaaBaaaleaacaaIZaGaaG4maaqabaGc cqGHsislcaWGHbWaaSbaaSqaaiaaikdacaaIZaaabeaakiaadggada WgaaWcbaGaaG4maiaaikdaaeqaaOGaaiykaiabgUcaRiaadggadaWg aaWcbaGaaGymaiaaikdaaeqaaOGaaiikaiaadggadaWgaaWcbaGaaG OmaiaaiodaaeqaaOGaamyyamaaBaaaleaacaaIZaGaaGymaaqabaGc cqGHsislcaWGHbWaaSbaaSqaaiaaikdacaaIXaaabeaakiaadggada WgaaWcbaGaaG4maiaaiodaaeqaaOGaaiykaiabgUcaRiaadggadaWg aaWcbaGaaGymaiaaiodaaeqaaOGaaiikaiaadggadaWgaaWcbaGaaG OmaiaaigdaaeqaaOGaamyyamaaBaaaleaacaaIZaGaaGOmaaqabaGc cqGHsislcaWGHbWaaSbaaSqaaiaaiodacaaIXaaabeaakiaadggada WgaaWcbaGaaGOmaiaaikdaaeqaaOGaaiykaaaa@A71E@

The determinant may also be evaluated by summing over rows, i.e.

| A |= i=1 n a ij C ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaabdaqaaiaadg eaaiaawEa7caGLiWoacqGH9aqpdaaeWbqaaiaadggadaWgaaWcbaGa amyAaiaadQgaaeqaaOGaam4qamaaBaaaleaacaWGPbGaamOAaaqaba aabaGaamyAaiabg2da9iaaigdaaeaacaWGUbaaniabggHiLdaaaa@4606@

and as before the result is the same for each choice of column j.  Finally, note that

 

 Inversion.  Let [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaaaaa@382D@  be an ( n×n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaaiaad6 gacqGHxdaTcaWGUbaacaGLOaGaayzkaaaaaa@3AFB@  matrix.  The inverse of [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaaaaa@382D@  is denoted by  and is defined such that

The inverse of [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaaaaa@382D@  exists if and only if det[ A ]0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGKbGaaiyzai aacshadaWadaqaaiaadgeaaiaawUfacaGLDbaacqGHGjsUcaaIWaaa aa@3D79@ .  A matrix which has no inverse is said to be singular.  The inverse of a matrix may be computed explicitly, by forming the cofactor matrix [ C ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaado eaaiaawUfacaGLDbaaaaa@382F@  with components c ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGJbWaaSbaaS qaaiaadMgacaWGQbaabeaaaaa@3866@  as defined in the preceding section.  Then

[ A ] 1 = 1 det[ A ] [ C ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaadaahaaWcbeqaaiabgkHiTiaaigdaaaGccqGH 9aqpdaWcaaqaaiaaigdaaeaaciGGKbGaaiyzaiaacshadaWadaqaai aadgeaaiaawUfacaGLDbaaaaWaamWaaeaacaWGdbaacaGLBbGaayzx aaWaaWbaaSqabeaacaWGubaaaaaa@4520@

In practice, it is faster to compute the inverse of a matrix using methods such as Gaussian elimination. 

 

Note that

( [ A ][ B ] ) 1 = [ B ] 1 [ A ] 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaamaadm aabaGaamyqaaGaay5waiaaw2faamaadmaabaGaamOqaaGaay5waiaa w2faaaGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaaki abg2da9maadmaabaGaamOqaaGaay5waiaaw2faamaaCaaaleqabaGa eyOeI0IaaGymaaaakmaadmaabaGaamyqaaGaay5waiaaw2faamaaCa aaleqabaGaeyOeI0IaaGymaaaaaaa@4879@

For a diagonal matrix, the inverse is

[ A ]=[ a 11 000 0 a 22 00 000 a nn ]=[ 1/ a 11 000 01/ a 22 00 0001/ a nn ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaacqGH9aqpcaaMc8UaaGPaVpaadmaaeaqabeaa caWGHbWaaSbaaSqaaiaaigdacaaIXaaabeaakiaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGimaiaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGimaiaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlabl+UimjaaykW7caaMc8UaaGPaVlaaicdacaaM c8oabaGaaGPaVlaaicdacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaamyyamaaBaaaleaacaaIYaGaaGOmaaqabaGccaaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaicdacaaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7cqWIVlctcaaMc8UaaGPaVlaaicdaaeaa caaMc8UaaGPaVlabl6UinjaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqWIUlstcaaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaeSO7I0KaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqWIXlYtcaaM c8UaaGPaVlaaykW7cqWIUlstaeaacaaMc8UaaGPaVlaaicdacaaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaicda caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaicdacaaMc8UaaGPaVlaaykW7caaMc8UaeS47IWKaaGPaVlaaykW7 caWGHbWaaSbaaSqaaiaad6gacaWGUbaabeaaaaGccaGLBbGaayzxaa Gaeyypa0JaaGPaVlaaykW7caaMc8+aamWaaqaabeqaaiaaigdacaGG VaGaamyyamaaBaaaleaacaaIXaGaaGymaaqabaGccaaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaicdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaIWaGaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaeS47IWKaaGPaVlaaykW7caaMc8Ua aGimaiaaykW7aeaacaaMc8UaaGPaVlaaicdacaaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaIXaGaai4l aiaaykW7caWGHbWaaSbaaSqaaiaaikdacaaIYaaabeaakiaaykW7ca aMc8UaaGPaVlaaicdacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7cqWIVlctcaaMc8UaaGPaVlaaykW7caaIWaaabaGaaGPaVlaayk W7cqWIUlstcaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabl6 UinjaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlabl6UinjaaykW7caaMc8UaaG PaVlablgVipjaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7cqWIUlstaeaacaaMc8UaaGPaVlaaicdacaaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaIWaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaicdacaaMc8UaaGPaVlaaykW7 caaMc8UaeS47IWKaaGPaVlaaykW7caaMc8UaaGymaiaac+cacaWGHb WaaSbaaSqaaiaad6gacaWGUbaabeaaaaGccaGLBbGaayzxaaaaaa@D23B@

For a ( 2×2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaaiaaik dacqGHxdaTcaaIYaaacaGLOaGaayzkaaaaaa@3A8D@  matrix, the inverse is

[ a 11 a 12 a 21 a 22 ]= 1 a 11 a 22 a 12 a 21 [ a 22 a 12 a 21 a 11 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaabaeqaba GaamyyamaaBaaaleaacaaIXaGaaGymaaqabaGccaaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGHbWaaS baaSqaaiaaigdacaaIYaaabeaaaOqaaiaadggadaWgaaWcbaGaaGOm aiaaigdaaeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaamyyamaaBaaaleaacaaIYaGaaGOmaaqa baaaaOGaay5waiaaw2faaiabg2da9maalaaabaGaaGymaaqaaiaadg gadaWgaaWcbaGaaGymaiaaigdaaeqaaOGaamyyamaaBaaaleaacaaI YaGaaGOmaaqabaGccqGHsislcaWGHbWaaSbaaSqaaiaaigdacaaIYa aabeaakiaadggadaWgaaWcbaGaaGOmaiaaigdaaeqaaaaakmaadmaa eaqabeaacaaMc8UaaGPaVlaadggadaWgaaWcbaGaaGOmaiaaikdaae qaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlab gkHiTiaaykW7caWGHbWaaSbaaSqaaiaaigdacaaIYaaabeaaaOqaai abgkHiTiaadggadaWgaaWcbaGaaGOmaiaaigdaaeqaaOGaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam yyamaaBaaaleaacaaIXaGaaGymaaqabaaaaOGaay5waiaaw2faaaaa @95FA@

 

 Eigenvalues and eigenvectors. Let [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaaaaa@382D@  be an ( n×n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaaiaad6 gacqGHxdaTcaWGUbaacaGLOaGaayzkaaaaaa@3AFB@  matrix, with coefficients a ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaadMgacaWGQbaabeaaaaa@3864@ .  Consider the vector equation

[ A ]x=λx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaacaWH4bGaeyypa0Jaeq4UdWMaaCiEaaaa@3CE9@                                                 (1)

where x is a vector with n components, and λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBaaa@3729@  is a scalar (which may be complex).  The n nonzero vectors x and corresponding scalars λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBaaa@3729@  which satisfy this equation are the eigenvectors and eigenvalues of [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaaaaa@382D@ .

 

Formally, eighenvalues and eigenvectors may be computed as follows.  Rearrange the preceding equation to

( [ A ]λ[ I ] )x=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaamaadm aabaGaamyqaaGaay5waiaaw2faaiabgkHiTiabeU7aSnaadmaabaGa amysaaGaay5waiaaw2faaaGaayjkaiaawMcaaiaahIhacqGH9aqpca WHWaaaaa@41D7@                                      (2)

This has nontrivial solutions for x only if the determinant of the matrix ( [ A ]λ[ I ] ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaamaadm aabaGaamyqaaGaay5waiaaw2faaiabgkHiTiabeU7aSnaadmaabaGa amysaaGaay5waiaaw2faaaGaayjkaiaawMcaaaaa@3F17@  vanishes.  The equation

det( [ A ]λ[ I ] )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGKbGaaiyzai aacshadaqadaqaamaadmaabaGaamyqaaGaay5waiaaw2faaiabgkHi TiabeU7aSnaadmaabaGaamysaaGaay5waiaaw2faaaGaayjkaiaawM caaiabg2da9iaaicdaaaa@43A2@

is an nth order polynomial which may be solved for λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBaaa@3729@ .  In general the polynomial will have n roots, which may be complex.  The eigenvectors may then be computed using equation (2).  For example, a ( 2×2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaaiaaik dacqGHxdaTcaaIYaaacaGLOaGaayzkaaaaaa@3A8D@  matrix generally has two eigenvectors, which satisfy

| AλI |=| a 11 λ a 12 a 21 a 22 λ |=( a 11 λ)( a 22 λ) a 12 a 21 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaabdaqaaiaadg eacqGHsislcqaH7oaBcaWGjbaacaGLhWUaayjcSdGaeyypa0ZaaqWa aqaabeqaaiaadggadaWgaaWcbaGaaGymaiaaigdaaeqaaOGaeyOeI0 Iaeq4UdWMaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaamyyamaaBaaaleaacaaIXaGaaGOmaaqabaaake aacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadggadaWgaaWcbaGa aGOmaiaaigdaaeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaamyyamaaBaaaleaacaaIYaGaaGOm aaqabaGccqGHsislcqaH7oaBaaGaay5bSlaawIa7aiabg2da9iaacI cacaWGHbWaaSbaaSqaaiaaigdacaaIXaaabeaakiabgkHiTiabeU7a SjaacMcacaGGOaGaamyyamaaBaaaleaacaaIYaGaaGOmaaqabaGccq GHsislcqaH7oaBcaGGPaGaeyOeI0IaamyyamaaBaaaleaacaaIXaGa aGOmaaqabaGccaWGHbWaaSbaaSqaaiaaikdacaaIXaaabeaakiabg2 da9iaaicdaaaa@89F9@

Solve the quadratic equation to see that

λ 1 = 1 2 ( a 11 + a 22 ) 1 2 { ( a 11 + a 22 ) 2 4( a 11 a 22 a 12 a 21 ) } 1/2 λ 2 = 1 2 ( a 11 + a 22 )+ 1 2 { ( a 11 + a 22 ) 2 4( a 11 a 22 a 12 a 21 ) } 1/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiabeU7aSn aaBaaaleaacaaIXaaabeaakiabg2da9maalaaabaGaaGymaaqaaiaa ikdaaaWaaeWaaeaacaWGHbWaaSbaaSqaaiaaigdacaaIXaaabeaaki abgUcaRiaadggadaWgaaWcbaGaaGOmaiaaikdaaeqaaaGccaGLOaGa ayzkaaGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaadaGadaqaam aabmaabaGaamyyamaaBaaaleaacaaIXaGaaGymaaqabaGccqGHRaWk caWGHbWaaSbaaSqaaiaaikdacaaIYaaabeaaaOGaayjkaiaawMcaam aaCaaaleqabaGaaGOmaaaakiabgkHiTiaaisdadaqadaqaaiaadgga daWgaaWcbaGaaGymaiaaigdaaeqaaOGaamyyamaaBaaaleaacaaIYa GaaGOmaaqabaGccqGHsislcaWGHbWaaSbaaSqaaiaaigdacaaIYaaa beaakiaadggadaWgaaWcbaGaaGOmaiaaigdaaeqaaaGccaGLOaGaay zkaaaacaGL7bGaayzFaaWaaWbaaSqabeaacaaIXaGaai4laiaaikda aaaakeaacqaH7oaBdaWgaaWcbaGaaGOmaaqabaGccqGH9aqpdaWcaa qaaiaaigdaaeaacaaIYaaaamaabmaabaGaamyyamaaBaaaleaacaaI XaGaaGymaaqabaGccqGHRaWkcaWGHbWaaSbaaSqaaiaaikdacaaIYa aabeaaaOGaayjkaiaawMcaaiabgUcaRmaalaaabaGaaGymaaqaaiaa ikdaaaWaaiWaaeaadaqadaqaaiaadggadaWgaaWcbaGaaGymaiaaig daaeqaaOGaey4kaSIaamyyamaaBaaaleaacaaIYaGaaGOmaaqabaaa kiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaI0a WaaeWaaeaacaWGHbWaaSbaaSqaaiaaigdacaaIXaaabeaakiaadgga daWgaaWcbaGaaGOmaiaaikdaaeqaaOGaeyOeI0IaamyyamaaBaaale aacaaIXaGaaGOmaaqabaGccaWGHbWaaSbaaSqaaiaaikdacaaIXaaa beaaaOGaayjkaiaawMcaaaGaay5Eaiaaw2haamaaCaaaleqabaGaaG ymaiaac+cacaaIYaaaaaaaaa@8ADC@

The two corresponding eigenvectors may be computed from (2), which shows that

[ a 11 λ i a 12 a 21 a 22 λ i ][ x 1 (i) x 2 (i) ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaabaeqaba GaamyyamaaBaaaleaacaaIXaGaaGymaaqabaGccqGHsislcqaH7oaB daWgaaWcbaGaamyAaaqabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caWGHbWaaSbaaSqaaiaaigda caaIYaaabeaaaOqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam yyamaaBaaaleaacaaIYaGaaGymaaqabaGccaaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGHbWaaSbaaS qaaiaaikdacaaIYaaabeaakiabgkHiTiabeU7aSnaaBaaaleaacaWG PbaabeaaaaGccaGLBbGaayzxaaWaamWaaqaabeqaaiaadIhadaqhaa WcbaGaaGymaaqaaiaacIcacaWGPbGaaiykaaaaaOqaaiaadIhadaqh aaWcbaGaaGOmaaqaaiaacIcacaWGPbGaaiykaaaaaaGccaGLBbGaay zxaaGaeyypa0JaaGimaaaa@78E7@

so that, multiplying out the first row of the matrix (you can use the second row too, if you wish MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  since we chose ( 2×2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaaiaaik dacqGHxdaTcaaIYaaacaGLOaGaayzkaaaaaa@3A8D@  to make the determinant of the matrix vanish, the two equations have the same solutions.  In fact, if a 12 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaaigdacaaIYaaabeaakiabg2da9iaaicdaaaa@39C9@ , you will need to do this, because the first equation will simply give 0=0 when trying to solve for one of the eigenvectors)

( 1 2 ( a 11 a 22 )+ 1 2 { ( a 11 + a 22 ) 2 4( a 11 a 22 a 12 a 21 ) } 1/2 ) x 1 (1) + a 12 x 2 (1) =0 ( 1 2 ( a 11 a 22 ) 1 2 { ( a 11 + a 22 ) 2 4( a 11 a 22 a 12 a 21 ) } 1/2 ) x 1 (2) + a 12 x 2 (2) =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaamaabmaaba WaaSaaaeaacaaIXaaabaGaaGOmaaaadaqadaqaaiaadggadaWgaaWc baGaaGymaiaaigdaaeqaaOGaeyOeI0IaamyyamaaBaaaleaacaaIYa GaaGOmaaqabaaakiaawIcacaGLPaaacqGHRaWkdaWcaaqaaiaaigda aeaacaaIYaaaamaacmaabaWaaeWaaeaacaWGHbWaaSbaaSqaaiaaig dacaaIXaaabeaakiabgUcaRiaadggadaWgaaWcbaGaaGOmaiaaikda aeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0 IaaGinamaabmaabaGaamyyamaaBaaaleaacaaIXaGaaGymaaqabaGc caWGHbWaaSbaaSqaaiaaikdacaaIYaaabeaakiabgkHiTiaadggada WgaaWcbaGaaGymaiaaikdaaeqaaOGaamyyamaaBaaaleaacaaIYaGa aGymaaqabaaakiaawIcacaGLPaaaaiaawUhacaGL9baadaahaaWcbe qaaiaaigdacaGGVaGaaGOmaaaaaOGaayjkaiaawMcaaiaadIhadaqh aaWcbaGaaGymaaqaaiaacIcacaaIXaGaaiykaaaakiabgUcaRiaadg gadaWgaaWcbaGaaGymaiaaikdaaeqaaOGaamiEamaaDaaaleaacaaI YaaabaGaaiikaiaaigdacaGGPaaaaOGaeyypa0JaaGimaaqaamaabm aabaWaaSaaaeaacaaIXaaabaGaaGOmaaaadaqadaqaaiaadggadaWg aaWcbaGaaGymaiaaigdaaeqaaOGaeyOeI0IaamyyamaaBaaaleaaca aIYaGaaGOmaaqabaaakiaawIcacaGLPaaacqGHsisldaWcaaqaaiaa igdaaeaacaaIYaaaamaacmaabaWaaeWaaeaacaWGHbWaaSbaaSqaai aaigdacaaIXaaabeaakiabgUcaRiaadggadaWgaaWcbaGaaGOmaiaa ikdaaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaey OeI0IaaGinamaabmaabaGaamyyamaaBaaaleaacaaIXaGaaGymaaqa baGccaWGHbWaaSbaaSqaaiaaikdacaaIYaaabeaakiabgkHiTiaadg gadaWgaaWcbaGaaGymaiaaikdaaeqaaOGaamyyamaaBaaaleaacaaI YaGaaGymaaqabaaakiaawIcacaGLPaaaaiaawUhacaGL9baadaahaa WcbeqaaiaaigdacaGGVaGaaGOmaaaaaOGaayjkaiaawMcaaiaadIha daqhaaWcbaGaaGymaaqaaiaacIcacaaIYaGaaiykaaaakiabgUcaRi aadggadaWgaaWcbaGaaGymaiaaikdaaeqaaOGaamiEamaaDaaaleaa caaIYaaabaGaaiikaiaaikdacaGGPaaaaOGaeyypa0JaaGimaaaaaa@A131@

which are satisfied by any vector of the form

x (1) =[ 2 a 12 ( a 11 a 22 )+ { ( a 11 + a 22 ) 2 4( a 11 a 22 a 12 a 21 ) } 1/2 ]p x (2) =[ 2 a 12 ( a 11 a 22 ) { ( a 11 + a 22 ) 2 4( a 11 a 22 a 12 a 21 ) } 1/2 ]q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaahIhada ahaaWcbeqaaiaacIcacaaIXaGaaiykaaaakiabg2da9maadmaaeaqa beaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaikdacaWGHbWaaSbaaS qaaiaaigdacaaIYaaabeaaaOqaamaabmaabaGaamyyamaaBaaaleaa caaIXaGaaGymaaqabaGccqGHsislcaWGHbWaaSbaaSqaaiaaikdaca aIYaaabeaaaOGaayjkaiaawMcaaiabgUcaRmaacmaabaWaaeWaaeaa caWGHbWaaSbaaSqaaiaaigdacaaIXaaabeaakiabgUcaRiaadggada WgaaWcbaGaaGOmaiaaikdaaeqaaaGccaGLOaGaayzkaaWaaWbaaSqa beaacaaIYaaaaOGaeyOeI0IaaGinamaabmaabaGaamyyamaaBaaale aacaaIXaGaaGymaaqabaGccaWGHbWaaSbaaSqaaiaaikdacaaIYaaa beaakiabgkHiTiaadggadaWgaaWcbaGaaGymaiaaikdaaeqaaOGaam yyamaaBaaaleaacaaIYaGaaGymaaqabaaakiaawIcacaGLPaaaaiaa wUhacaGL9baadaahaaWcbeqaaiaaigdacaGGVaGaaGOmaaaaaaGcca GLBbGaayzxaaGaamiCaaqaaiaahIhadaahaaWcbeqaaiaacIcacaaI YaGaaiykaaaakiabg2da9maadmaaeaqabeaacaaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aIYaGaamyyamaaBaaaleaacaaIXaGaaGOmaaqabaaakeaadaqadaqa aiaadggadaWgaaWcbaGaaGymaiaaigdaaeqaaOGaeyOeI0Iaamyyam aaBaaaleaacaaIYaGaaGOmaaqabaaakiaawIcacaGLPaaacqGHsisl daGadaqaamaabmaabaGaamyyamaaBaaaleaacaaIXaGaaGymaaqaba GccqGHRaWkcaWGHbWaaSbaaSqaaiaaikdacaaIYaaabeaaaOGaayjk aiaawMcaamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaisdadaqada qaaiaadggadaWgaaWcbaGaaGymaiaaigdaaeqaaOGaamyyamaaBaaa leaacaaIYaGaaGOmaaqabaGccqGHsislcaWGHbWaaSbaaSqaaiaaig dacaaIYaaabeaakiaadggadaWgaaWcbaGaaGOmaiaaigdaaeqaaaGc caGLOaGaayzkaaaacaGL7bGaayzFaaWaaWbaaSqabeaacaaIXaGaai 4laiaaikdaaaaaaOGaay5waiaaw2faaiaadghaaaaa@3321@

where p and q are arbitrary real numbers.

 

It is often convenient to normalize eigenvectors so that they have unit `length’.  For this purpose, choose p and q so that x (i) x (i) =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH4bWaaWbaaS qabeaacaGGOaGaamyAaiaacMcaaaGccqGHflY1caWH4bWaaWbaaSqa beaacaGGOaGaamyAaiaacMcaaaGccqGH9aqpcaaIXaaaaa@407E@ .  (For vectors of dimension n, the generalized dot product is defined such that xx= i=1 n x i x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH4bGaeyyXIC TaaCiEaiabg2da9maaqadabaGaamiEamaaBaaaleaacaWGPbaabeaa kiaadIhadaWgaaWcbaGaamyAaaqabaaabaGaamyAaiabg2da9iaaig daaeaacaWGUbaaniabggHiLdaaaa@4498@  )

 

One may calculate explicit expressions for eigenvalues and eigenvectors for any matrix up to order ( 4×4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaaiaais dacqGHxdaTcaaI0aaacaGLOaGaayzkaaaaaa@3A91@ , but the results are so cumbersome that, except for the ( 2×2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaaiaaik dacqGHxdaTcaaIYaaacaGLOaGaayzkaaaaaa@3A8D@  results, they are virtually useless.  In practice, numerical values may be computed using several iterative techniques.  Packages like Mathematica, Maple or Matlab make calculations like this easy.

 

The eigenvalues of a real symmetric matrix are always real, and its eigenvectors are orthogonal, i.e. the ith and jth eigenvectors (with ) satisfy x (i) x (j) =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH4bWaaWbaaS qabeaacaGGOaGaamyAaiaacMcaaaGccqGHflY1caWH4bWaaWbaaSqa beaacaGGOaGaamOAaiaacMcaaaGccqGH9aqpcaaIWaaaaa@407E@ .

 

The eigenvalues of a skew symmetric matrix are pure imaginary.

 

 Spectral and singular value decomposition.  Let [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaaaaa@382D@  be a real symmetric  ( n×n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaaiaad6 gacqGHxdaTcaWGUbaacaGLOaGaayzkaaaaaa@3AFB@  matrix. Denote the n (real) eigenvalues of [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaaaaa@382D@  by λ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBdaWgaa WcbaGaamyAaaqabaaaaa@3843@ , and let w (i) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH3bWaaWbaaS qabeaacaGGOaGaamyAaiaacMcaaaaaaa@38E9@  be the corresponding normalized eigenvectors, such that w (i) w (i) =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH3bWaaWbaaS qabeaacaGGOaGaamyAaiaacMcaaaGccqGHflY1caWH3bWaaWbaaSqa beaacaGGOaGaamyAaiaacMcaaaGccqGH9aqpcaaIXaaaaa@407C@ .  Then, for any arbitrary vector b,

[ A ]b= i=1 n λ i ( w (i) b ) w (i) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaacaWHIbGaeyypa0ZaaabCaeaacqaH7oaBdaWg aaWcbaGaamyAaaqabaGcdaqadaqaaiaahEhadaahaaWcbeqaaiaacI cacaWGPbGaaiykaaaakiabgwSixlaahkgaaiaawIcacaGLPaaacaaM c8UaaGPaVlaahEhadaahaaWcbeqaaiaacIcacaWGPbGaaiykaaaaae aacaWGPbGaeyypa0JaaGymaaqaaiaad6gaa0GaeyyeIuoaaaa@5195@

Let [ Λ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiabfU 5ambGaay5waiaaw2faaaaa@38DC@  be a diagonal matrix which contains the n eigenvalues of [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaaaaa@382D@  as elements of the diagonal, and let [ Q ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg faaiaawUfacaGLDbaaaaa@383D@  be a matrix consisting of the n eigenvectors as columns, i.e.

[ Λ ]=[ λ 1 000 0 λ 2 00 000 λ n ][ Q ]=[ w 1 (1) w 1 (2) w 1 (3) w 1 (n) w 2 (1) w 2 (2) w 2 (3) w 2 (n) w n (1) w n (2) w n (3) w n (n) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiabfU 5ambGaay5waiaaw2faaiabg2da9iaaykW7daWadaabaeqabaGaeq4U dW2aaSbaaSqaaiaaigdaaeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaicdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaicdacaaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7cqWIVlctcaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGimaaqaaiaaicdacaaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqaH7oaBdaWg aaWcbaGaaGOmaaqabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaIWaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqWIVlct caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGimaa qaaiaaykW7cqWIUlstcaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqWIUlstca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7cqWIUlstcaaMc8UaaGPaVlaaykW7caaMc8UaeSy8I8KaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua eSO7I0eabaGaaGimaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGimaiaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGimaiaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabl+UimjaaykW7caaM c8UaaGPaVlaaykW7cqaH7oaBdaWgaaWcbaGaamOBaaqabaaaaOGaay 5waiaaw2faaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7daWadaqaaiaadgfaaiaawUfacaGLDb aacqGH9aqpcaaMc8+aamWaaqaabeqaaiaadEhadaqhaaWcbaGaaGym aaqaaiaacIcacaaIXaGaaiykaaaakiaaykW7caaMc8UaaGPaVlaayk W7caaMc8Uaam4DamaaDaaaleaacaaIXaaabaGaaiikaiaaikdacaGG PaaaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam4Dam aaDaaaleaacaaIXaaabaGaaiikaiaaiodacaGGPaaaaOGaaGPaVlaa ykW7caaMc8UaaGPaVlabl+UimjaaykW7caaMc8UaaGPaVlaaykW7ca aMc8Uaam4DamaaDaaaleaacaaIXaaabaGaaiikaiaad6gacaGGPaaa aOGaaGPaVdqaaiaadEhadaqhaaWcbaGaaGOmaaqaaiaacIcacaaIXa GaaiykaaaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam4Damaa DaaaleaacaaIYaaabaGaaiikaiaaikdacaGGPaaaaOGaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8Uaam4DamaaDaaaleaacaaIYaaa baGaaiikaiaaiodacaGGPaaaaOGaaGPaVlaaykW7caaMc8UaaGPaVl abl+UimjaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam4DamaaDaaa leaacaaIYaaabaGaaiikaiaad6gacaGGPaaaaaGcbaGaaGPaVlaayk W7caaMc8UaeSO7I0KaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeSO7I0KaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeSO7I0KaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaeSy8I8KaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlabl6UinbqaaiaadEhadaqhaaWcbaGaamOBaaqaaiaacIcacaaI XaGaaiykaaaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam4Dam aaDaaaleaacaWGUbaabaGaaiikaiaaikdacaGGPaaaaOGaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam4DamaaDaaaleaacaWGUb aabaGaaiikaiaaiodacaGGPaaaaOGaaGPaVlaaykW7caaMc8UaaGPa Vlabl+UimjaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam4DamaaDa aaleaacaWGUbaabaGaaiikaiaad6gacaGGPaaaaaaakiaawUfacaGL Dbaaaaa@1029@

Then

[ A ]=[ Q ][ Λ ] [ Q ] T [ Q ] T [ Q ]=[ Q ] [ Q ] T =[ I ] [ Q ] T [ A ][ Q ]=[ Λ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaacqGH9aqpdaWadaqaaiaadgfaaiaawUfacaGL DbaadaWadaqaaiabfU5ambGaay5waiaaw2faamaadmaabaGaamyuaa Gaay5waiaaw2faamaaCaaaleqabaGaamivaaaakiaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8+aamWaaeaacaWGrb aacaGLBbGaayzxaaWaaWbaaSqabeaacaWGubaaaOWaamWaaeaacaWG rbaacaGLBbGaayzxaaGaeyypa0ZaamWaaeaacaWGrbaacaGLBbGaay zxaaWaamWaaeaacaWGrbaacaGLBbGaayzxaaWaaWbaaSqabeaacaWG ubaaaOGaeyypa0ZaamWaaeaacaWGjbaacaGLBbGaayzxaaGaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8+aamWaaeaacaWGrbaacaGLBbGaayzxaaWaaW baaSqabeaacaWGubaaaOWaamWaaeaacaWGbbaacaGLBbGaayzxaaWa amWaaeaacaWGrbaacaGLBbGaayzxaaGaeyypa0ZaamWaaeaacqqHBo ataiaawUfacaGLDbaaaaa@81E7@

Note that this gives another (generally quite useless) way to invert [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaaaaa@382D@

[ A ] 1 =[ Q ] [ Λ ] 1 [ Q ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaadaahaaWcbeqaaiabgkHiTiaaigdaaaGccqGH 9aqpdaWadaqaaiaadgfaaiaawUfacaGLDbaadaWadaqaaiabfU5amb Gaay5waiaaw2faamaaCaaaleqabaGaeyOeI0IaaGymaaaakmaadmaa baGaamyuaaGaay5waiaaw2faamaaCaaaleqabaGaamivaaaaaaa@46EE@

where [ Λ ] 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiabfU 5ambGaay5waiaaw2faamaaCaaaleqabaGaeyOeI0IaaGymaaaaaaa@3AB1@  is easy to compute since [ Λ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiabfU 5ambGaay5waiaaw2faaaaa@38DC@  is diagonal.

 

 Square root of a matrix.   Let [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaaaaa@382D@  be a real symmetric  ( n×n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaaiaad6 gacqGHxdaTcaWGUbaacaGLOaGaayzkaaaaaa@3AFB@  matrix.  Denote the singular value decomposition of [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaaaaa@382D@  by [ A ]=[ Q ][ Λ ] [ Q ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaacqGH9aqpdaWadaqaaiaadgfaaiaawUfacaGL DbaadaWadaqaaiabfU5ambGaay5waiaaw2faamaadmaabaGaamyuaa Gaay5waiaaw2faamaaCaaaleqabaGaamivaaaakiaaykW7aaa@44C5@  as defined above.  Suppose that [ S ]= [ A ] 1/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaado faaiaawUfacaGLDbaacqGH9aqpdaWadaqaaiaadgeaaiaawUfacaGL DbaadaahaaWcbeqaaiaaigdacaGGVaGaaGOmaaaaaaa@3E54@  denotes the square root of [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaaaaa@382D@ , defined so that

[ S ][ S ]=[ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaado faaiaawUfacaGLDbaadaWadaqaaiaadofaaiaawUfacaGLDbaacqGH 9aqpdaWadaqaaiaadgeaaiaawUfacaGLDbaaaaa@3EC7@

One way to compute [ S ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaado faaiaawUfacaGLDbaaaaa@383F@  is through the singular value decomposition of [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaaaaa@382D@

[ S ]=[ Q ] [ Λ ] 1/2 [ Q ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaado faaiaawUfacaGLDbaacqGH9aqpdaWadaqaaiaadgfaaiaawUfacaGL DbaadaWadaqaaiabfU5ambGaay5waiaaw2faamaaCaaaleqabaGaaG ymaiaac+cacaaIYaaaaOWaamWaaeaacaWGrbaacaGLBbGaayzxaaWa aWbaaSqabeaacaWGubaaaaaa@45A3@

where

[ Λ ] 1/2 =[ λ 1 000 0 λ 2 00 000 λ n ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiabfU 5ambGaay5waiaaw2faamaaCaaaleqabaGaaGymaiaac+cacaaIYaaa aOGaeyypa0JaaGPaVpaadmaaeaqabeaadaGcaaqaaiabeU7aSnaaBa aaleaacaaIXaaabeaaaeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaicdacaaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaicdacaaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7cqWIVlctcaaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGimaaqaaiaaicdacaaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7daGcaaqaaiabeU 7aSnaaBaaaleaacaaIYaaabeaaaeqaaOGaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGimaiaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaeS47IWKaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaicdaaeaacaaMc8UaeSO7I0KaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaeSO7I0KaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaeSO7I0KaaGPaVlaaykW7caaMc8UaaGPaVlab lgVipjaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlabl6UinbqaaiaaicdacaaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaic dacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaicdacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqWIVl ctcaaMc8UaaGPaVlaaykW7caaMc8+aaOaaaeaacqaH7oaBdaWgaaWc baGaamOBaaqabaaabeaaaaGccaGLBbGaayzxaaGaaGPaVlaaykW7aa a@18D3@

 

3.4 Brief Introduction to Tensors

 

3.4.1 Examples of Tensors

 

The gradient of a vector field is a good example of a tensor.  Visualize a vector field: at every point in space, the field has a vector value u( x 1 , x 2 , x 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH1bGaaiikai aadIhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamiEamaaBaaaleaa caaIYaaabeaakiaacYcacaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaai ykaaaa@3EF9@ .  Let G=u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHhbGaeyypa0 Jaey4bIeTaaCyDaiaaykW7aaa@3B5A@  represent the gradient of u.  By definition, G enables you to calculate the change in u when you move from a point x in space to a nearby point at x+dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH4bGaey4kaS IaamizaiaahIhaaaa@3942@ :

du=Gdx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGKbGaaCyDai abg2da9iaahEeacqGHflY1caWGKbGaaCiEaaaa@3D66@

G is a second order tensor.  From this example, we see that when you multiply a vector by a tensor, the result is another vector. 

 

This is a general property of all second order tensors.  A tensor is a linear mapping of a vector onto another vector.  Two examples, together with the vectors they operate on, are:

 

 The stress tensor

t=nσ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH0bGaeyypa0 JaaGPaVlaah6gacqGHflY1caWHdpaaaa@3D93@

where n is a unit vector normal to a surface, σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHdpaaaa@36C4@  is the stress tensor and t is the traction vector acting on the surface.

 

 The deformation gradient tensor

dw=Fdx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGKbGaaC4Dai abg2da9iaahAeacqGHflY1caWGKbGaaCiEaaaa@3D67@

where dx is an infinitesimal line element in an undeformed solid, and dw is the vector representing the deformed line element.

 

 

3.4.2 Matrix representation of a tensor

 

To evaluate and manipulate tensors, we express them as components in a basis, just as for vectors.  We can use the displacement gradient to illustrate how this is done.  Let u( x 1 , x 2 , x 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH1bGaaiikai aadIhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamiEamaaBaaaleaa caaIYaaabeaakiaacYcacaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaai ykaaaa@3EF9@  be a vector field, and let G=u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHhbGaeyypa0 JaaCyDaiabgEGirdaa@39CF@  represent the gradient of u.  Recall the definition of G

du=Gdx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGKbGaaCyDai abg2da9iaahEeacqGHflY1caWGKbGaaCiEaaaa@3D66@

Now, let { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaahw gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaCyzamaaBaaaleaacaaI YaaabeaakiaacYcacaWHLbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7b GaayzFaaaaaa@3EA6@  be a Cartesian basis, and express both du and dx as components.  Then, calculate the components of du in terms of dx using the usual rules of calculus

d u 1 = u 1 x 1 d x 1 + u 1 x 2 d x 2 + u 1 x 3 d x 3 d u 2 = u 2 x 1 d x 1 + u 2 x 2 d x 2 + u 2 x 3 d x 3 d u 3 = u 3 x 1 d x 1 + u 3 x 2 d x 2 + u 3 x 3 d x 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaadsgaca WG1bWaaSbaaSqaaiaaigdaaeqaaOGaeyypa0ZaaSaaaeaacqGHciIT caWG1bWaaSbaaSqaaiaaigdaaeqaaaGcbaGaeyOaIyRaamiEamaaBa aaleaacaaIXaaabeaaaaGccaWGKbGaamiEamaaBaaaleaacaaIXaaa beaakiabgUcaRmaalaaabaGaeyOaIyRaamyDamaaBaaaleaacaaIXa aabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaaGOmaaqabaaaaOGa amizaiaadIhadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkdaWcaaqaai abgkGi2kaadwhadaWgaaWcbaGaaGymaaqabaaakeaacqGHciITcaWG 4bWaaSbaaSqaaiaaiodaaeqaaaaakiaadsgacaWG4bWaaSbaaSqaai aaiodaaeqaaaGcbaGaamizaiaadwhadaWgaaWcbaGaaGOmaaqabaGc cqGH9aqpdaWcaaqaaiabgkGi2kaadwhadaWgaaWcbaGaaGOmaaqaba aakeaacqGHciITcaWG4bWaaSbaaSqaaiaaigdaaeqaaaaakiaadsga caWG4bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSYaaSaaaeaacqGHci ITcaWG1bWaaSbaaSqaaiaaikdaaeqaaaGcbaGaeyOaIyRaamiEamaa BaaaleaacaaIYaaabeaaaaGccaWGKbGaamiEamaaBaaaleaacaaIYa aabeaakiabgUcaRmaalaaabaGaeyOaIyRaamyDamaaBaaaleaacaaI YaaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaaG4maaqabaaaaO GaamizaiaadIhadaWgaaWcbaGaaG4maaqabaaakeaacaWGKbGaamyD amaaBaaaleaacaaIZaaabeaakiabg2da9maalaaabaGaeyOaIyRaam yDamaaBaaaleaacaaIZaaabeaaaOqaaiabgkGi2kaadIhadaWgaaWc baGaaGymaaqabaaaaOGaamizaiaadIhadaWgaaWcbaGaaGymaaqaba GccqGHRaWkdaWcaaqaaiabgkGi2kaadwhadaWgaaWcbaGaaG4maaqa baaakeaacqGHciITcaWG4bWaaSbaaSqaaiaaikdaaeqaaaaakiaads gacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSYaaSaaaeaacqGH ciITcaWG1bWaaSbaaSqaaiaaiodaaeqaaaGcbaGaeyOaIyRaamiEam aaBaaaleaacaaIZaaabeaaaaGccaWGKbGaamiEamaaBaaaleaacaaI Zaaabeaaaaaa@9C57@

We could represent this as a matrix product

[ d u 1 d u 2 d u 3 ]=[ u 1 x 1 u 1 x 2 u 1 x 3 u 2 x 1 u 2 x 2 u 2 x 3 u 3 x 1 u 3 x 2 u 3 x 3 ][ d x 1 d x 2 d x 3 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaauaabe qadeaaaeaacaWGKbGaamyDamaaBaaaleaacaaIXaaabeaaaOqaaiaa dsgacaWG1bWaaSbaaSqaaiaaikdaaeqaaaGcbaGaamizaiaadwhada WgaaWcbaGaaG4maaqabaaaaaGccaGLBbGaayzxaaGaeyypa0ZaamWa aeaafaqabeWadaaabaWaaSaaaeaacqGHciITcaWG1bWaaSbaaSqaai aaigdaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaaIXaaabeaa aaaakeaadaWcaaqaaiabgkGi2kaadwhadaWgaaWcbaGaaGymaaqaba aakeaacqGHciITcaWG4bWaaSbaaSqaaiaaikdaaeqaaaaaaOqaamaa laaabaGaeyOaIyRaamyDamaaBaaaleaacaaIXaaabeaaaOqaaiabgk Gi2kaadIhadaWgaaWcbaGaaG4maaqabaaaaaGcbaWaaSaaaeaacqGH ciITcaWG1bWaaSbaaSqaaiaaikdaaeqaaaGcbaGaeyOaIyRaamiEam aaBaaaleaacaaIXaaabeaaaaaakeaadaWcaaqaaiabgkGi2kaadwha daWgaaWcbaGaaGOmaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaai aaikdaaeqaaaaaaOqaamaalaaabaGaeyOaIyRaamyDamaaBaaaleaa caaIYaaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaaG4maaqaba aaaaGcbaWaaSaaaeaacqGHciITcaWG1bWaaSbaaSqaaiaaiodaaeqa aaGcbaGaeyOaIyRaamiEamaaBaaaleaacaaIXaaabeaaaaaakeaada WcaaqaaiabgkGi2kaadwhadaWgaaWcbaGaaG4maaqabaaakeaacqGH ciITcaWG4bWaaSbaaSqaaiaaikdaaeqaaaaaaOqaamaalaaabaGaey OaIyRaamyDamaaBaaaleaacaaIZaaabeaaaOqaaiabgkGi2kaadIha daWgaaWcbaGaaG4maaqabaaaaaaaaOGaay5waiaaw2faamaadmaaba qbaeqabmqaaaqaaiaadsgacaWG4bWaaSbaaSqaaiaaigdaaeqaaaGc baGaamizaiaadIhadaWgaaWcbaGaaGOmaaqabaaakeaacaWGKbGaam iEamaaBaaaleaacaaIZaaabeaaaaaakiaawUfacaGLDbaaaaa@89FC@

From this we see that G can be represented as a 3×3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaaIZaGaey41aq RaaG4maaaa@3906@  matrix.  The elements of the matrix are known as the components of G in the basis.  All second order tensors can be represented in this form.  For example, a general second order tensor S could be written as

S[ S 11 S 12 S 13 S 21 S 22 S 23 S 31 S 32 S 33 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHtbGaeyyyIO 7aamWaaeaafaqabeWadaaabaGaam4uamaaBaaaleaacaaIXaGaaGym aaqabaaakeaacaWGtbWaaSbaaSqaaiaaigdacaaIYaaabeaaaOqaai aadofadaWgaaWcbaGaaGymaiaaiodaaeqaaaGcbaGaam4uamaaBaaa leaacaaIYaGaaGymaaqabaaakeaacaWGtbWaaSbaaSqaaiaaikdaca aIYaaabeaaaOqaaiaadofadaWgaaWcbaGaaGOmaiaaiodaaeqaaaGc baGaam4uamaaBaaaleaacaaIZaGaaGymaaqabaaakeaacaWGtbWaaS baaSqaaiaaiodacaaIYaaabeaaaOqaaiaadofadaWgaaWcbaGaaG4m aiaaiodaaeqaaaaaaOGaay5waiaaw2faaaaa@50D9@

You have probably already seen the matrix representation of stress and strain components in introductory courses.

 

Since S can be represented as a matrix, all operations that can be performed on a 3×3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaaIZaGaey41aq RaaG4maaaa@3906@  matrix can also be performed on S.  Examples include sums and products, the transpose, inverse, and determinant.  One can also compute eigenvalues and eigenvectors for tensors, and thus define the log of a tensor, the square root of a tensor, etc.  These tensor operations are summarized below.

 

Note that the numbers S 11 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGtbWaaSbaaS qaaiaaigdacaaIXaaabeaaaaa@37EF@ , S 12 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGtbWaaSbaaS qaaiaaigdacaaIYaaabeaaaaa@37F0@ , … S 33 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGtbWaaSbaaS qaaiaaiodacaaIZaaabeaaaaa@37F3@  depend on the basis { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaahw gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaCyzamaaBaaaleaacaaI YaaabeaakiaacYcacaWHLbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7b GaayzFaaaaaa@3EA6@ , just as the components of a vector depend on the basis used to represent the vector.  However, just as the magnitude and direction of a vector are independent of the basis, so the properties of a tensor are independent of the basis.  That is to say, if S is a tensor and u is a vector, then the vector

v=Su MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH2bGaeyypa0 JaaC4uaiabgwSixlaahwhaaaa@3B9E@

has the same magnitude and direction, irrespective of the basis used to represent u, v, and S.

 

 

 

3.4.3 The difference between a matrix and a tensor

 

If a tensor is a matrix, why is a matrix not the same thing as a tensor?  Well, although you can multiply the three components of a vector u by any 3×3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaaIZaGaey41aq RaaG4maaaa@3906@  matrix,

[ b 1 b 2 b 3 ]=[ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ][ u 1 u 2 u 3 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaauaabe qadeaaaeaacaWGIbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaamOyamaa BaaaleaacaaIYaaabeaaaOqaaiaadkgadaWgaaWcbaGaaG4maaqaba aaaaGccaGLBbGaayzxaaGaeyypa0ZaamWaaeaafaqabeWadaaabaGa amyyamaaBaaaleaacaaIXaGaaGymaaqabaaakeaacaWGHbWaaSbaaS qaaiaaigdacaaIYaaabeaaaOqaaiaadggadaWgaaWcbaGaaGymaiaa iodaaeqaaaGcbaGaamyyamaaBaaaleaacaaIYaGaaGymaaqabaaake aacaWGHbWaaSbaaSqaaiaaikdacaaIYaaabeaaaOqaaiaadggadaWg aaWcbaGaaGOmaiaaiodaaeqaaaGcbaGaamyyamaaBaaaleaacaaIZa GaaGymaaqabaaakeaacaWGHbWaaSbaaSqaaiaaiodacaaIYaaabeaa aOqaaiaadggadaWgaaWcbaGaaG4maiaaiodaaeqaaaaaaOGaay5wai aaw2faamaadmaabaqbaeqabmqaaaqaaiaadwhadaWgaaWcbaGaaGym aaqabaaakeaacaWG1bWaaSbaaSqaaiaaikdaaeqaaaGcbaGaamyDam aaBaaaleaacaaIZaaabeaaaaaakiaawUfacaGLDbaaaaa@5F09@

the resulting three numbers ( b 1 , b 2 , b 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaamOyam aaBaaaleaacaaIXaaabeaakiaacYcacaWGIbWaaSbaaSqaaiaaikda aeqaaOGaaiilaiaadkgadaWgaaWcbaGaaG4maaqabaGccaGGPaaaaa@3DB9@  may or may not represent the components of a vector.  If they are the components of a vector, then the matrix represents the components of a tensor A, if not, then the matrix is just an ordinary old matrix.

 

 To check whether ( b 1 , b 2 , b 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaamOyam aaBaaaleaacaaIXaaabeaakiaacYcacaWGIbWaaSbaaSqaaiaaikda aeqaaOGaaiilaiaadkgadaWgaaWcbaGaaG4maaqabaGccaGGPaaaaa@3DB9@  are the components of a vector, you need to check how ( b 1 , b 2 , b 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaamOyam aaBaaaleaacaaIXaaabeaakiaacYcacaWGIbWaaSbaaSqaaiaaikda aeqaaOGaaiilaiaadkgadaWgaaWcbaGaaG4maaqabaGccaGGPaaaaa@3DB9@  change due to a change of basis.  That is to say, choose a new basis, calculate the new components of u in this basis, and calculate the new matrix in this basis (the new elements of the matrix will depend on how the matrix was defined.  The elements may or may not change MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  if they don’t, then the matrix cannot be the components of a tensor).  Then, evaluate the matrix product to find a new left hand side, say ( β 1 , β 2 , β 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaaiabek 7aInaaBaaaleaacaaIXaaabeaakiaacYcacqaHYoGydaWgaaWcbaGa aGOmaaqabaGccaGGSaGaeqOSdi2aaSbaaSqaaiaaiodaaeqaaaGcca GLOaGaayzkaaaaaa@4017@ .  If  ( β 1 , β 2 , β 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaaiabek 7aInaaBaaaleaacaaIXaaabeaakiaacYcacqaHYoGydaWgaaWcbaGa aGOmaaqabaGccaGGSaGaeqOSdi2aaSbaaSqaaiaaiodaaeqaaaGcca GLOaGaayzkaaaaaa@4017@  are related to ( b 1 , b 2 , b 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaamOyam aaBaaaleaacaaIXaaabeaakiaacYcacaWGIbWaaSbaaSqaaiaaikda aeqaaOGaaiilaiaadkgadaWgaaWcbaGaaG4maaqabaGccaGGPaaaaa@3DB9@  by the same transformation that was used to calculate the new components of u, then ( b 1 , b 2 , b 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaamOyam aaBaaaleaacaaIXaaabeaakiaacYcacaWGIbWaaSbaaSqaaiaaikda aeqaaOGaaiilaiaadkgadaWgaaWcbaGaaG4maaqabaGccaGGPaaaaa@3DB9@  are the components of a vector, and, therefore, the matrix represents the components of a tensor.

 

 

3.4.4 Creating a tensor using a dyadic product of two vectors.

 

Let a and b be two vectors.  The dyadic product of a and b  is a second order tensor S denoted by

S=ab MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHtbGaeyypa0 JaaCyyaiabgEPielaahkgaaaa@3B36@ .

with the property

Su=( ab )u=a(bu) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHtbGaeyyXIC TaaCyDaiabg2da9maabmaabaGaaCyyaiabgEPielaahkgaaiaawIca caGLPaaacqGHflY1caWH1bGaeyypa0JaaCyyaiaacIcacaWHIbGaey yXICTaaCyDaiaacMcaaaa@4ACB@

for all vectors u.  (Clearly, this maps u onto a vector parallel to a with magnitude | a |( bu ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaabdaqaaiaahg gaaiaawEa7caGLiWoadaqadaqaaiaahkgacqGHflY1caWH1baacaGL OaGaayzkaaaaaa@3F3E@  )

 

The components of ab MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHHbGaey4LIq SaaCOyaaaa@3954@  in a basis { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaahw gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaCyzamaaBaaaleaacaaI YaaabeaakiaacYcacaWHLbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7b GaayzFaaaaaa@3EA6@  are

[ a 1 b 1 a 1 b 2 a 1 b 3 a 2 b 1 a 2 b 2 a 2 b 3 a 3 b 1 a 3 b 2 a 3 b 3 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaauaabe qadmaaaeaacaWGHbWaaSbaaSqaaiaaigdaaeqaaOGaamOyamaaBaaa leaacaaIXaaabeaaaOqaaiaadggadaWgaaWcbaGaaGymaaqabaGcca WGIbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaamyyamaaBaaaleaacaaI XaaabeaakiaadkgadaWgaaWcbaGaaG4maaqabaaakeaacaWGHbWaaS baaSqaaiaaikdaaeqaaOGaamOyamaaBaaaleaacaaIXaaabeaaaOqa aiaadggadaWgaaWcbaGaaGOmaaqabaGccaWGIbWaaSbaaSqaaiaaik daaeqaaaGcbaGaamyyamaaBaaaleaacaaIYaaabeaakiaadkgadaWg aaWcbaGaaG4maaqabaaakeaacaWGHbWaaSbaaSqaaiaaiodaaeqaaO GaamOyamaaBaaaleaacaaIXaaabeaaaOqaaiaadggadaWgaaWcbaGa aG4maaqabaGccaWGIbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaamyyam aaBaaaleaacaaIZaaabeaakiaadkgadaWgaaWcbaGaaG4maaqabaaa aaGccaGLBbGaayzxaaaaaa@58B7@

 

Note that not all tensors can be constructed using a dyadic product of only two vectors (this is because ( ab )u MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaaiaahg gacqGHxkcXcaWHIbaacaGLOaGaayzkaaGaeyyXICTaaCyDaaaa@3E25@  always has to be parallel to a, and therefore the representation cannot map a vector onto an arbitrary vector).  However, if a, b, and c are three independent vectors (i.e. no two of them are parallel) then all tensors can be constructed as a sum of scalar multiples of the nine possible dyadic products of these vectors. 

 

 

 

 

 

 

3.4.5. Operations on Second Order Tensors

 

 Tensor components

 

Let  be a Cartesian basis, and let S be a second order tensor.  The components of S in  may be represented as a matrix

[ S 11 S 12 S 13 S 21 S 22 S 23 S 31 S 32 S 33 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaauaabe qadmaaaeaacaWGtbWaaSbaaSqaaiaaigdacaaIXaaabeaaaOqaaiaa dofadaWgaaWcbaGaaGymaiaaikdaaeqaaaGcbaGaam4uamaaBaaale aacaaIXaGaaG4maaqabaaakeaacaWGtbWaaSbaaSqaaiaaikdacaaI XaaabeaaaOqaaiaadofadaWgaaWcbaGaaGOmaiaaikdaaeqaaaGcba Gaam4uamaaBaaaleaacaaIYaGaaG4maaqabaaakeaacaWGtbWaaSba aSqaaiaaiodacaaIXaaabeaaaOqaaiaadofadaWgaaWcbaGaaG4mai aaikdaaeqaaaGcbaGaam4uamaaBaaaleaacaaIZaGaaG4maaqabaaa aaGccaGLBbGaayzxaaaaaa@4E34@

where

S 11 = e 1 ( S e 1 ), S 12 = e 1 ( S e 2 ), S 11 = e 1 ( S e 3 ), S 21 = e 2 ( S e 1 ), S 22 = e 2 ( S e 2 ), S 21 = e 2 ( S e 3 ), S 31 = e 3 ( S e 1 ), S 32 = e 3 ( S e 2 ), S 31 = e 3 ( S e 3 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaadofada WgaaWcbaGaaGymaiaaigdaaeqaaOGaeyypa0JaaCyzamaaBaaaleaa caaIXaaabeaakiabgwSixpaabmaabaGaaC4uaiabgwSixlaahwgada WgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaacaGGSaGaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caWGtbWaaSbaaSqaaiaaigdacaaIYaaabeaakiabg2da 9iaahwgadaWgaaWcbaGaaGymaaqabaGccqGHflY1daqadaqaaiaaho facqGHflY1caWHLbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzk aaGaaiilaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadofadaWgaaWcbaGa aGymaiaaigdaaeqaaOGaeyypa0JaaCyzamaaBaaaleaacaaIXaaabe aakiabgwSixpaabmaabaGaaC4uaiabgwSixlaahwgadaWgaaWcbaGa aG4maaqabaaakiaawIcacaGLPaaacaGGSaaabaGaam4uamaaBaaale aacaaIYaGaaGymaaqabaGccqGH9aqpcaWHLbWaaSbaaSqaaiaaikda aeqaaOGaeyyXIC9aaeWaaeaacaWHtbGaeyyXICTaaCyzamaaBaaale aacaaIXaaabeaaaOGaayjkaiaawMcaaiaacYcacaaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaadofadaWgaaWcbaGaaGOmaiaaikdaaeqaaOGaeyypa0JaaCyz amaaBaaaleaacaaIYaaabeaakiabgwSixpaabmaabaGaaC4uaiabgw SixlaahwgadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaacaGG SaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8Uaam4uamaaBaaaleaacaaIYaGa aGymaaqabaGccqGH9aqpcaWHLbWaaSbaaSqaaiaaikdaaeqaaOGaey yXIC9aaeWaaeaacaWHtbGaeyyXICTaaCyzamaaBaaaleaacaaIZaaa beaaaOGaayjkaiaawMcaaiaacYcaaeaacaWGtbWaaSbaaSqaaiaaio dacaaIXaaabeaakiabg2da9iaahwgadaWgaaWcbaGaaG4maaqabaGc cqGHflY1daqadaqaaiaahofacqGHflY1caWHLbWaaSbaaSqaaiaaig daaeqaaaGccaGLOaGaayzkaaGaaiilaiaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam 4uamaaBaaaleaacaaIZaGaaGOmaaqabaGccqGH9aqpcaWHLbWaaSba aSqaaiaaiodaaeqaaOGaeyyXIC9aaeWaaeaacaWHtbGaeyyXICTaaC yzamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiaacYcacaaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caWGtbWaaSbaaSqaaiaaiodacaaIXaaa beaakiabg2da9iaahwgadaWgaaWcbaGaaG4maaqabaGccqGHflY1da qadaqaaiaahofacqGHflY1caWHLbWaaSbaaSqaaiaaiodaaeqaaaGc caGLOaGaayzkaaGaaiilaaaaaa@268B@

 

The representation of a tensor in terms of its components can also be expressed in dyadic form as

S= j=1 3 i=1 3 S ij e i e j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHtbGaeyypa0 ZaaabCaeaadaaeWbqaaiaadofadaWgaaWcbaGaamyAaiaadQgaaeqa aOGaaCyzamaaBaaaleaacaWGPbaabeaakiabgEPielaahwgadaWgaa WcbaGaamOAaaqabaaabaGaamyAaiabg2da9iaaigdaaeaacaaIZaaa niabggHiLdaaleaacaWGQbGaeyypa0JaaGymaaqaaiaaiodaa0Gaey yeIuoaaaa@4BB9@

This representation is particularly convenient when using polar coordinates, as described in Appendix E.

 

 

 Addition

Let S and T be two tensors.  Then U=S+T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHvbGaeyypa0 JaaC4uaiabgUcaRiaahsfaaaa@39F4@  is also a tensor.

 

Denote the Cartesian components of U, S and T by matrices as defined above.  The components of U are then related to the components of S and T by

[ U 11 U 12 U 13 U 21 U 22 U 23 U 31 U 32 U 33 ]=[ S 11 + T 11 S 12 + T 12 S 13 + T 13 S 21 + T 21 S 22 + T 22 S 23 + T 23 S 31 + T 31 S 32 + T 32 S 33 + T 33 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaauaabe qadmaaaeaacaWGvbWaaSbaaSqaaiaaigdacaaIXaaabeaaaOqaaiaa dwfadaWgaaWcbaGaaGymaiaaikdaaeqaaaGcbaGaamyvamaaBaaale aacaaIXaGaaG4maaqabaaakeaacaWGvbWaaSbaaSqaaiaaikdacaaI XaaabeaaaOqaaiaadwfadaWgaaWcbaGaaGOmaiaaikdaaeqaaaGcba GaamyvamaaBaaaleaacaaIYaGaaG4maaqabaaakeaacaWGvbWaaSba aSqaaiaaiodacaaIXaaabeaaaOqaaiaadwfadaWgaaWcbaGaaG4mai aaikdaaeqaaaGcbaGaamyvamaaBaaaleaacaaIZaGaaG4maaqabaaa aaGccaGLBbGaayzxaaGaeyypa0ZaamWaaeaafaqabeWadaaabaGaam 4uamaaBaaaleaacaaIXaGaaGymaaqabaGccqGHRaWkcaWGubWaaSba aSqaaiaaigdacaaIXaaabeaaaOqaaiaadofadaWgaaWcbaGaaGymai aaikdaaeqaaOGaey4kaSIaamivamaaBaaaleaacaaIXaGaaGOmaaqa baaakeaacaWGtbWaaSbaaSqaaiaaigdacaaIZaaabeaakiabgUcaRi aadsfadaWgaaWcbaGaaGymaiaaiodaaeqaaaGcbaGaam4uamaaBaaa leaacaaIYaGaaGymaaqabaGccqGHRaWkcaWGubWaaSbaaSqaaiaaik dacaaIXaaabeaaaOqaaiaadofadaWgaaWcbaGaaGOmaiaaikdaaeqa aOGaey4kaSIaamivamaaBaaaleaacaaIYaGaaGOmaaqabaaakeaaca WGtbWaaSbaaSqaaiaaikdacaaIZaaabeaakiabgUcaRiaadsfadaWg aaWcbaGaaGOmaiaaiodaaeqaaaGcbaGaam4uamaaBaaaleaacaaIZa GaaGymaaqabaGccqGHRaWkcaWGubWaaSbaaSqaaiaaiodacaaIXaaa beaaaOqaaiaadofadaWgaaWcbaGaaG4maiaaikdaaeqaaOGaey4kaS IaamivamaaBaaaleaacaaIZaGaaGOmaaqabaaakeaacaWGtbWaaSba aSqaaiaaiodacaaIZaaabeaakiabgUcaRiaadsfadaWgaaWcbaGaaG 4maiaaiodaaeqaaaaaaOGaay5waiaaw2faaaaa@86BC@

 

 

 Product of a tensor and a vector

 

Let u be a vector and S a second order tensor.  Then

v=Su MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH2bGaeyypa0 JaaC4uaiabgwSixlaahwhaaaa@3B9E@

is a vector. 

 

Let ( u 1 , u 2 , u 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaaiaadw hadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamyDamaaBaaaleaacaaI YaaabeaakiaacYcacaWG1bWaaSbaaSqaaiaaiodaaeqaaaGccaGLOa Gaayzkaaaaaa@3E22@  and ( v 1 , v 2 , v 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaaiaadA hadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamODamaaBaaaleaacaaI YaaabeaakiaacYcacaWG2bWaaSbaaSqaaiaaiodaaeqaaaGccaGLOa Gaayzkaaaaaa@3E25@  denote the components of vectors u and v in a Cartesian basis { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaahw gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaCyzamaaBaaaleaacaaI YaaabeaakiaacYcacaWHLbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7b GaayzFaaaaaa@3EA6@ , and denote the Cartesian components of S as described above.  Then

[ v 1 v 2 v 3 ]=[ S 11 S 12 S 13 S 21 S 22 S 23 S 31 S 32 S 33 ][ u 1 u 2 u 3 ]=[ S 11 u 1 + S 12 u 2 + S 13 u 3 S 21 u 1 + S 22 u 2 + S 23 u 3 S 31 u 1 + S 32 u 2 + S 33 u 3 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaauaabe qadeaaaeaacaWG2bWaaSbaaSqaaiaaigdaaeqaaaGcbaGaamODamaa BaaaleaacaaIYaaabeaaaOqaaiaadAhadaWgaaWcbaGaaG4maaqaba aaaaGccaGLBbGaayzxaaGaeyypa0ZaamWaaeaafaqabeWadaaabaGa am4uamaaBaaaleaacaaIXaGaaGymaaqabaaakeaacaWGtbWaaSbaaS qaaiaaigdacaaIYaaabeaaaOqaaiaadofadaWgaaWcbaGaaGymaiaa iodaaeqaaaGcbaGaam4uamaaBaaaleaacaaIYaGaaGymaaqabaaake aacaWGtbWaaSbaaSqaaiaaikdacaaIYaaabeaaaOqaaiaadofadaWg aaWcbaGaaGOmaiaaiodaaeqaaaGcbaGaam4uamaaBaaaleaacaaIZa GaaGymaaqabaaakeaacaWGtbWaaSbaaSqaaiaaiodacaaIYaaabeaa aOqaaiaadofadaWgaaWcbaGaaG4maiaaiodaaeqaaaaaaOGaay5wai aaw2faamaadmaabaqbaeqabmqaaaqaaiaadwhadaWgaaWcbaGaaGym aaqabaaakeaacaWG1bWaaSbaaSqaaiaaikdaaeqaaaGcbaGaamyDam aaBaaaleaacaaIZaaabeaaaaaakiaawUfacaGLDbaacqGH9aqpdaWa daqaauaabeqadeaaaeaacaWGtbWaaSbaaSqaaiaaigdacaaIXaaabe aakiaadwhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGtbWaaSba aSqaaiaaigdacaaIYaaabeaakiaadwhadaWgaaWcbaGaaGOmaaqaba GccqGHRaWkcaWGtbWaaSbaaSqaaiaaigdacaaIZaaabeaakiaadwha daWgaaWcbaGaaG4maaqabaaakeaacaWGtbWaaSbaaSqaaiaaikdaca aIXaaabeaakiaadwhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWG tbWaaSbaaSqaaiaaikdacaaIYaaabeaakiaadwhadaWgaaWcbaGaaG OmaaqabaGccqGHRaWkcaWGtbWaaSbaaSqaaiaaikdacaaIZaaabeaa kiaadwhadaWgaaWcbaGaaG4maaqabaaakeaacaWGtbWaaSbaaSqaai aaiodacaaIXaaabeaakiaadwhadaWgaaWcbaGaaGymaaqabaGccqGH RaWkcaWGtbWaaSbaaSqaaiaaiodacaaIYaaabeaakiaadwhadaWgaa WcbaGaaGOmaaqabaGccqGHRaWkcaWGtbWaaSbaaSqaaiaaiodacaaI ZaaabeaakiaadwhadaWgaaWcbaGaaG4maaqabaaaaaGccaGLBbGaay zxaaaaaa@8F1C@

 

The product

v=uS MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH2bGaeyypa0 JaaCyDaiabgwSixlaahofaaaa@3B9E@

is also a vector.  In component form

[ v 1 v 2 v 3 ]=[ u 1 u 2 u 3 ][ S 11 S 12 S 13 S 21 S 22 S 23 S 31 S 32 S 33 ]=[ u 1 S 11 + u 2 S 21 + u 3 S 31 u 1 S 12 + u 2 S 22 + u 3 S 32 u 1 S 13 + u 2 S 23 + u 3 S 33 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaauaabe qabmaaaeaacaWG2bWaaSbaaSqaaiaaigdaaeqaaaGcbaGaamODamaa BaaaleaacaaIYaaabeaaaOqaaiaadAhadaWgaaWcbaGaaG4maaqaba aaaaGccaGLBbGaayzxaaGaeyypa0ZaamWaaeaafaqabeqadaaabaGa amyDamaaBaaaleaacaaIXaaabeaaaOqaaiaadwhadaWgaaWcbaGaaG OmaaqabaaakeaacaWG1bWaaSbaaSqaaiaaiodaaeqaaaaaaOGaay5w aiaaw2faamaadmaabaqbaeqabmWaaaqaaiaadofadaWgaaWcbaGaaG ymaiaaigdaaeqaaaGcbaGaam4uamaaBaaaleaacaaIXaGaaGOmaaqa baaakeaacaWGtbWaaSbaaSqaaiaaigdacaaIZaaabeaaaOqaaiaado fadaWgaaWcbaGaaGOmaiaaigdaaeqaaaGcbaGaam4uamaaBaaaleaa caaIYaGaaGOmaaqabaaakeaacaWGtbWaaSbaaSqaaiaaikdacaaIZa aabeaaaOqaaiaadofadaWgaaWcbaGaaG4maiaaigdaaeqaaaGcbaGa am4uamaaBaaaleaacaaIZaGaaGOmaaqabaaakeaacaWGtbWaaSbaaS qaaiaaiodacaaIZaaabeaaaaaakiaawUfacaGLDbaacqGH9aqpdaWa daqaauaabeqadeaaaeaacaWG1bWaaSbaaSqaaiaaigdaaeqaaOGaam 4uamaaBaaaleaacaaIXaGaaGymaaqabaGccqGHRaWkcaWG1bWaaSba aSqaaiaaikdaaeqaaOGaam4uamaaBaaaleaacaaIYaGaaGymaaqaba GccqGHRaWkcaWG1bWaaSbaaSqaaiaaiodaaeqaaOGaam4uamaaBaaa leaacaaIZaGaaGymaaqabaaakeaacaWG1bWaaSbaaSqaaiaaigdaae qaaOGaam4uamaaBaaaleaacaaIXaGaaGOmaaqabaGccqGHRaWkcaWG 1bWaaSbaaSqaaiaaikdaaeqaaOGaam4uamaaBaaaleaacaaIYaGaaG OmaaqabaGccqGHRaWkcaWG1bWaaSbaaSqaaiaaiodaaeqaaOGaam4u amaaBaaaleaacaaIZaGaaGOmaaqabaaakeaacaWG1bWaaSbaaSqaai aaigdaaeqaaOGaam4uamaaBaaaleaacaaIXaGaaG4maaqabaGccqGH RaWkcaWG1bWaaSbaaSqaaiaaikdaaeqaaOGaam4uamaaBaaaleaaca aIYaGaaG4maaqabaGccqGHRaWkcaWG1bWaaSbaaSqaaiaaiodaaeqa aOGaam4uamaaBaaaleaacaaIZaGaaG4maaqabaaaaaGccaGLBbGaay zxaaaaaa@8F1C@

Observe that uSSu MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH1bGaeyyXIC TaaC4uaiabgcMi5kaahofacqGHflY1caWH1baaaa@3F84@  (unless S is symmetric).

 

 

 Product of two tensors

 

Let T and S be two second order tensors.  Then U=TS MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHvbGaeyypa0 JaaCivaiabgwSixlaahofaaaa@3B5C@  is also a tensor.

 

Denote the components of U, S and T by 3×3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaaIZaGaey41aq RaaG4maaaa@3906@  matrices.  Then,

[ U 11 U 12 U 13 U 21 U 22 U 23 U 31 U 32 U 33 ]=[ T 11 T 12 T 13 T 21 T 22 T 23 T 31 T 32 T 33 ][ S 11 S 12 S 13 S 21 S 22 S 23 S 31 S 32 S 33 ] =[ T 11 S 11 + T 12 S 21 + T 13 S 31 T 11 S 12 + T 12 S 22 + T 13 S 32 T 11 S 13 + T 12 S 23 + T 13 S 33 T 21 S 11 + T 22 S 21 + T 23 S 31 T 21 S 12 + T 22 S 22 + T 23 S 32 T 21 S 12 + T 22 S 22 + T 23 S 32 T 31 S 11 + T 32 S 21 + T 33 S 31 T 31 S 12 + T 32 S 22 + T 33 S 32 T 31 S 13 + T 32 S 23 + T 33 S 33 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaamaadmaaba qbaeqabmWaaaqaaiaadwfadaWgaaWcbaGaaGymaiaaigdaaeqaaaGc baGaamyvamaaBaaaleaacaaIXaGaaGOmaaqabaaakeaacaWGvbWaaS baaSqaaiaaigdacaaIZaaabeaaaOqaaiaadwfadaWgaaWcbaGaaGOm aiaaigdaaeqaaaGcbaGaamyvamaaBaaaleaacaaIYaGaaGOmaaqaba aakeaacaWGvbWaaSbaaSqaaiaaikdacaaIZaaabeaaaOqaaiaadwfa daWgaaWcbaGaaG4maiaaigdaaeqaaaGcbaGaamyvamaaBaaaleaaca aIZaGaaGOmaaqabaaakeaacaWGvbWaaSbaaSqaaiaaiodacaaIZaaa beaaaaaakiaawUfacaGLDbaacqGH9aqpdaWadaqaauaabeqadmaaae aacaWGubWaaSbaaSqaaiaaigdacaaIXaaabeaaaOqaaiaadsfadaWg aaWcbaGaaGymaiaaikdaaeqaaaGcbaGaamivamaaBaaaleaacaaIXa GaaG4maaqabaaakeaacaWGubWaaSbaaSqaaiaaikdacaaIXaaabeaa aOqaaiaadsfadaWgaaWcbaGaaGOmaiaaikdaaeqaaaGcbaGaamivam aaBaaaleaacaaIYaGaaG4maaqabaaakeaacaWGubWaaSbaaSqaaiaa iodacaaIXaaabeaaaOqaaiaadsfadaWgaaWcbaGaaG4maiaaikdaae qaaaGcbaGaamivamaaBaaaleaacaaIZaGaaG4maaqabaaaaaGccaGL BbGaayzxaaWaamWaaeaafaqabeWadaaabaGaam4uamaaBaaaleaaca aIXaGaaGymaaqabaaakeaacaWGtbWaaSbaaSqaaiaaigdacaaIYaaa beaaaOqaaiaadofadaWgaaWcbaGaaGymaiaaiodaaeqaaaGcbaGaam 4uamaaBaaaleaacaaIYaGaaGymaaqabaaakeaacaWGtbWaaSbaaSqa aiaaikdacaaIYaaabeaaaOqaaiaadofadaWgaaWcbaGaaGOmaiaaio daaeqaaaGcbaGaam4uamaaBaaaleaacaaIZaGaaGymaaqabaaakeaa caWGtbWaaSbaaSqaaiaaiodacaaIYaaabeaaaOqaaiaadofadaWgaa WcbaGaaG4maiaaiodaaeqaaaaaaOGaay5waiaaw2faaaqaaiaaykW7 caaMc8UaaGPaVlaaykW7caaMc8Uaeyypa0ZaamWaaeaafaqabeWada aabaGaamivamaaBaaaleaacaaIXaGaaGymaaqabaGccaWGtbWaaSba aSqaaiaaigdacaaIXaaabeaakiabgUcaRiaadsfadaWgaaWcbaGaaG ymaiaaikdaaeqaaOGaam4uamaaBaaaleaacaaIYaGaaGymaaqabaGc cqGHRaWkcaWGubWaaSbaaSqaaiaaigdacaaIZaaabeaakiaadofada WgaaWcbaGaaG4maiaaigdaaeqaaaGcbaGaamivamaaBaaaleaacaaI XaGaaGymaaqabaGccaWGtbWaaSbaaSqaaiaaigdacaaIYaaabeaaki abgUcaRiaadsfadaWgaaWcbaGaaGymaiaaikdaaeqaaOGaam4uamaa BaaaleaacaaIYaGaaGOmaaqabaGccqGHRaWkcaWGubWaaSbaaSqaai aaigdacaaIZaaabeaakiaadofadaWgaaWcbaGaaG4maiaaikdaaeqa aaGcbaGaamivamaaBaaaleaacaaIXaGaaGymaaqabaGccaWGtbWaaS baaSqaaiaaigdacaaIZaaabeaakiabgUcaRiaadsfadaWgaaWcbaGa aGymaiaaikdaaeqaaOGaam4uamaaBaaaleaacaaIYaGaaG4maaqaba GccqGHRaWkcaWGubWaaSbaaSqaaiaaigdacaaIZaaabeaakiaadofa daWgaaWcbaGaaG4maiaaiodaaeqaaaGcbaGaamivamaaBaaaleaaca aIYaGaaGymaaqabaGccaWGtbWaaSbaaSqaaiaaigdacaaIXaaabeaa kiabgUcaRiaadsfadaWgaaWcbaGaaGOmaiaaikdaaeqaaOGaam4uam aaBaaaleaacaaIYaGaaGymaaqabaGccqGHRaWkcaWGubWaaSbaaSqa aiaaikdacaaIZaaabeaakiaadofadaWgaaWcbaGaaG4maiaaigdaae qaaaGcbaGaamivamaaBaaaleaacaaIYaGaaGymaaqabaGccaWGtbWa aSbaaSqaaiaaigdacaaIYaaabeaakiabgUcaRiaadsfadaWgaaWcba GaaGOmaiaaikdaaeqaaOGaam4uamaaBaaaleaacaaIYaGaaGOmaaqa baGccqGHRaWkcaWGubWaaSbaaSqaaiaaikdacaaIZaaabeaakiaado fadaWgaaWcbaGaaG4maiaaikdaaeqaaaGcbaGaamivamaaBaaaleaa caaIYaGaaGymaaqabaGccaWGtbWaaSbaaSqaaiaaigdacaaIYaaabe aakiabgUcaRiaadsfadaWgaaWcbaGaaGOmaiaaikdaaeqaaOGaam4u amaaBaaaleaacaaIYaGaaGOmaaqabaGccqGHRaWkcaWGubWaaSbaaS qaaiaaikdacaaIZaaabeaakiaadofadaWgaaWcbaGaaG4maiaaikda aeqaaaGcbaGaamivamaaBaaaleaacaaIZaGaaGymaaqabaGccaWGtb WaaSbaaSqaaiaaigdacaaIXaaabeaakiabgUcaRiaadsfadaWgaaWc baGaaG4maiaaikdaaeqaaOGaam4uamaaBaaaleaacaaIYaGaaGymaa qabaGccqGHRaWkcaWGubWaaSbaaSqaaiaaiodacaaIZaaabeaakiaa dofadaWgaaWcbaGaaG4maiaaigdaaeqaaaGcbaGaamivamaaBaaale aacaaIZaGaaGymaaqabaGccaWGtbWaaSbaaSqaaiaaigdacaaIYaaa beaakiabgUcaRiaadsfadaWgaaWcbaGaaG4maiaaikdaaeqaaOGaam 4uamaaBaaaleaacaaIYaGaaGOmaaqabaGccqGHRaWkcaWGubWaaSba aSqaaiaaiodacaaIZaaabeaakiaadofadaWgaaWcbaGaaG4maiaaik daaeqaaaGcbaGaamivamaaBaaaleaacaaIZaGaaGymaaqabaGccaWG tbWaaSbaaSqaaiaaigdacaaIZaaabeaakiabgUcaRiaadsfadaWgaa WcbaGaaG4maiaaikdaaeqaaOGaam4uamaaBaaaleaacaaIYaGaaG4m aaqabaGccqGHRaWkcaWGubWaaSbaaSqaaiaaiodacaaIZaaabeaaki aadofadaWgaaWcbaGaaG4maiaaiodaaeqaaaaaaOGaay5waiaaw2fa aaaaaa@23E0@

Note that tensor products, like matrix products, are not commutative; i.e. TSST MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHubGaeyyXIC TaaC4uaiabgcMi5kaahofacqGHflY1caWHubaaaa@3F42@

 

 Transpose

 

Let S be a tensor.  The transpose of S is denoted by S T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHtbWaaWbaaS qabeaacaWGubaaaaaa@3758@  and is defined so that

u S T =Su MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH1bGaeyyXIC TaaC4uamaaCaaaleqabaGaamivaaaakiabg2da9iaahofacqGHflY1 caWH1baaaa@3FD3@

 

Denote the components of S by a 3x3 matrix.  The components of  S T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHtbWaaWbaaS qabeaacaWGubaaaaaa@3758@  are then

S T [ S 11 S 21 S 31 S 12 S 22 S 32 S 13 S 23 S 33 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHtbWaaWbaaS qabeaacaWGubaaaOGaeyyyIO7aamWaaeaafaqabeWadaaabaGaam4u amaaBaaaleaacaaIXaGaaGymaaqabaaakeaacaWGtbWaaSbaaSqaai aaikdacaaIXaaabeaaaOqaaiaadofadaWgaaWcbaGaaG4maiaaigda aeqaaaGcbaGaam4uamaaBaaaleaacaaIXaGaaGOmaaqabaaakeaaca WGtbWaaSbaaSqaaiaaikdacaaIYaaabeaaaOqaaiaadofadaWgaaWc baGaaG4maiaaikdaaeqaaaGcbaGaam4uamaaBaaaleaacaaIXaGaaG 4maaqabaaakeaacaWGtbWaaSbaaSqaaiaaikdacaaIZaaabeaaaOqa aiaadofadaWgaaWcbaGaaG4maiaaiodaaeqaaaaaaOGaay5waiaaw2 faaaaa@51E9@

i.e. the rows and columns of the matrix are switched.


Note that, if A and B are two tensors, then

( AB ) T = B T A T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaaiaahg eacqGHflY1caWHcbaacaGLOaGaayzkaaWaaWbaaSqabeaacaWGubaa aOGaeyypa0JaaCOqamaaCaaaleqabaGaamivaaaakiabgwSixlaahg eadaahaaWcbeqaaiaadsfaaaaaaa@42E8@


 Trace

 

Let S be a tensor, and denote the components of S by a 3×3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaaIZaGaey41aq RaaG4maaaa@3906@  matrix.  The trace of S is denoted by tr(S) or trace(S), and can be computed by summing the diagonals of the matrix of components

trace( S )= S 11 + S 22 + S 33 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaqG0bGaaeOCai aabggacaqGJbGaaeyzamaabmaabaGaaC4uaaGaayjkaiaawMcaaiab g2da9iaadofadaWgaaWcbaGaaGymaiaaigdaaeqaaOGaey4kaSIaam 4uamaaBaaaleaacaaIYaGaaGOmaaqabaGccqGHRaWkcaWGtbWaaSba aSqaaiaaiodacaaIZaaabeaaaaa@46CA@

More formally, let { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaahw gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaCyzamaaBaaaleaacaaI YaaabeaakiaacYcacaWHLbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7b GaayzFaaaaaa@3EA6@  be any Cartesian basis.  Then

trace( S )= e 1 S e 1 + e 2 S e 2 + e 3 S e 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaqG0bGaaeOCai aabggacaqGJbGaaeyzamaabmaabaGaaC4uaaGaayjkaiaawMcaaiab g2da9iaahwgadaWgaaWcbaGaaGymaaqabaGccqGHflY1caWHtbGaey yXICTaaCyzamaaBaaaleaacaaIXaaabeaakiabgUcaRiaahwgadaWg aaWcbaGaaGOmaaqabaGccqGHflY1caWHtbGaeyyXICTaaCyzamaaBa aaleaacaaIYaaabeaakiabgUcaRiaahwgadaWgaaWcbaGaaG4maaqa baGccqGHflY1caWHtbGaeyyXICTaaCyzamaaBaaaleaacaaIZaaabe aaaaa@5AC8@

The trace of a tensor is an example of an invariant of the tensor MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  you get the same value for trace(S) whatever basis you use to define the matrix of components of S.

 

 Contraction.

 

Inner Product: Let S and T be two second order tensors.  The inner product of S and T is a scalar, denoted by S:T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHtbGaaiOoai aahsfaaaa@37EC@ .  Represent S and T by their components in a basis.  Then

S:T= S 11 T 11 + S 12 T 12 + S 13 T 13 + S 21 T 21 + S 22 T 22 + S 23 T 23 + S 31 T 31 + S 32 T 32 + S 33 T 33 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaahofaca GG6aGaaCivaiabg2da9iaadofadaWgaaWcbaGaaGymaiaaigdaaeqa aOGaamivamaaBaaaleaacaaIXaGaaGymaaqabaGccqGHRaWkcaWGtb WaaSbaaSqaaiaaigdacaaIYaaabeaakiaadsfadaWgaaWcbaGaaGym aiaaikdaaeqaaOGaey4kaSIaam4uamaaBaaaleaacaaIXaGaaG4maa qabaGccaWGubWaaSbaaSqaaiaaigdacaaIZaaabeaaaOqaaiaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7cqGHRaWkcaWGtbWaaSbaaSqaaiaaikdacaaIXaaabeaakiaa dsfadaWgaaWcbaGaaGOmaiaaigdaaeqaaOGaey4kaSIaam4uamaaBa aaleaacaaIYaGaaGOmaaqabaGccaWGubWaaSbaaSqaaiaaikdacaaI YaaabeaakiabgUcaRiaadofadaWgaaWcbaGaaGOmaiaaiodaaeqaaO GaamivamaaBaaaleaacaaIYaGaaG4maaqabaaakeaacaaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 Uaey4kaSIaam4uamaaBaaaleaacaaIZaGaaGymaaqabaGccaWGubWa aSbaaSqaaiaaiodacaaIXaaabeaakiabgUcaRiaadofadaWgaaWcba GaaG4maiaaikdaaeqaaOGaamivamaaBaaaleaacaaIZaGaaGOmaaqa baGccqGHRaWkcaWGtbWaaSbaaSqaaiaaiodacaaIZaaabeaakiaads fadaWgaaWcbaGaaG4maiaaiodaaeqaaaaaaa@8C51@

Observe that S:T=T:S MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHtbGaaiOoai aahsfacqGH9aqpcaWHubGaaiOoaiaahofaaaa@3B69@ , and also that S:I=trace(S) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHtbGaaiOoai aahMeacqGH9aqpcaqG0bGaaeOCaiaabggacaqGJbGaaeyzaiaabIca caWHtbGaaeykaaaa@3FB8@ , where I is the identity tensor.

 Outer product: Let S and T be two second order tensors.  The outer product of S and T is a scalar, denoted by ST MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHtbGaeyyXIC TaeyyXICTaaCivaaaa@3BC2@ .  Represent S and T by their components in a basis.  Then

ST= S 11 T 11 + S 21 T 12 + S 31 T 13 + S 12 T 21 + S 22 T 22 + S 32 T 23 + S 13 T 31 + S 23 T 32 + S 33 T 33 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaahofacq GHflY1cqGHflY1caWHubGaeyypa0Jaam4uamaaBaaaleaacaaIXaGa aGymaaqabaGccaWGubWaaSbaaSqaaiaaigdacaaIXaaabeaakiabgU caRiaadofadaWgaaWcbaGaaGOmaiaaigdaaeqaaOGaamivamaaBaaa leaacaaIXaGaaGOmaaqabaGccqGHRaWkcaWGtbWaaSbaaSqaaiaaio dacaaIXaaabeaakiaadsfadaWgaaWcbaGaaGymaiaaiodaaeqaaaGc baGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlabgUcaRiaadofadaWgaaWcbaGaaGymaiaaikda aeqaaOGaamivamaaBaaaleaacaaIYaGaaGymaaqabaGccqGHRaWkca WGtbWaaSbaaSqaaiaaikdacaaIYaaabeaakiaadsfadaWgaaWcbaGa aGOmaiaaikdaaeqaaOGaey4kaSIaam4uamaaBaaaleaacaaIZaGaaG OmaaqabaGccaWGubWaaSbaaSqaaiaaikdacaaIZaaabeaaaOqaaiaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7cqGHRaWkcaWGtbWaaSbaaSqaaiaaigdacaaIZaaabeaa kiaadsfadaWgaaWcbaGaaG4maiaaigdaaeqaaOGaey4kaSIaam4uam aaBaaaleaacaaIYaGaaG4maaqabaGccaWGubWaaSbaaSqaaiaaioda caaIYaaabeaakiabgUcaRiaadofadaWgaaWcbaGaaG4maiaaiodaae qaaOGaamivamaaBaaaleaacaaIZaGaaG4maaqabaaaaaa@9027@

Observe that ST= S T :T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHtbGaeyyXIC TaeyyXICTaaCivaiabg2da9iaahofadaahaaWcbeqaaiaadsfaaaGc caGG6aGaaCivaaaa@404F@

 

 Determinant

 

The determinant of a tensor is defined as the determinant of the matrix of its components in a basis.  For a second order tensor

detS=det[ S 11 S 12 S 13 S 21 S 22 S 23 S 31 S 32 S 33 ] = S 11 ( S 22 S 33 S 23 S 32 )+ S 12 ( S 23 S 31 S 21 S 33 )+ S 13 ( S 21 S 32 S 31 S 22 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiGacsgaca GGLbGaaiiDaiaahofacqGH9aqpciGGKbGaaiyzaiaacshadaWadaab aeqabaGaam4uamaaBaaaleaacaaIXaGaaGymaaqabaGccaaMc8UaaG PaVlaaykW7caWGtbWaaSbaaSqaaiaaigdacaaIYaaabeaakiaaykW7 caaMc8UaaGPaVlaaykW7caWGtbWaaSbaaSqaaiaaigdacaaIZaaabe aaaOqaaiaadofadaWgaaWcbaGaaGOmaiaaigdaaeqaaOGaaGPaVlaa ykW7caaMc8Uaam4uamaaBaaaleaacaaIYaGaaGOmaaqabaGccaaMc8 UaaGPaVlaaykW7caWGtbWaaSbaaSqaaiaaikdacaaIZaaabeaakiaa ykW7aeaacaWGtbWaaSbaaSqaaiaaiodacaaIXaaabeaakiaaykW7ca aMc8UaaGPaVlaadofadaWgaaWcbaGaaG4maiaaikdaaeqaaOGaaGPa VlaaykW7caaMc8Uaam4uamaaBaaaleaacaaIZaGaaG4maaqabaaaaO Gaay5waiaaw2faaaqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8Uaeyypa0Jaam4uamaaBaaaleaacaaIXaGaaGymaaqabaGccaGG OaGaam4uamaaBaaaleaacaaIYaGaaGOmaaqabaGccaWGtbWaaSbaaS qaaiaaiodacaaIZaaabeaakiabgkHiTiaadofadaWgaaWcbaGaaGOm aiaaiodaaeqaaOGaam4uamaaBaaaleaacaaIZaGaaGOmaaqabaGcca GGPaGaey4kaSIaam4uamaaBaaaleaacaaIXaGaaGOmaaqabaGccaGG OaGaam4uamaaBaaaleaacaaIYaGaaG4maaqabaGccaWGtbWaaSbaaS qaaiaaiodacaaIXaaabeaakiabgkHiTiaadofadaWgaaWcbaGaaGOm aiaaigdaaeqaaOGaam4uamaaBaaaleaacaaIZaGaaG4maaqabaGcca GGPaGaey4kaSIaam4uamaaBaaaleaacaaIXaGaaG4maaqabaGccaGG OaGaam4uamaaBaaaleaacaaIYaGaaGymaaqabaGccaWGtbWaaSbaaS qaaiaaiodacaaIYaaabeaakiabgkHiTiaadofadaWgaaWcbaGaaG4m aiaaigdaaeqaaOGaam4uamaaBaaaleaacaaIYaGaaGOmaaqabaGcca GGPaaaaaa@B993@

 

Note that if S and T are two tensors, then

det(S)=det( S T )det(ST)=det(S)det(T) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGKbGaaiyzai aacshacaGGOaGaaC4uaiaacMcacqGH9aqpciGGKbGaaiyzaiaacsha daqadaqaaiaahofadaahaaWcbeqaaiaadsfaaaaakiaawIcacaGLPa aacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaciizaiaacwgacaGG0b GaaiikaiaahofacqGHflY1caWHubGaaiykaiabg2da9iGacsgacaGG LbGaaiiDaiaacIcacaWHtbGaaiykaiGacsgacaGGLbGaaiiDaiaacI cacaWHubGaaiykaaaa@68F8@

 

 Inverse

 

Let S be a second order tensor.  The inverse of S exists if and only if det(S)0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGKbGaaiyzai aacshacaGGOaGaaC4uaiaacMcacqGHGjsUcaaIWaaaaa@3CF6@ , and is defined by

S 1 S=I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHtbWaaWbaaS qabeaacqGHsislcaaIXaaaaOGaeyyXICTaaC4uaiabg2da9iaahMea aaa@3D2E@

where  denotes the inverse of S and I is the identity tensor.

 

The inverse of a tensor may be computed by calculating the inverse of the matrix of its components.  The result cannot be expressed in a compact form for a general three dimensional second order tensor, and is best computed by methods such as Gaussian elimination.

 

 

 

 

 

 Eigenvalues and Eigenvectors (Principal values and direction)

 

Let S be a second order tensor.  The scalars λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBaaa@3729@  and unit vectors m which satisfy

Sm=λm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHtbGaeyyXIC TaaCyBaiabg2da9iabeU7aSjaah2gaaaa@3D41@

are known as the eigenvalues and eigenvectors of S, or the principal values and principal directions of S. Note that λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBaaa@3729@  may be complex.  For a second order tensor in three dimensions, there are generally three values of λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBaaa@3729@  and three unique unit vectors m which satisfy this equation.  Occasionally, there may be only two or one value of λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBaaa@3729@ .  If this is the case, there are infinitely many possible vectors m that satisfy the equation.  The eigenvalues of a tensor, and the components of the eigenvectors, may be computed by finding the eigenvalues and eigenvectors of the matrix of components (see A.3.2)

 

The eigenvalues of a symmetric tensor are always real.  The eigenvalues of a skew tensor are always pure imaginary or zero.

 

 

 Change of Basis.

 

Let S be a tensor, and let  be a Cartesian basis.  Suppose that the components of S in the basis  are known to be

[ S (e) ]=[ S 11 (e) S 12 (e) S 13 (e) S 21 (e) S 22 (e) S 23 (e) S 31 (e) S 32 (e) S 33 (e) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGBbGaam4uam aaCaaaleqabaGaaiikaiaahwgacaGGPaaaaOGaaiyxaiabg2da9maa dmaabaqbaeqabmWaaaqaaiaadofadaqhaaWcbaGaaGymaiaaigdaae aacaGGOaGaaCyzaiaacMcaaaaakeaacaWGtbWaa0baaSqaaiaaigda caaIYaaabaGaaiikaiaahwgacaGGPaaaaaGcbaGaam4uamaaDaaale aacaaIXaGaaG4maaqaaiaacIcacaWHLbGaaiykaaaaaOqaaiaadofa daqhaaWcbaGaaGOmaiaaigdaaeaacaGGOaGaaCyzaiaacMcaaaaake aacaWGtbWaa0baaSqaaiaaikdacaaIYaaabaGaaiikaiaahwgacaGG PaaaaaGcbaGaam4uamaaDaaaleaacaaIYaGaaG4maaqaaiaacIcaca WHLbGaaiykaaaaaOqaaiaadofadaqhaaWcbaGaaG4maiaaigdaaeaa caGGOaGaaCyzaiaacMcaaaaakeaacaWGtbWaa0baaSqaaiaaiodaca aIYaaabaGaaiikaiaahwgacaGGPaaaaaGcbaGaam4uamaaDaaaleaa caaIZaGaaG4maaqaaiaacIcacaWHLbGaaiykaaaaaaaakiaawUfaca GLDbaaaaa@68D8@

 

Now, suppose that we wish to compute the components of  S in a second Cartesian basis, { m 1 , m 2 , m 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaah2 gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaCyBamaaBaaaleaacaaI YaaabeaakiaacYcacaWHTbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7b GaayzFaaaaaa@3EBE@ .  Denote these components by

[ S (m) ]=[ S 11 (m) S 12 (m) S 13 (m) S 21 (m) S 22 (m) S 23 (m) S 31 (m) S 32 (m) S 33 (m) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGBbGaam4uam aaCaaaleqabaGaaiikaiaah2gacaGGPaaaaOGaaiyxaiabg2da9maa dmaabaqbaeqabmWaaaqaaiaadofadaqhaaWcbaGaaGymaiaaigdaae aacaGGOaGaaCyBaiaacMcaaaaakeaacaWGtbWaa0baaSqaaiaaigda caaIYaaabaGaaiikaiaah2gacaGGPaaaaaGcbaGaam4uamaaDaaale aacaaIXaGaaG4maaqaaiaacIcacaWHTbGaaiykaaaaaOqaaiaadofa daqhaaWcbaGaaGOmaiaaigdaaeaacaGGOaGaaCyBaiaacMcaaaaake aacaWGtbWaa0baaSqaaiaaikdacaaIYaaabaGaaiikaiaah2gacaGG PaaaaaGcbaGaam4uamaaDaaaleaacaaIYaGaaG4maaqaaiaacIcaca WHTbGaaiykaaaaaOqaaiaadofadaqhaaWcbaGaaG4maiaaigdaaeaa caGGOaGaaCyBaiaacMcaaaaakeaacaWGtbWaa0baaSqaaiaaiodaca aIYaaabaGaaiikaiaah2gacaGGPaaaaaGcbaGaam4uamaaDaaaleaa caaIZaGaaG4maaqaaiaacIcacaWHTbGaaiykaaaaaaaakiaawUfaca GLDbaaaaa@6928@

To do so, first compute the components of the transformation matrix [Q]

[ Q ]=[ m 1 e 1 m 1 e 2 m 1 e 3 m 2 e 1 m 2 e 2 m 2 e 3 m 3 e 1 m 3 e 2 m 3 e 3 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg faaiaawUfacaGLDbaacqGH9aqpdaWadaabaeqabaGaaCyBamaaBaaa leaacaaIXaaabeaakiabgwSixlaahwgadaWgaaWcbaGaaGymaaqaba GccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWHTbWaaSba aSqaaiaaigdaaeqaaOGaeyyXICTaaCyzamaaBaaaleaacaaIYaaabe aakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaah2gadaWg aaWcbaGaaGymaaqabaGccqGHflY1caWHLbWaaSbaaSqaaiaaiodaae qaaaGcbaGaaCyBamaaBaaaleaacaaIYaaabeaakiabgwSixlaahwga daWgaaWcbaGaaGymaaqabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caWHTbWaaSbaaSqaaiaaikdaaeqaaOGaeyyXICTaaCyz amaaBaaaleaacaaIYaaabeaakiaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaah2gadaWgaaWcbaGaaGOmaaqabaGccqGHflY1caWH LbWaaSbaaSqaaiaaiodaaeqaaaGcbaGaaCyBamaaBaaaleaacaaIZa aabeaakiabgwSixlaahwgadaWgaaWcbaGaaGymaaqabaGccaaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWHTbWaaSbaaSqaaiaaio daaeqaaOGaeyyXICTaaCyzamaaBaaaleaacaaIYaaabeaakiaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaah2gadaWgaaWcbaGaaG 4maaqabaGccqGHflY1caWHLbWaaSbaaSqaaiaaiodaaeqaaaaakiaa wUfacaGLDbaaaaa@A96B@

(this is the same matrix you would use to transform vector components from { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaahw gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaCyzamaaBaaaleaacaaI YaaabeaakiaacYcacaWHLbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7b GaayzFaaaaaa@3EA6@  to { m 1 , m 2 , m 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaah2 gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaCyBamaaBaaaleaacaaI YaaabeaakiaacYcacaWHTbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7b GaayzFaaaaaa@3EBE@  ).  Then,

[ S (m) ]=[Q][ S (e) ] [Q] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGBbGaam4uam aaCaaaleqabaGaaiikaiaah2gacaGGPaaaaOGaaiyxaiabg2da9iaa cUfacaWGrbGaaiyxaiaacUfacaWGtbWaaWbaaSqabeaacaGGOaGaaC yzaiaacMcaaaGccaGGDbGaai4waiaadgfacaGGDbWaaWbaaSqabeaa caWGubaaaaaa@46E1@

or, written out in full

[ S 11 (m) S 12 (m) S 13 (m) S 21 (m) S 22 (m) S 23 (m) S 31 (m) S 32 (m) S 33 (m) ]=[ m 1 e 1 m 1 e 2 m 1 e 3 m 2 e 1 m 2 e 2 m 2 e 3 m 3 e 1 m 3 e 2 m 3 e 3 ][ S 11 (e) S 12 (e) S 13 (e) S 21 (e) S 22 (e) S 23 (e) S 31 (e) S 32 (e) S 33 (e) ][ m 1 e 1 m 2 e 1 m 3 e 1 m 1 e 2 m 2 e 2 m 3 e 2 m 1 e 3 m 2 e 3 m 3 e 3 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaauaabe qadmaaaeaacaWGtbWaa0baaSqaaiaaigdacaaIXaaabaGaaiikaiaa h2gacaGGPaaaaaGcbaGaam4uamaaDaaaleaacaaIXaGaaGOmaaqaai aacIcacaWHTbGaaiykaaaaaOqaaiaadofadaqhaaWcbaGaaGymaiaa iodaaeaacaGGOaGaaCyBaiaacMcaaaaakeaacaWGtbWaa0baaSqaai aaikdacaaIXaaabaGaaiikaiaah2gacaGGPaaaaaGcbaGaam4uamaa DaaaleaacaaIYaGaaGOmaaqaaiaacIcacaWHTbGaaiykaaaaaOqaai aadofadaqhaaWcbaGaaGOmaiaaiodaaeaacaGGOaGaaCyBaiaacMca aaaakeaacaWGtbWaa0baaSqaaiaaiodacaaIXaaabaGaaiikaiaah2 gacaGGPaaaaaGcbaGaam4uamaaDaaaleaacaaIZaGaaGOmaaqaaiaa cIcacaWHTbGaaiykaaaaaOqaaiaadofadaqhaaWcbaGaaG4maiaaio daaeaacaGGOaGaaCyBaiaacMcaaaaaaaGccaGLBbGaayzxaaGaeyyp a0ZaamWaaqaabeqaaiaah2gadaWgaaWcbaGaaGymaaqabaGccqGHfl Y1caWHLbWaaSbaaSqaaiaaigdaaeqaaOGaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaCyBamaaBaaaleaacaaIXaaabeaakiabgw SixlaahwgadaWgaaWcbaGaaGOmaaqabaGccaaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caWHTbWaaSbaaSqaaiaaigdaaeqaaOGaey yXICTaaCyzamaaBaaaleaacaaIZaaabeaaaOqaaiaah2gadaWgaaWc baGaaGOmaaqabaGccqGHflY1caWHLbWaaSbaaSqaaiaaigdaaeqaaO GaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaCyBamaaBaaa leaacaaIYaaabeaakiabgwSixlaahwgadaWgaaWcbaGaaGOmaaqaba GccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWHTbWaaSba aSqaaiaaikdaaeqaaOGaeyyXICTaaCyzamaaBaaaleaacaaIZaaabe aaaOqaaiaah2gadaWgaaWcbaGaaG4maaqabaGccqGHflY1caWHLbWa aSbaaSqaaiaaigdaaeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaCyBamaaBaaaleaacaaIZaaabeaakiabgwSixlaahwga daWgaaWcbaGaaGOmaaqabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caWHTbWaaSbaaSqaaiaaiodaaeqaaOGaeyyXICTaaCyz amaaBaaaleaacaaIZaaabeaaaaGccaGLBbGaayzxaaWaamWaaeaafa qabeWadaaabaGaam4uamaaDaaaleaacaaIXaGaaGymaaqaaiaacIca caWHLbGaaiykaaaaaOqaaiaadofadaqhaaWcbaGaaGymaiaaikdaae aacaGGOaGaaCyzaiaacMcaaaaakeaacaWGtbWaa0baaSqaaiaaigda caaIZaaabaGaaiikaiaahwgacaGGPaaaaaGcbaGaam4uamaaDaaale aacaaIYaGaaGymaaqaaiaacIcacaWHLbGaaiykaaaaaOqaaiaadofa daqhaaWcbaGaaGOmaiaaikdaaeaacaGGOaGaaCyzaiaacMcaaaaake aacaWGtbWaa0baaSqaaiaaikdacaaIZaaabaGaaiikaiaahwgacaGG PaaaaaGcbaGaam4uamaaDaaaleaacaaIZaGaaGymaaqaaiaacIcaca WHLbGaaiykaaaaaOqaaiaadofadaqhaaWcbaGaaG4maiaaikdaaeaa caGGOaGaaCyzaiaacMcaaaaakeaacaWGtbWaa0baaSqaaiaaiodaca aIZaaabaGaaiikaiaahwgacaGGPaaaaaaaaOGaay5waiaaw2faamaa dmaaeaqabeaacaWHTbWaaSbaaSqaaiaaigdaaeqaaOGaeyyXICTaaC yzamaaBaaaleaacaaIXaaabeaakiaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaah2gadaWgaaWcbaGaaGOmaaqabaGccqGHflY1ca WHLbWaaSbaaSqaaiaaigdaaeqaaOGaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaCyBamaaBaaaleaacaaIZaaabeaakiabgwSixl aahwgadaWgaaWcbaGaaGymaaqabaaakeaacaWHTbWaaSbaaSqaaiaa igdaaeqaaOGaeyyXICTaaCyzamaaBaaaleaacaaIYaaabeaakiaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaah2gadaWgaaWcbaGa aGOmaaqabaGccqGHflY1caWHLbWaaSbaaSqaaiaaikdaaeqaaOGaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaCyBamaaBaaaleaa caaIZaaabeaakiabgwSixlaahwgadaWgaaWcbaGaaGOmaaqabaaake aacaWHTbWaaSbaaSqaaiaaigdaaeqaaOGaeyyXICTaaCyzamaaBaaa leaacaaIZaaabeaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaah2gadaWgaaWcbaGaaGOmaaqabaGccqGHflY1caWHLbWaaSba aSqaaiaaiodaaeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaCyBamaaBaaaleaacaaIZaaabeaakiabgwSixlaahwgadaWg aaWcbaGaaG4maaqabaaaaOGaay5waiaaw2faaaaa@71A1@

 

To prove this result, let u and v be vectors satisfying

v=Su MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH2bGaeyypa0 JaaC4uaiabgwSixlaahwhaaaa@3B9E@

Denote the components of u and v in the two bases by  u (e) _ , u (m) _ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaadaaqaaiaadw hadaahaaWcbeqaaiaacIcacaWHLbGaaiykaaaaaaGccaGGSaGaaGPa VlaaykW7caaMc8UaaGPaVpaamaaabaGaamyDamaaCaaaleqabaGaai ikaiaah2gacaGGPaaaaaaaaaa@435F@  and v (e) _ , v (m) _ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaadaaqaaiaadA hadaahaaWcbeqaaiaacIcacaWHLbGaaiykaaaaaaGccaGGSaGaaGPa VlaaykW7caaMc8UaaGPaVpaamaaabaGaamODamaaCaaaleqabaGaai ikaiaah2gacaGGPaaaaaaaaaa@4361@ , respectively.  Recall that the vector components are related by

u (m) _ =[Q] u (e) _ u (e) _ = [Q] T u (m) _ v (m) _ =[Q] v (e) _ v (e) _ = [Q] T v (m) _ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaamaamaaaba GaamyDamaaCaaaleqabaGaaiikaiaah2gacaGGPaaaaaaakiabg2da 9iaacUfacaWGrbGaaiyxamaamaaabaGaamyDamaaCaaaleqabaGaai ikaiaahwgacaGGPaaaaaaakiaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVpaamaaabaGaamyDamaaCaaaleqabaGaaiikaiaa hwgacaGGPaaaaaaakiabg2da9iaacUfacaWGrbGaaiyxamaaCaaale qabaGaamivaaaakmaamaaabaGaamyDamaaCaaaleqabaGaaiikaiaa h2gacaGGPaaaaaaaaOqaamaamaaabaGaamODamaaCaaaleqabaGaai ikaiaah2gacaGGPaaaaaaakiabg2da9iaacUfacaWGrbGaaiyxamaa maaabaGaamODamaaCaaaleqabaGaaiikaiaahwgacaGGPaaaaaaaki aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVpaamaaaba GaamODamaaCaaaleqabaGaaiikaiaahwgacaGGPaaaaaaakiabg2da 9iaacUfacaWGrbGaaiyxamaaCaaaleqabaGaamivaaaakmaamaaaba GaamODamaaCaaaleqabaGaaiikaiaah2gacaGGPaaaaaaaaaaa@90B0@

Now, we could express the tensor-vector product in either basis

v (m) _ =[ S (m) ] u (m) _ v (e) _ =[ S (e) ] u (e) _ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaadaaqaaiaadA hadaahaaWcbeqaaiaacIcacaWHTbGaaiykaaaaaaGccqGH9aqpdaWa daqaaiaadofadaahaaWcbeqaaiaacIcacaWHTbGaaiykaaaaaOGaay 5waiaaw2faamaamaaabaGaamyDamaaCaaaleqabaGaaiikaiaah2ga caGGPaaaaaaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8+aaWaaaeaacaWG2bWaaWbaaSqabeaacaGGOaGaaCyzaiaacMca aaaaaOGaeyypa0ZaamWaaeaacaWGtbWaaWbaaSqabeaacaGGOaGaaC yzaiaacMcaaaaakiaawUfacaGLDbaadaadaaqaaiaadwhadaahaaWc beqaaiaacIcacaWHLbGaaiykaaaaaaGccaaMc8UaaGPaVdaa@76DE@

Substitute for u (e) _ , v (e) _ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaadaaqaaiaadw hadaahaaWcbeqaaiaacIcacaWHLbGaaiykaaaaaaGccaGGSaGaaGPa VlaaykW7caaMc8UaaGPaVpaamaaabaGaamODamaaCaaaleqabaGaai ikaiaahwgacaGGPaaaaaaaaaa@4358@  from above into the second of these two relations, we see that

[ Q ] T v (m) _ =[ S (e) ] [ Q ] T u (m) _ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg faaiaawUfacaGLDbaadaahaaWcbeqaaiaadsfaaaGcdaadaaqaaiaa dAhadaahaaWcbeqaaiaacIcacaWHTbGaaiykaaaaaaGccqGH9aqpda WadaqaaiaadofadaahaaWcbeqaaiaacIcacaWHLbGaaiykaaaaaOGa ay5waiaaw2faamaadmaabaGaamyuaaGaay5waiaaw2faamaaCaaale qabaGaamivaaaakmaamaaabaGaamyDamaaCaaaleqabaGaaiikaiaa h2gacaGGPaaaaaaakiaaykW7aaa@4C1F@

Recall that

[ Q ] [ Q ] T =[ I ][ I ] v (m) _ = v (m) _ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg faaiaawUfacaGLDbaadaWadaqaaiaadgfaaiaawUfacaGLDbaadaah aaWcbeqaaiaadsfaaaGccqGH9aqpdaWadaqaaiaadMeaaiaawUfaca GLDbaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8+aamWaaeaacaWGjbaacaGLBbGaayzx aaWaaWaaaeaacaWG2bWaaWbaaSqabeaacaGGOaGaaCyBaiaacMcaaa aaaOGaeyypa0ZaaWaaaeaacaWG2bWaaWbaaSqabeaacaGGOaGaaCyB aiaacMcaaaaaaaaa@680A@

so multiplying both sides by [Q] shows that

v (m) _ =[ Q ][ S (e) ] [ Q ] T u (m) _ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaadaaqaaiaadA hadaahaaWcbeqaaiaacIcacaWHTbGaaiykaaaaaaGccqGH9aqpdaWa daqaaiaadgfaaiaawUfacaGLDbaadaWadaqaaiaadofadaahaaWcbe qaaiaacIcacaWHLbGaaiykaaaaaOGaay5waiaaw2faamaadmaabaGa amyuaaGaay5waiaaw2faamaaCaaaleqabaGaamivaaaakmaamaaaba GaamyDamaaCaaaleqabaGaaiikaiaah2gacaGGPaaaaaaakiaaykW7 aaa@4B0F@

so, comparing with the first of equation (1)

[ S (m) ]=[Q][ S (e) ] [Q] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGBbGaam4uam aaCaaaleqabaGaaiikaiaah2gacaGGPaaaaOGaaiyxaiabg2da9iaa cUfacaWGrbGaaiyxaiaacUfacaWGtbWaaWbaaSqabeaacaGGOaGaaC yzaiaacMcaaaGccaGGDbGaai4waiaadgfacaGGDbWaaWbaaSqabeaa caWGubaaaaaa@46E1@

as stated.

 

 

 Invariants

 

Invariants of a tensor are functions of the tensor components which remain constant under a basis change.  That is to say, the invariant has the same value when computed in two arbitrary bases { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaahw gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaCyzamaaBaaaleaacaaI YaaabeaakiaacYcacaWHLbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7b GaayzFaaaaaa@3EA6@  and { m 1 , m 2 , m 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaah2 gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaCyBamaaBaaaleaacaaI YaaabeaakiaacYcacaWHTbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7b GaayzFaaaaaa@3EBE@ .  A symmetric second order tensor always has three independent invariants.

 

Examples of invariants are

1.      The three eigenvalues

2.      The determinant

3.      The trace

4.      The inner and outer products

These are not all independent MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  for example any of 2-4 can be calculated in terms of 1.

 

 

3.4.6

 

 Identity tensor  The identity tensor I is the tensor such that, for any tensor S or vector v

Iv=vI=v SI=IS=S MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaahMeacq GHflY1caWH2bGaeyypa0JaaCODaiabgwSixlaahMeacqGH9aqpcaWH 2baabaGaaC4uaiabgwSixlaahMeacqGH9aqpcaWHjbGaeyyXICTaaC 4uaiabg2da9iaahofaaaaa@4B95@

In any basis, the identity tensor has components

[ 1 0 0 0 1 0 0 0 1 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaauaabe qadmaaaeaacaaIXaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGa aGymaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaigdaaaaaca GLBbGaayzxaaaaaa@3E0B@

 

 Symmetric Tensor A symmetric tensor S has the property

S= S T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHtbGaeyypa0 JaaC4uamaaCaaaleqabaGaamivaaaaaaa@3939@

The components of a symmetric tensor have the form

[ S 11 S 12 S 13 S 12 S 22 S 23 S 13 S 23 S 33 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaauaabe qadmaaaeaacaWGtbWaaSbaaSqaaiaaigdacaaIXaaabeaaaOqaaiaa dofadaWgaaWcbaGaaGymaiaaikdaaeqaaaGcbaGaam4uamaaBaaale aacaaIXaGaaG4maaqabaaakeaacaWGtbWaaSbaaSqaaiaaigdacaaI YaaabeaaaOqaaiaadofadaWgaaWcbaGaaGOmaiaaikdaaeqaaaGcba Gaam4uamaaBaaaleaacaaIYaGaaG4maaqabaaakeaacaWGtbWaaSba aSqaaiaaigdacaaIZaaabeaaaOqaaiaadofadaWgaaWcbaGaaGOmai aaiodaaeqaaaGcbaGaam4uamaaBaaaleaacaaIZaGaaG4maaqabaaa aaGccaGLBbGaayzxaaaaaa@4E34@

so that there are only six independent components of the tensor, instead of nine.

 

 Skew Tensor  A skew tensor S has the property

S T =S MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHtbWaaWbaaS qabeaacaWGubaaaOGaeyypa0JaeyOeI0IaaC4uaaaa@3A30@

The components of a skew tensor have the form

[ 0 S 12 S 13 S 12 0 S 23 S 13 S 23 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaauaabe qadmaaaeaacaaIWaaabaGaam4uamaaBaaaleaacaaIXaGaaGOmaaqa baaakeaacaWGtbWaaSbaaSqaaiaaigdacaaIZaaabeaaaOqaaiabgk HiTiaadofadaWgaaWcbaGaaGymaiaaikdaaeqaaaGcbaGaaGimaaqa aiaadofadaWgaaWcbaGaaGOmaiaaiodaaeqaaaGcbaGaeyOeI0Iaam 4uamaaBaaaleaacaaIXaGaaG4maaqabaaakeaacqGHsislcaWGtbWa aSbaaSqaaiaaikdacaaIZaaabeaaaOqaaiaaicdaaaaacaGLBbGaay zxaaaaaa@4B97@

 

 Orthogonal Tensors An orthogonal tensor S has the property

S S T = S T S=I S 1 = S T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaahofacq GHflY1caWHtbWaaWbaaSqabeaacaWGubaaaOGaeyypa0JaaC4uamaa CaaaleqabaGaamivaaaakiabgwSixlaahofacqGH9aqpcaWHjbaaba GaaC4uamaaCaaaleqabaGaeyOeI0IaaGymaaaakiabg2da9iaahofa daahaaWcbeqaaiaadsfaaaaaaaa@4821@

An orthogonal tensor must have det(S)=±1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGKbGaaiyzai aacshacaGGOaGaaC4uaiaacMcacqGH9aqpcqGHXcqScaaIXaaaaa@3E24@ ; a tensor with det(S)=+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGKbGaaiyzai aacshacaGGOaGaaC4uaiaacMcacqGH9aqpcqGHRaWkcaaIXaaaaa@3D18@  is known as a proper orthogonal tensor.

 

 

3.5 Vectors and Tensors in Spherical-Polar Coordinates

 

3.5.1 Specifying points in spherical-polar coordinates

To specify points in space using spherical-polar coordinates, we first choose two convenient, mutually perpendicular reference directions (i and k in the picture).  For example, to specify position on the Earth’s surface, we might choose k to point from the center of the earth towards the North Pole, and choose i to point from the center of the earth towards the intersection of the equator (which has zero degrees latitude) and the Greenwich Meridian (which has zero degrees longitude, by definition).

 

Then, each point P in space is identified by three numbers, R,θ,ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGsbGaaiilai abeI7aXjaacYcacqaHvpGzcaaMc8oaaa@3CB5@  shown in the picture above.  These are not components of a vector.

 

In words:

R is the distance of P from the origin

θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH4oqCaaa@372B@  is the angle between the k direction and OP

ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHvpGzaaa@373D@  is the angle between the i direction and the projection of OP onto a plane through O normal to k

 

By convention, we choose  R0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGsbGaeyyzIm RaaGimaaaa@38CC@ 0θ 180 o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaaIWaGaeyizIm QaeqiUdeNaeyizImQaaGymaiaaiIdacaaIWaWaaWbaaSqabeaacaWG Vbaaaaaa@3EA7@  and 0ϕ 360 o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaaIWaGaeyizIm Qaeqy1dyMaeyizImQaaG4maiaaiAdacaaIWaWaaWbaaSqabeaacaWG Vbaaaaaa@3EB9@

 

3.5.2 Converting between Cartesian and Spherical-Polar representations of points

 

When we use a Cartesian basis, we identify points in space by specifying the components of their position vector relative to the origin (x,y,z), such that r=xi+yj+zk MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHYbGaeyypa0 JaamiEaiaahMgacqGHRaWkcaWG5bGaaCOAaiabgUcaRiaadQhacaWH Rbaaaa@3F0E@   When we use a spherical-polar coordinate system, we locate points by specifying their spherical-polar coordinates R,θ,ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGsbGaaiilai abeI7aXjaacYcacqaHvpGzaaa@3B2A@

 

The formulas below relate the two representations.  They are derived using basic trigonometry

x=Rsinθcosϕ y=Rsinθsinϕ z=Rcosθ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaadIhacq GH9aqpcaWGsbGaci4CaiaacMgacaGGUbGaeqiUdeNaci4yaiaac+ga caGGZbGaeqy1dyMaaGPaVdqaaiaadMhacqGH9aqpcaWGsbGaci4Cai aacMgacaGGUbGaeqiUdeNaci4CaiaacMgacaGGUbGaeqy1dygabaGa amOEaiabg2da9iaadkfaciGGJbGaai4BaiaacohacqaH4oqCaaaa@5679@                     R= x 2 + y 2 + z 2 θ= cos 1 z/R ϕ= tan 1 y/x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaadkfacq GH9aqpdaGcaaqaaiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHRaWk caWG5bWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamOEamaaCaaale qabaGaaGOmaaaaaeqaaOGaaGPaVdqaaiabeI7aXjabg2da9iGacoga caGGVbGaai4CamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaadQhaca GGVaGaamOuaaqaaiabew9aMjabg2da9iGacshacaGGHbGaaiOBamaa CaaaleqabaGaeyOeI0IaaGymaaaakiaadMhacaGGVaGaamiEaaaaaa@54AF@

 

3.5.3 Spherical-Polar representation of vectors

 

When we work with vectors in spherical-polar coordinates, we abandon the {i,j,k} basis.  Instead, we specify vectors as components in the { e R , e θ , e ϕ } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGG7bGaaCyzam aaBaaaleaacaWGsbaabeaakiaacYcacaWHLbWaaSbaaSqaaiabeI7a XbqabaGccaGGSaGaaCyzamaaBaaaleaacqaHvpGzaeqaaOGaaiyFaa aa@4096@  basis shown in the figure.  For example, an arbitrary vector a is written as a= a R e R + a θ e θ + a ϕ e ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHHbGaeyypa0 JaamyyamaaBaaaleaacaWGsbaabeaakiaahwgadaWgaaWcbaGaamOu aaqabaGccqGHRaWkcaWGHbWaaSbaaSqaaiabeI7aXbqabaGccaWHLb WaaSbaaSqaaiabeI7aXbqabaGccqGHRaWkcaWGHbWaaSbaaSqaaiab ew9aMbqabaGccaWHLbWaaSbaaSqaaiabew9aMbqabaGccaaMc8oaaa@4A1E@ , where ( a R , a θ , a ϕ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaamyyam aaBaaaleaacaWGsbaabeaakiaacYcacaWGHbWaaSbaaSqaaiabeI7a XbqabaGccaGGSaGaamyyamaaBaaaleaacqaHvpGzaeqaaOGaaiykaa aa@3FD8@  denote the components of a.

 

The basis is different for each point P.  In words

e R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHLbWaaSbaaS qaaiaadkfaaeqaaaaa@3766@  points along OP

e θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHLbWaaSbaaS qaaiabeI7aXbqabaaaaa@3845@  is tangent to a line of constant longitude through P

e ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHLbWaaSbaaS qaaiabew9aMbqabaaaaa@3857@  is tangent to a line of constant latitude through P.

 

For example if polar-coordinates are used to specify points on the Earth’s surface,  you can visualize the basis vectors like this.  Suppose you stand at a point P on the Earths surface.  Relative to you: e R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHLbWaaSbaaS qaaiaadkfaaeqaaaaa@3766@  points vertically upwards; e θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHLbWaaSbaaS qaaiabeI7aXbqabaaaaa@3845@  points due South; and e ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHLbWaaSbaaS qaaiabew9aMbqabaaaaa@3857@  points due East. Notice that the basis vectors depend on where you are standing.

 

You can also visualize the directions as follows.  To see the direction of e R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHLbWaaSbaaS qaaiaadkfaaeqaaaaa@3766@ , keep θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH4oqCaaa@372B@  and ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHvpGzaaa@373D@  fixed, and increase R. P is moving parallel to e R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHLbWaaSbaaS qaaiaadkfaaeqaaaaa@3766@ .  To see the direction of e θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHLbWaaSbaaS qaaiabeI7aXbqabaaaaa@3845@ , keep R and ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHvpGzaaa@373D@  fixed, and increase θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH4oqCaaa@372B@ . P now moves parallel to  e θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHLbWaaSbaaS qaaiabeI7aXbqabaaaaa@3845@ .  To see the direction of e ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHLbWaaSbaaS qaaiabew9aMbqabaaaaa@3857@ , keep R and θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH4oqCaaa@372B@  fixed, and increase ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHvpGzaaa@373D@ .  P now moves parallel to e ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHLbWaaSbaaS qaaiabew9aMbqabaaaaa@3857@ .  Mathematically, this concept can be expressed as follows.  Let r be the position vector of P.  Then

e R = 1 | r R | r R e θ = 1 | r θ | r θ e ϕ = 1 | r ϕ | r ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHLbWaaSbaaS qaaiaadkfaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaWaaqWaaeaa daWcaaqaaiabgkGi2kaahkhaaeaacqGHciITcaWGsbaaaaGaay5bSl aawIa7aaaadaWcaaqaaiabgkGi2kaahkhaaeaacqGHciITcaWGsbaa aiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaahwgadaWgaaWcbaGaeqiUdehabeaakiabg2da9m aalaaabaGaaGymaaqaamaaemaabaWaaSaaaeaacqGHciITcaWHYbaa baGaeyOaIyRaeqiUdehaaaGaay5bSlaawIa7aaaadaWcaaqaaiabgk Gi2kaahkhaaeaacqGHciITcqaH4oqCaaGaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaCyzamaa BaaaleaacqaHvpGzaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaWaaq WaaeaadaWcaaqaaiabgkGi2kaahkhaaeaacqGHciITcqaHvpGzaaaa caGLhWUaayjcSdaaamaalaaabaGaeyOaIyRaaCOCaaqaaiabgkGi2k abew9aMbaaaaa@A34F@

By definition, the `natural basis’ for a coordinate system is the derivative of the position vector with respect to the three scalar coordinates that are used to characterize position in space (see Chapter 10 for a more detailed discussion).  The basis vectors for a polar coordinate system are parallel to the natural basis vectors, but are normalized to have unit length.  In addition, the natural basis for a polar coordinate system happens to be orthogonal. Consequently, { e R , e θ , e ϕ } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGG7bGaaCyzam aaBaaaleaacaWGsbaabeaakiaacYcacaWHLbWaaSbaaSqaaiabeI7a XbqabaGccaGGSaGaaCyzamaaBaaaleaacqaHvpGzaeqaaOGaaiyFaa aa@4096@  is an orthonormal basis (basis vectors have unit length, are mutually perpendicular and form a right handed triad)

 

 

3.5.4 Converting vectors between Cartesian and Spherical-Polar bases

 

Let a= a R e R + a θ e θ + a ϕ e ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHHbGaeyypa0 JaamyyamaaBaaaleaacaWGsbaabeaakiaahwgadaWgaaWcbaGaamOu aaqabaGccqGHRaWkcaWGHbWaaSbaaSqaaiabeI7aXbqabaGccaWHLb WaaSbaaSqaaiabeI7aXbqabaGccqGHRaWkcaWGHbWaaSbaaSqaaiab ew9aMbqabaGccaWHLbWaaSbaaSqaaiabew9aMbqabaGccaaMc8oaaa@4A1E@  be a vector, with components ( a R , a θ , a ϕ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaamyyam aaBaaaleaacaWGsbaabeaakiaacYcacaWGHbWaaSbaaSqaaiabeI7a XbqabaGccaGGSaGaamyyamaaBaaaleaacqaHvpGzaeqaaOGaaiykaa aa@3FD8@  in the spherical-polar basis { e R , e θ , e ϕ } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGG7bGaaCyzam aaBaaaleaacaWGsbaabeaakiaacYcacaWHLbWaaSbaaSqaaiabeI7a XbqabaGccaGGSaGaaCyzamaaBaaaleaacqaHvpGzaeqaaOGaaiyFaa aa@4096@ .  Let a x , a y , a z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaadIhaaeqaaOGaaiilaiaadggadaWgaaWcbaGaamyEaaqabaGc caGGSaGaamyyamaaBaaaleaacaWG6baabeaaaaa@3D19@  denote the components of a in the basis {i,j,k}.

 

The two sets of components are related by

[ a x a y a z ]=[ sinθcosϕ cosθcosϕ sinϕ sinθsinϕ cosθsinϕ cosϕ cosθ sinθ 0 ][ a R a θ a ϕ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaauaabe qadeaaaeaacaWGHbWaaSbaaSqaaiaadIhaaeqaaaGcbaGaamyyamaa BaaaleaacaWG5baabeaaaOqaaiaadggadaWgaaWcbaGaamOEaaqaba aaaaGccaGLBbGaayzxaaGaeyypa0ZaamWaaeaafaqabeWadaaabaGa ci4CaiaacMgacaGGUbGaeqiUdeNaci4yaiaac+gacaGGZbGaeqy1dy gabaGaci4yaiaac+gacaGGZbGaeqiUdeNaci4yaiaac+gacaGGZbGa eqy1dygabaGaeyOeI0Iaci4CaiaacMgacaGGUbGaeqy1dygabaGaci 4CaiaacMgacaGGUbGaeqiUdeNaci4CaiaacMgacaGGUbGaeqy1dyga baGaci4yaiaac+gacaGGZbGaeqiUdeNaci4CaiaacMgacaGGUbGaeq y1dygabaGaci4yaiaac+gacaGGZbGaeqy1dygabaGaci4yaiaac+ga caGGZbGaeqiUdehabaGaeyOeI0Iaci4CaiaacMgacaGGUbGaeqiUde habaGaaGimaaaaaiaawUfacaGLDbaadaWadaqaauaabeqadeaaaeaa caWGHbWaaSbaaSqaaiaadkfaaeqaaaGcbaGaamyyamaaBaaaleaacq aH4oqCaeqaaaGcbaGaamyyamaaBaaaleaacqaHvpGzaeqaaaaaaOGa ay5waiaaw2faaiaaykW7aaa@8592@

while the inverse relationship is

[ a R a θ a ϕ ]=[ sinθcosϕ sinθsinϕ cosθ cosθcosϕ cosθsinϕ sinθ sinϕ cosϕ 0 ][ a x a y a z ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaauaabe qadeaaaeaacaWGHbWaaSbaaSqaaiaadkfaaeqaaaGcbaGaamyyamaa BaaaleaacqaH4oqCaeqaaaGcbaGaamyyamaaBaaaleaacqaHvpGzae qaaaaaaOGaay5waiaaw2faaiabg2da9maadmaabaqbaeqabmWaaaqa aiGacohacaGGPbGaaiOBaiabeI7aXjGacogacaGGVbGaai4Caiabew 9aMbqaaiGacohacaGGPbGaaiOBaiabeI7aXjGacohacaGGPbGaaiOB aiabew9aMbqaaiGacogacaGGVbGaai4CaiabeI7aXbqaaiGacogaca GGVbGaai4CaiabeI7aXjGacogacaGGVbGaai4Caiabew9aMbqaaiGa cogacaGGVbGaai4CaiabeI7aXjGacohacaGGPbGaaiOBaiabew9aMb qaaiabgkHiTiGacohacaGGPbGaaiOBaiabeI7aXbqaaiabgkHiTiGa cohacaGGPbGaaiOBaiabew9aMbqaaiGacogacaGGVbGaai4Caiabew 9aMbqaaiaaicdaaaaacaGLBbGaayzxaaWaamWaaeaafaqabeWabaaa baGaamyyamaaBaaaleaacaWG4baabeaaaOqaaiaadggadaWgaaWcba GaamyEaaqabaaakeaacaWGHbWaaSbaaSqaaiaadQhaaeqaaaaaaOGa ay5waiaaw2faaiaaykW7aaa@8592@

 

Observe that the two 3x3 matrices involved in this transformation are transposes (and inverses) of one another.   The transformation matrix is therefore orthogonal, satisfying [Q] [Q] T =[I] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGBbGaamyuai aac2facaGGBbGaamyuaiaac2fadaahaaWcbeqaaiaadsfaaaGccqGH 9aqpcaGGBbGaamysaiaac2faaaa@3F46@ , where [I] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGBbGaamysai aac2faaaa@3804@  denotes the 3x3 identity matrix.

 

Derivation: It is easiest to do the transformation by expressing each basis vector { e R , e θ , e ϕ } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGG7bGaaCyzam aaBaaaleaacaWGsbaabeaakiaacYcacaWHLbWaaSbaaSqaaiabeI7a XbqabaGccaGGSaGaaCyzamaaBaaaleaacqaHvpGzaeqaaOGaaiyFaa aa@4096@  as components in {i,j,k}, and then substituting.  To do this, recall that r=xi+yj+zk MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHYbGaeyypa0 JaamiEaiaahMgacqGHRaWkcaWG5bGaaCOAaiabgUcaRiaadQhacaWH Rbaaaa@3F0D@ , recall also the conversion

x=Rsinθcosϕy=Rsinθsinϕz=Rcosθ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4bGaeyypa0 JaamOuaiGacohacaGGPbGaaiOBaiabeI7aXjGacogacaGGVbGaai4C aiabew9aMjaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caWG5bGaeyypa0JaamOuaiGacohacaGGPbGaaiOBaiabeI7aXjGa cohacaGGPbGaaiOBaiabew9aMjaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa dQhacqGH9aqpcaWGsbGaci4yaiaac+gacaGGZbGaeqiUdehaaa@7237@

and finally recall that by definition

e R = 1 | r R | r R e θ = 1 | r θ | r θ e ϕ = 1 | r ϕ | r ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHLbWaaSbaaS qaaiaadkfaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaWaaqWaaeaa daWcaaqaaiabgkGi2kaahkhaaeaacqGHciITcaWGsbaaaaGaay5bSl aawIa7aaaadaWcaaqaaiabgkGi2kaahkhaaeaacqGHciITcaWGsbaa aiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaeyypa0ZaaSaaae aacaaIXaaabaWaaqWaaeaadaWcaaqaaiabgkGi2kaahkhaaeaacqGH ciITcqaH4oqCaaaacaGLhWUaayjcSdaaamaalaaabaGaeyOaIyRaaC OCaaqaaiabgkGi2kabeI7aXbaacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWHLbWaaSbaaSqa aiabew9aMbqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaadaabdaqaam aalaaabaGaeyOaIyRaaCOCaaqaaiabgkGi2kabew9aMbaaaiaawEa7 caGLiWoaaaWaaSaaaeaacqGHciITcaWHYbaabaGaeyOaIyRaeqy1dy gaaaaa@A1C4@

Hence, substituting for x,y,z and differentiating

r=Rsinθcosϕi+Rsinθsinϕj+Rcosθk r R =sinθcosϕi+sinθsinϕj+cosθk MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaahkhacq GH9aqpcaWGsbGaci4CaiaacMgacaGGUbGaeqiUdeNaci4yaiaac+ga caGGZbGaeqy1dyMaaCyAaiabgUcaRiaadkfaciGGZbGaaiyAaiaac6 gacqaH4oqCciGGZbGaaiyAaiaac6gacqaHvpGzcaWHQbGaey4kaSIa amOuaiGacogacaGGVbGaai4CaiabeI7aXjaahUgacaaMc8oabaGaey O0H49aaSaaaeaacqGHciITcaWHYbaabaGaeyOaIyRaamOuaaaacqGH 9aqpciGGZbGaaiyAaiaac6gacqaH4oqCciGGJbGaai4Baiaacohacq aHvpGzcaWHPbGaey4kaSIaci4CaiaacMgacaGGUbGaeqiUdeNaci4C aiaacMgacaGGUbGaeqy1dyMaaCOAaiabgUcaRiGacogacaGGVbGaai 4CaiabeI7aXjaahUgaaaaa@7A98@

Conveniently we find that | r R |=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaabdaqaamaala aabaGaeyOaIyRaaCOCaaqaaiabgkGi2kaadkfaaaaacaGLhWUaayjc SdGaeyypa0JaaGymaaaa@3F06@ . Therefore

e R =sinθcosϕi+sinθsinϕj+cosθk MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHLbWaaSbaaS qaaiaadkfaaeqaaOGaeyypa0Jaci4CaiaacMgacaGGUbGaeqiUdeNa ci4yaiaac+gacaGGZbGaeqy1dyMaaCyAaiabgUcaRiGacohacaGGPb GaaiOBaiabeI7aXjGacohacaGGPbGaaiOBaiabew9aMjaahQgacqGH RaWkciGGJbGaai4BaiaacohacqaH4oqCcaWHRbGaaGPaVdaa@557E@

Similarly

r θ =Rcosθcosϕi+RcosθsinϕjRsinθk r ϕ =Rsinθsinϕi+Rsinθcosϕj MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaamaalaaaba GaeyOaIyRaaCOCaaqaaiabgkGi2kabeI7aXbaacqGH9aqpcaWGsbGa ci4yaiaac+gacaGGZbGaeqiUdeNaci4yaiaac+gacaGGZbGaeqy1dy MaaCyAaiabgUcaRiaadkfaciGGJbGaai4BaiaacohacqaH4oqCciGG ZbGaaiyAaiaac6gacqaHvpGzcaWHQbGaeyOeI0IaamOuaiGacohaca GGPbGaaiOBaiabeI7aXjaahUgacaaMc8oabaWaaSaaaeaacqGHciIT caWHYbaabaGaeyOaIyRaeqy1dygaaiabg2da9iabgkHiTiaadkfaci GGZbGaaiyAaiaac6gacqaH4oqCciGGZbGaaiyAaiaac6gacqaHvpGz caWHPbGaey4kaSIaamOuaiGacohacaGGPbGaaiOBaiabeI7aXjGaco gacaGGVbGaai4Caiabew9aMjaahQgacaaMc8oaaaa@7B8B@

while | r θ |=R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaabdaqaamaala aabaGaeyOaIyRaaCOCaaqaaiabgkGi2kabeI7aXbaaaiaawEa7caGL iWoacqGH9aqpcaWGsbaaaa@4001@ , | r ϕ |=Rsinθ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaabdaqaamaala aabaGaeyOaIyRaaCOCaaqaaiabgkGi2kabew9aMbaaaiaawEa7caGL iWoacqGH9aqpcaWGsbGaci4CaiaacMgacaGGUbGaeqiUdehaaa@44A1@  so that

e θ =cosθcosϕi+cosθsinϕjsinθk MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHLbWaaSbaaS qaaiabeI7aXbqabaGccqGH9aqpciGGJbGaai4BaiaacohacqaH4oqC ciGGJbGaai4BaiaacohacqaHvpGzcaWHPbGaey4kaSIaci4yaiaac+ gacaGGZbGaeqiUdeNaci4CaiaacMgacaGGUbGaeqy1dyMaaCOAaiab gkHiTiGacohacaGGPbGaaiOBaiabeI7aXjaahUgacaaMc8oaaa@5663@      e ϕ =sinϕi+cosϕj MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHLbWaaSbaaS qaaiabew9aMbqabaGccqGH9aqpcqGHsislciGGZbGaaiyAaiaac6ga cqaHvpGzcaWHPbGaey4kaSIaci4yaiaac+gacaGGZbGaeqy1dyMaaC OAaiaaykW7aaa@47E1@

Finally, substituting

a= a R [sinθcosϕi+sinθsinϕj+cosθk] + a θ [cosθcosϕi+cosθsinϕjsinθk] + a ϕ [sinϕi+cosϕj] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaahggacq GH9aqpcaWGHbWaaSbaaSqaaiaadkfaaeqaaOGaai4waiGacohacaGG PbGaaiOBaiabeI7aXjGacogacaGGVbGaai4Caiabew9aMjaahMgacq GHRaWkciGGZbGaaiyAaiaac6gacqaH4oqCciGGZbGaaiyAaiaac6ga cqaHvpGzcaWHQbGaey4kaSIaci4yaiaac+gacaGGZbGaeqiUdeNaaC 4Aaiaac2facaaMc8oabaGaaGzaVlaaygW7caaMb8UaaGzaVlaaykW7 caaMc8UaaGPaVlaaykW7cqGHRaWkcaWGHbWaaSbaaSqaaiabeI7aXb qabaGccaGGBbGaci4yaiaac+gacaGGZbGaeqiUdeNaci4yaiaac+ga caGGZbGaeqy1dyMaaCyAaiabgUcaRiGacogacaGGVbGaai4CaiabeI 7aXjGacohacaGGPbGaaiOBaiabew9aMjaahQgacqGHsislciGGZbGa aiyAaiaac6gacqaH4oqCcaWHRbGaaiyxaaqaaiaaygW7caaMb8UaaG zaVlaaygW7caaMb8UaaGPaVlaaykW7caaMc8UaaGPaVlabgUcaRiaa dggadaWgaaWcbaGaeqy1dygabeaakiaacUfacqGHsislciGGZbGaai yAaiaac6gacqaHvpGzcaWHPbGaey4kaSIaci4yaiaac+gacaGGZbGa eqy1dyMaaCOAaiaac2faaaaa@A5C6@

Collecting terms in i, j and k, we see that

a x =sinθcosϕ a R +cosθcosϕ a θ sinϕ a ϕ a y =sinθsinϕ a R +cosθsinϕ a θ +cosϕ a ϕ a z =cosθ a R sinθ a θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaadggada WgaaWcbaGaamiEaaqabaGccqGH9aqpciGGZbGaaiyAaiaac6gacqaH 4oqCciGGJbGaai4BaiaacohacqaHvpGzcaWGHbWaaSbaaSqaaiaadk faaeqaaOGaey4kaSIaci4yaiaac+gacaGGZbGaeqiUdeNaci4yaiaa c+gacaGGZbGaeqy1dyMaamyyamaaBaaaleaacqaH4oqCaeqaaOGaey OeI0Iaci4CaiaacMgacaGGUbGaeqy1dyMaamyyamaaBaaaleaacqaH vpGzaeqaaaGcbaGaamyyamaaBaaaleaacaWG5baabeaakiabg2da9i GacohacaGGPbGaaiOBaiabeI7aXjGacohacaGGPbGaaiOBaiabew9a MjaadggadaWgaaWcbaGaamOuaaqabaGccqGHRaWkciGGJbGaai4Bai aacohacqaH4oqCciGGZbGaaiyAaiaac6gacqaHvpGzcaWGHbWaaSba aSqaaiabeI7aXbqabaGccqGHRaWkciGGJbGaai4BaiaacohacqaHvp GzcaWGHbWaaSbaaSqaaiabew9aMbqabaaakeaacaWGHbWaaSbaaSqa aiaadQhaaeqaaOGaeyypa0Jaci4yaiaac+gacaGGZbGaeqiUdeNaam yyamaaBaaaleaacaWGsbaabeaakiabgkHiTiGacohacaGGPbGaaiOB aiabeI7aXjaadggadaWgaaWcbaGaeqiUdehabeaakiaaykW7aaaa@8FF5@

This is the result stated.

 

To show the inverse result, start by noting that

a= a R e R + a θ e θ + a ϕ e ϕ = a x i+ a y j+ a z k a e R = a R = a x i e R + a y j e R + a z k e R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaahggacq GH9aqpcaWGHbWaaSbaaSqaaiaadkfaaeqaaOGaaCyzamaaBaaaleaa caWGsbaabeaakiabgUcaRiaadggadaWgaaWcbaGaeqiUdehabeaaki aahwgadaWgaaWcbaGaeqiUdehabeaakiabgUcaRiaadggadaWgaaWc baGaeqy1dygabeaakiaahwgadaWgaaWcbaGaeqy1dygabeaakiabg2 da9iaadggadaWgaaWcbaGaamiEaaqabaGccaWHPbGaey4kaSIaamyy amaaBaaaleaacaWG5baabeaakiaahQgacqGHRaWkcaWGHbWaaSbaaS qaaiaadQhaaeqaaOGaaC4AaiaaykW7aeaacqGHshI3caWHHbGaeyyX ICTaaCyzamaaBaaaleaacaWGsbaabeaakiabg2da9iaadggadaWgaa WcbaGaamOuaaqabaGccqGH9aqpcaWGHbWaaSbaaSqaaiaadIhaaeqa aOGaaCyAaiabgwSixlaahwgadaWgaaWcbaGaamOuaaqabaGccqGHRa WkcaWGHbWaaSbaaSqaaiaadMhaaeqaaOGaaCOAaiabgwSixlaahwga daWgaaWcbaGaamOuaaqabaGccqGHRaWkcaWGHbWaaSbaaSqaaiaadQ haaeqaaOGaaC4AaiabgwSixlaahwgadaWgaaWcbaGaamOuaaqabaaa aaa@7951@

(where we have used e θ e R = e ϕ e R =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHLbWaaSbaaS qaaiabeI7aXbqabaGccqGHflY1caWHLbWaaSbaaSqaaiaadkfaaeqa aOGaeyypa0JaaCyzamaaBaaaleaacqaHvpGzaeqaaOGaeyyXICTaaC yzamaaBaaaleaacaWGsbaabeaakiabg2da9iaaicdaaaa@468B@  ).  Recall that

e R =sinθcosϕi+sinθsinϕj+cosθk i e R =sinθcosϕj e R =sinθsinϕk e R =cosθ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaahwgada WgaaWcbaGaamOuaaqabaGccqGH9aqpciGGZbGaaiyAaiaac6gacqaH 4oqCciGGJbGaai4BaiaacohacqaHvpGzcaWHPbGaey4kaSIaci4Cai aacMgacaGGUbGaeqiUdeNaci4CaiaacMgacaGGUbGaeqy1dyMaaCOA aiabgUcaRiGacogacaGGVbGaai4CaiabeI7aXjaahUgacaaMc8oaba GaeyO0H4TaaCyAaiabgwSixlaahwgadaWgaaWcbaGaamOuaaqabaGc cqGH9aqpciGGZbGaaiyAaiaac6gacqaH4oqCciGGJbGaai4Baiaaco hacqaHvpGzcaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaahQgacqGHflY1caWHLbWaaSbaaSqaaiaadkfaaeqaaO Gaeyypa0Jaci4CaiaacMgacaGGUbGaeqiUdeNaci4CaiaacMgacaGG UbGaeqy1dyMaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWHRbGaey yXICTaaCyzamaaBaaaleaacaWGsbaabeaakiabg2da9iGacogacaGG VbGaai4CaiabeI7aXbaaaa@958B@

Substituting, we get

a R =sinθcosϕ a x +sinθsinϕ a y +cosθ a z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaadkfaaeqaaOGaeyypa0Jaci4CaiaacMgacaGGUbGaeqiUdeNa ci4yaiaac+gacaGGZbGaeqy1dyMaamyyamaaBaaaleaacaWG4baabe aakiabgUcaRiGacohacaGGPbGaaiOBaiabeI7aXjGacohacaGGPbGa aiOBaiabew9aMjaadggadaWgaaWcbaGaamyEaaqabaGccqGHRaWkci GGJbGaai4BaiaacohacqaH4oqCcaWGHbWaaSbaaSqaaiaadQhaaeqa aOGaaGPaVdaa@58EB@

Proceeding in exactly the same way for the other two components gives the remaining expressions

a θ =cosθcosϕ a x +cosθsinϕ a y sinθ a z a ϕ =sinϕ a x +cosϕ a y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaadggada WgaaWcbaGaeqiUdehabeaakiabg2da9iGacogacaGGVbGaai4Caiab eI7aXjGacogacaGGVbGaai4Caiabew9aMjaadggadaWgaaWcbaGaam iEaaqabaGccqGHRaWkciGGJbGaai4BaiaacohacqaH4oqCciGGZbGa aiyAaiaac6gacqaHvpGzcaWGHbWaaSbaaSqaaiaadMhaaeqaaOGaey OeI0Iaci4CaiaacMgacaGGUbGaeqiUdeNaamyyamaaBaaaleaacaWG 6baabeaakiaaykW7aeaacaWGHbWaaSbaaSqaaiabew9aMbqabaGccq GH9aqpcqGHsislciGGZbGaaiyAaiaac6gacqaHvpGzcaWGHbWaaSba aSqaaiaadIhaaeqaaOGaey4kaSIaci4yaiaac+gacaGGZbGaeqy1dy MaamyyamaaBaaaleaacaWG5baabeaaaaaa@6CF4@

Re-writing the last three equations in matrix form gives the result stated.

 

 

 

3.5.5 Spherical-Polar representation of tensors

 

The triad of vectors { e R , e θ , e ϕ } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGG7bGaaCyzam aaBaaaleaacaWGsbaabeaakiaacYcacaWHLbWaaSbaaSqaaiabeI7a XbqabaGccaGGSaGaaCyzamaaBaaaleaacqaHvpGzaeqaaOGaaiyFaa aa@4096@  is an orthonormal basis (i.e. the three basis vectors have unit length, and are mutually perpendicular).  Consequently, tensors can be represented as components in this basis in exactly the same way as for a fixed Cartesian basis { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGG7bGaaCyzam aaBaaaleaacaaIXaaabeaakiaacYcacaWHLbWaaSbaaSqaaiaaikda aeqaaOGaaiilaiaahwgadaWgaaWcbaGaaG4maaqabaGccaGG9baaaa@3E75@ .  In particular, a general second order tensor S can be represented as a 3x3 matrix

S[ S RR S Rθ S Rϕ S θR S θθ S θϕ S ϕR S ϕθ S ϕϕ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHtbGaeyyyIO 7aamWaaeaafaqabeWadaaabaGaam4uamaaBaaaleaacaWGsbGaamOu aaqabaaakeaacaWGtbWaaSbaaSqaaiaadkfacqaH4oqCaeqaaaGcba Gaam4uamaaBaaaleaacaWGsbGaeqy1dygabeaaaOqaaiaadofadaWg aaWcbaGaeqiUdeNaamOuaaqabaaakeaacaWGtbWaaSbaaSqaaiabeI 7aXjabeI7aXbqabaaakeaacaWGtbWaaSbaaSqaaiabeI7aXjabew9a MbqabaaakeaacaWGtbWaaSbaaSqaaiabew9aMjaadkfaaeqaaaGcba Gaam4uamaaBaaaleaacqaHvpGzcqaH4oqCaeqaaaGcbaGaam4uamaa BaaaleaacqaHvpGzcqaHvpGzaeqaaaaaaOGaay5waiaaw2faaaaa@5D9F@

You can think of S RR MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGtbWaaSbaaS qaaiaadkfacaWGsbaabeaaaaa@3828@  as being equivalent to S 11 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGtbWaaSbaaS qaaiaaigdacaaIXaaabeaaaaa@37F0@ , S Rθ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGtbWaaSbaaS qaaiaadkfacqaH4oqCaeqaaaaa@3907@  as S 12 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGtbWaaSbaaS qaaiaaigdacaaIYaaabeaaaaa@37F1@ , and so on. All tensor operations such as addition, multiplication by a vector, tensor products, etc can be expressed in terms of the corresponding operations on this matrix, as discussed in Section B2 of Appendix B.

 

 

The component representation of a tensor can also be expressed in dyadic form as

S= S RR e R e R + S Rθ e R e θ + S Rϕ e R e ϕ + S θR e θ e R + S θθ e θ e θ + S θϕ e θ e ϕ + S ϕR e ϕ e R + S ϕθ e ϕ e θ + S ϕϕ e ϕ e ϕ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaahofacq GH9aqpcaaMc8UaaGPaVlaaykW7caaMc8Uaam4uamaaBaaaleaacaWG sbGaamOuaaqabaGccaWHLbWaaSbaaSqaaiaadkfaaeqaaOGaey4LIq SaaCyzamaaBaaaleaacaWGsbaabeaakiabgUcaRiaadofadaWgaaWc baGaamOuaiabeI7aXbqabaGccaWHLbWaaSbaaSqaaiaadkfaaeqaaO Gaey4LIqSaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaey4kaSIaam4u amaaBaaaleaacaWGsbGaeqy1dygabeaakiaahwgadaWgaaWcbaGaam OuaaqabaGccqGHxkcXcaWHLbWaaSbaaSqaaiabew9aMbqabaaakeaa caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGHRaWkcaaMc8 Uaam4uamaaBaaaleaacqaH4oqCcaWGsbaabeaakiaahwgadaWgaaWc baGaeqiUdehabeaakiabgEPielaahwgadaWgaaWcbaGaamOuaaqaba GccqGHRaWkcaWGtbWaaSbaaSqaaiabeI7aXjabeI7aXbqabaGccaWH LbWaaSbaaSqaaiabeI7aXbqabaGccqGHxkcXcaWHLbWaaSbaaSqaai abeI7aXbqabaGccqGHRaWkcaWGtbWaaSbaaSqaaiabeI7aXjabew9a MbqabaGccaWHLbWaaSbaaSqaaiabeI7aXbqabaGccqGHxkcXcaWHLb WaaSbaaSqaaiabew9aMbqabaaakeaacaaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7cqGHRaWkcaWGtbWaaSbaaSqaaiabew9aMjaadk faaeqaaOGaaCyzamaaBaaaleaacqaHvpGzaeqaaOGaey4LIqSaaCyz amaaBaaaleaacaWGsbaabeaakiabgUcaRiaadofadaWgaaWcbaGaeq y1dyMaeqiUdehabeaakiaahwgadaWgaaWcbaGaeqy1dygabeaakiab gEPielaahwgadaWgaaWcbaGaeqiUdehabeaakiabgUcaRiaadofada WgaaWcbaGaeqy1dyMaeqy1dygabeaakiaahwgadaWgaaWcbaGaeqy1 dygabeaakiabgEPielaahwgadaWgaaWcbaGaeqy1dygabeaaaaaa@BCF4@

 

Furthermore, the physical significance of the components can be interpreted in exactly the same way as for tensor components in a Cartesian basis.  For example, the spherical-polar coordinate representation for the Cauchy stress tensor has the form

σ[ σ RR σ Rθ σ Rϕ σ θR σ θθ σ θϕ σ ϕR σ ϕθ σ ϕϕ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHdpGaeyyyIO 7aamWaaeaafaqabeWadaaabaGaeq4Wdm3aaSbaaSqaaiaadkfacaWG sbaabeaaaOqaaiabeo8aZnaaBaaaleaacaWGsbGaeqiUdehabeaaaO qaaiabeo8aZnaaBaaaleaacaWGsbGaeqy1dygabeaaaOqaaiabeo8a ZnaaBaaaleaacqaH4oqCcaWGsbaabeaaaOqaaiabeo8aZnaaBaaale aacqaH4oqCcqaH4oqCaeqaaaGcbaGaeq4Wdm3aaSbaaSqaaiabeI7a Xjabew9aMbqabaaakeaacqaHdpWCdaWgaaWcbaGaeqy1dyMaamOuaa qabaaakeaacqaHdpWCdaWgaaWcbaGaeqy1dyMaeqiUdehabeaaaOqa aiabeo8aZnaaBaaaleaacqaHvpGzcqaHvpGzaeqaaaaaaOGaay5wai aaw2faaaaa@6655@

The component σ θR MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHdpWCdaWgaa WcbaGaeqiUdeNaamOuaaqabaaaaa@39F2@  represents the traction component in direction e R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHLbWaaSbaaS qaaiaadkfaaeqaaaaa@3767@  acting on an internal material plane with normal e θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHLbWaaSbaaS qaaiabeI7aXbqabaaaaa@3846@ , and so on.  Of course, the Cauchy stress tensor is symmetric, with σ θR = σ Rθ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHdpWCdaWgaa WcbaGaeqiUdeNaamOuaaqabaGccqGH9aqpcqaHdpWCdaWgaaWcbaGa amOuaiabeI7aXbqabaaaaa@3F7E@

 

 

 

3.5.6 Constitutive equations in spherical-polar coordinates

 

The constitutive equations listed in Chapter 3 all relate some measure of stress in the solid (expressed as a tensor) to some measure of local internal deformation (deformation gradient, Eulerian strain, rate of deformation tensor, etc), also expressed as a tensor.  The constitutive equations can be used without modification in spherical-polar coordinates, as long as the matrices of Cartesian components of the various tensors are replaced by their equivalent matrices in spherical-polar coordinates.

 

For example, the stress-strain relations for an isotropic, linear elastic material in spherical-polar coordinates read

[ ε RR ε θθ ε ϕϕ 2 ε θϕ 2 ε Rϕ 2 ε Rθ ]= 1 E [ 1 ν ν 0 0 0 ν 1 ν 0 0 0 ν ν 1 0 0 0 0 0 0 2( 1+ν ) 0 0 0 0 0 0 2( 1+ν ) 0 0 0 0 0 0 2( 1+ν ) ][ σ RR σ θθ σ ϕϕ σ θϕ σ Rϕ σ Rθ ]+αΔT[ 1 1 1 0 0 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaauaabe qageaaaaqaaiabew7aLnaaBaaaleaacaWGsbGaamOuaaqabaaakeaa cqaH1oqzdaWgaaWcbaGaeqiUdeNaeqiUdehabeaaaOqaaiabew7aLn aaBaaaleaacqaHvpGzcqaHvpGzaeqaaaGcbaGaaGOmaiabew7aLnaa BaaaleaacqaH4oqCcqaHvpGzaeqaaaGcbaGaaGOmaiabew7aLnaaBa aaleaacaWGsbGaeqy1dygabeaaaOqaaiaaikdacqaH1oqzdaWgaaWc baGaamOuaiabeI7aXbqabaaaaaGccaGLBbGaayzxaaGaeyypa0ZaaS aaaeaacaaIXaaabaGaamyraaaadaWadaqaauaabeqagyaaaaaabaGa aGymaaqaaiabgkHiTiabe27aUbqaaiabgkHiTiabe27aUbqaaiaaic daaeaacaaIWaaabaGaaGimaaqaaiabgkHiTiabe27aUbqaaiaaigda aeaacqGHsislcqaH9oGBaeaacaaIWaaabaGaaGimaaqaaiaaicdaae aacqGHsislcqaH9oGBaeaacqGHsislcqaH9oGBaeaacaaIXaaabaGa aGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaaca aIWaaabaGaaGOmamaabmaabaGaaGymaiabgUcaRiabe27aUbGaayjk aiaawMcaaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaae aacaaIWaaabaGaaGimaaqaaiaaikdadaqadaqaaiaaigdacqGHRaWk cqaH9oGBaiaawIcacaGLPaaaaeaacaaIWaaabaGaaGimaaqaaiaaic daaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIYaWaaeWaaeaa caaIXaGaey4kaSIaeqyVd4gacaGLOaGaayzkaaaaaaGaay5waiaaw2 faamaadmaabaqbaeqabyqaaaaabaGaeq4Wdm3aaSbaaSqaaiaadkfa caWGsbaabeaaaOqaaiabeo8aZnaaBaaaleaacqaH4oqCcqaH4oqCae qaaaGcbaGaeq4Wdm3aaSbaaSqaaiabew9aMjabew9aMbqabaaakeaa cqaHdpWCdaWgaaWcbaGaeqiUdeNaeqy1dygabeaaaOqaaiabeo8aZn aaBaaaleaacaWGsbGaeqy1dygabeaaaOqaaiabeo8aZnaaBaaaleaa caWGsbGaeqiUdehabeaaaaaakiaawUfacaGLDbaacqGHRaWkcqaHXo qycqqHuoarcaWGubWaamWaaeaafaqabeGbbaaaaeaacaaIXaaabaGa aGymaaqaaiaaigdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaaaaca GLBbGaayzxaaaaaa@B99B@

 

HEALTH WARNING: If you are solving a problem involving anisotropic materials using spherical-polar coordinates, it is important to remember that the orientation of the basis vectors { e R , e θ , e ϕ } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGG7bGaaCyzam aaBaaaleaacaWGsbaabeaakiaacYcacaWHLbWaaSbaaSqaaiabeI7a XbqabaGccaGGSaGaaCyzamaaBaaaleaacqaHvpGzaeqaaOGaaiyFaa aa@4096@  vary with position.   For example, for an anisotropic, linear elastic solid you could write the constitutive equation as

σ=C(εαΔT) σ=[ σ RR σ θθ σ ϕϕ σ θϕ σ Rϕ σ Rθ ]C=[ c 11 c 12 c 13 c 14 c 15 c 16 c 12 c 22 c 23 c 24 c 25 c 26 c 13 c 23 c 33 c 34 c 35 c 36 c 14 c 24 c 34 c 44 c 45 c 46 c 15 c 25 c 35 c 45 c 55 c 56 c 16 c 26 c 36 c 46 c 56 c 66 ]ε=[ ε RR ε θθ ε ϕϕ 2 ε θϕ 2 ε Rϕ 2 ε Rθ ]α=[ α RR α θθ α ϕϕ 2 α θϕ 2 α Rϕ 2 α Rθ ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaaho8acq GH9aqpcaWHdbGaaiikaiaahw7acqGHsislcaWHXoGaeuiLdqKaamiv aiaacMcaaeaacaWHdpGaeyypa0JaaGPaVpaadmaabaqbaeqabyqaaa aabaGaeq4Wdm3aaSbaaSqaaiaadkfacaWGsbaabeaaaOqaaiabeo8a ZnaaBaaaleaacqaH4oqCcqaH4oqCaeqaaaGcbaGaeq4Wdm3aaSbaaS qaaiabew9aMjabew9aMbqabaaakeaacqaHdpWCdaWgaaWcbaGaeqiU deNaeqy1dygabeaaaOqaaiabeo8aZnaaBaaaleaacaWGsbGaeqy1dy gabeaaaOqaaiabeo8aZnaaBaaaleaacaWGsbGaeqiUdehabeaaaaaa kiaawUfacaGLDbaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaahoeacqGH9aqpdaWadaqaauaabeqagyaaaaaabaGaam4yamaaBa aaleaacaaIXaGaaGymaaqabaaakeaacaWGJbWaaSbaaSqaaiaaigda caaIYaaabeaaaOqaaiaadogadaWgaaWcbaGaaGymaiaaiodaaeqaaa GcbaGaam4yamaaBaaaleaacaaIXaGaaGinaaqabaaakeaacaWGJbWa aSbaaSqaaiaaigdacaaI1aaabeaaaOqaaiaadogadaWgaaWcbaGaaG ymaiaaiAdaaeqaaaGcbaGaam4yamaaBaaaleaacaaIXaGaaGOmaaqa baaakeaacaWGJbWaaSbaaSqaaiaaikdacaaIYaaabeaaaOqaaiaado gadaWgaaWcbaGaaGOmaiaaiodaaeqaaaGcbaGaam4yamaaBaaaleaa caaIYaGaaGinaaqabaaakeaacaWGJbWaaSbaaSqaaiaaikdacaaI1a aabeaaaOqaaiaadogadaWgaaWcbaGaaGOmaiaaiAdaaeqaaaGcbaGa am4yamaaBaaaleaacaaIXaGaaG4maaqabaaakeaacaWGJbWaaSbaaS qaaiaaikdacaaIZaaabeaaaOqaaiaadogadaWgaaWcbaGaaG4maiaa iodaaeqaaaGcbaGaam4yamaaBaaaleaacaaIZaGaaGinaaqabaaake aacaWGJbWaaSbaaSqaaiaaiodacaaI1aaabeaaaOqaaiaadogadaWg aaWcbaGaaG4maiaaiAdaaeqaaaGcbaGaam4yamaaBaaaleaacaaIXa GaaGinaaqabaaakeaacaWGJbWaaSbaaSqaaiaaikdacaaI0aaabeaa aOqaaiaadogadaWgaaWcbaGaaG4maiaaisdaaeqaaaGcbaGaam4yam aaBaaaleaacaaI0aGaaGinaaqabaaakeaacaWGJbWaaSbaaSqaaiaa isdacaaI1aaabeaaaOqaaiaadogadaWgaaWcbaGaaGinaiaaiAdaae qaaaGcbaGaam4yamaaBaaaleaacaaIXaGaaGynaaqabaaakeaacaWG JbWaaSbaaSqaaiaaikdacaaI1aaabeaaaOqaaiaadogadaWgaaWcba GaaG4maiaaiwdaaeqaaaGcbaGaam4yamaaBaaaleaacaaI0aGaaGyn aaqabaaakeaacaWGJbWaaSbaaSqaaiaaiwdacaaI1aaabeaaaOqaai aadogadaWgaaWcbaGaaGynaiaaiAdaaeqaaaGcbaGaam4yamaaBaaa leaacaaIXaGaaGOnaaqabaaakeaacaWGJbWaaSbaaSqaaiaaikdaca aI2aaabeaaaOqaaiaadogadaWgaaWcbaGaaG4maiaaiAdaaeqaaaGc baGaam4yamaaBaaaleaacaaI0aGaaGOnaaqabaaakeaacaWGJbWaaS baaSqaaiaaiwdacaaI2aaabeaaaOqaaiaadogadaWgaaWcbaGaaGOn aiaaiAdaaeqaaaaaaOGaay5waiaaw2faaiaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aCyTdiabg2da9maadmaabaqbaeqabyqaaaaabaGaeqyTdu2aaSbaaS qaaiaadkfacaWGsbaabeaaaOqaaiabew7aLnaaBaaaleaacqaH4oqC cqaH4oqCaeqaaaGcbaGaeqyTdu2aaSbaaSqaaiabew9aMjabew9aMb qabaaakeaacaaIYaGaeqyTdu2aaSbaaSqaaiabeI7aXjabew9aMbqa baaakeaacaaIYaGaeqyTdu2aaSbaaSqaaiaadkfacqaHvpGzaeqaaa GcbaGaaGOmaiabew7aLnaaBaaaleaacaWGsbGaeqiUdehabeaaaaaa kiaawUfacaGLDbaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaahg7acqGH9aqpdaWadaqaauaabeqageaaaaqa aiabeg7aHnaaBaaaleaacaWGsbGaamOuaaqabaaakeaacqaHXoqyda WgaaWcbaGaeqiUdeNaeqiUdehabeaaaOqaaiabeg7aHnaaBaaaleaa cqaHvpGzcqaHvpGzaeqaaaGcbaGaaGOmaiabeg7aHnaaBaaaleaacq aH4oqCcqaHvpGzaeqaaaGcbaGaaGOmaiabeg7aHnaaBaaaleaacaWG sbGaeqy1dygabeaaaOqaaiaaikdacqaHXoqydaWgaaWcbaGaamOuai abeI7aXbqabaaaaaGccaGLBbGaayzxaaaaaaa@3CF1@

however, the elastic constants c 11 , c 12 ,... MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGJbWaaSbaaS qaaiaaigdacaaIXaaabeaakiaacYcacaWGJbWaaSbaaSqaaiaaigda caaIYaaabeaakiaacYcacaGGUaGaaiOlaiaac6caaaa@3E15@  would need to be represent the material properties in the basis { e R , e θ , e ϕ } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGG7bGaaCyzam aaBaaaleaacaWGsbaabeaakiaacYcacaWHLbWaaSbaaSqaaiabeI7a XbqabaGccaGGSaGaaCyzamaaBaaaleaacqaHvpGzaeqaaOGaaiyFaa aa@4096@ , and would therefore be functions of position (you would have to calculate them using the lengthy basis change formulas listed in Section 3.2.11).  In practice the results are so complicated that there would be very little advantage in working with a spherical-polar coordinate system in this situation.

 

 

3.5.7 Converting tensors between Cartesian and Spherical-Polar bases

 

Let S be a tensor, with components

S[ S RR S Rθ S Rϕ S θR S θθ S θϕ S ϕR S ϕθ S ϕϕ ][ S xx S xy S xz S yx S yy S yz S zx S xy S zz ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHtbGaeyyyIO 7aamWaaeaafaqabeWadaaabaGaam4uamaaBaaaleaacaWGsbGaamOu aaqabaaakeaacaWGtbWaaSbaaSqaaiaadkfacqaH4oqCaeqaaaGcba Gaam4uamaaBaaaleaacaWGsbGaeqy1dygabeaaaOqaaiaadofadaWg aaWcbaGaeqiUdeNaamOuaaqabaaakeaacaWGtbWaaSbaaSqaaiabeI 7aXjabeI7aXbqabaaakeaacaWGtbWaaSbaaSqaaiabeI7aXjabew9a MbqabaaakeaacaWGtbWaaSbaaSqaaiabew9aMjaadkfaaeqaaaGcba Gaam4uamaaBaaaleaacqaHvpGzcqaH4oqCaeqaaaGcbaGaam4uamaa BaaaleaacqaHvpGzcqaHvpGzaeqaaaaaaOGaay5waiaaw2faaiaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8+aamWaaeaafaqabeWadaaabaGaam4uamaaBaaale aacaWG4bGaamiEaaqabaaakeaacaWGtbWaaSbaaSqaaiaadIhacaWG 5baabeaaaOqaaiaadofadaWgaaWcbaGaamiEaiaadQhaaeqaaaGcba Gaam4uamaaBaaaleaacaWG5bGaamiEaaqabaaakeaacaWGtbWaaSba aSqaaiaadMhacaWG5baabeaaaOqaaiaadofadaWgaaWcbaGaamyEai aadQhaaeqaaaGcbaGaam4uamaaBaaaleaacaWG6bGaamiEaaqabaaa keaacaWGtbWaaSbaaSqaaiaadIhacaWG5baabeaaaOqaaiaadofada WgaaWcbaGaamOEaiaadQhaaeqaaaaaaOGaay5waiaaw2faaaaa@8BF9@

in the spherical-polar basis { e R , e θ , e ϕ } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGG7bGaaCyzam aaBaaaleaacaWGsbaabeaakiaacYcacaWHLbWaaSbaaSqaaiabeI7a XbqabaGccaGGSaGaaCyzamaaBaaaleaacqaHvpGzaeqaaOGaaiyFaa aa@4096@  and the Cartesian basis {i,j,k}, respectively.  The two sets of components are related by

 

 

 

 

[ S xx S xy S xz S yx S yy S yz S zx S xy S zz ]=[ sinθcosϕ cosθcosϕ sinϕ sinθsinϕ cosθsinϕ cosϕ cosθ sinθ 0 ][ S RR S Rθ S Rϕ S θR S θθ S θϕ S ϕR S ϕθ S ϕϕ ][ sinθcosϕ sinθsinϕ cosθ cosθcosϕ cosθsinϕ sinθ sinϕ cosϕ 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaauaabe qadmaaaeaacaWGtbWaaSbaaSqaaiaadIhacaWG4baabeaaaOqaaiaa dofadaWgaaWcbaGaamiEaiaadMhaaeqaaaGcbaGaam4uamaaBaaale aacaWG4bGaamOEaaqabaaakeaacaWGtbWaaSbaaSqaaiaadMhacaWG 4baabeaaaOqaaiaadofadaWgaaWcbaGaamyEaiaadMhaaeqaaaGcba Gaam4uamaaBaaaleaacaWG5bGaamOEaaqabaaakeaacaWGtbWaaSba aSqaaiaadQhacaWG4baabeaaaOqaaiaadofadaWgaaWcbaGaamiEai aadMhaaeqaaaGcbaGaam4uamaaBaaaleaacaWG6bGaamOEaaqabaaa aaGccaGLBbGaayzxaaGaeyypa0ZaamWaaeaafaqabeWadaaabaGaci 4CaiaacMgacaGGUbGaeqiUdeNaci4yaiaac+gacaGGZbGaeqy1dyga baGaci4yaiaac+gacaGGZbGaeqiUdeNaci4yaiaac+gacaGGZbGaeq y1dygabaGaeyOeI0Iaci4CaiaacMgacaGGUbGaeqy1dygabaGaci4C aiaacMgacaGGUbGaeqiUdeNaci4CaiaacMgacaGGUbGaeqy1dygaba Gaci4yaiaac+gacaGGZbGaeqiUdeNaci4CaiaacMgacaGGUbGaeqy1 dygabaGaci4yaiaac+gacaGGZbGaeqy1dygabaGaci4yaiaac+gaca GGZbGaeqiUdehabaGaeyOeI0Iaci4CaiaacMgacaGGUbGaeqiUdeha baGaaGimaaaaaiaawUfacaGLDbaadaWadaqaauaabeqadmaaaeaaca WGtbWaaSbaaSqaaiaadkfacaWGsbaabeaaaOqaaiaadofadaWgaaWc baGaamOuaiabeI7aXbqabaaakeaacaWGtbWaaSbaaSqaaiaadkfacq aHvpGzaeqaaaGcbaGaam4uamaaBaaaleaacqaH4oqCcaWGsbaabeaa aOqaaiaadofadaWgaaWcbaGaeqiUdeNaeqiUdehabeaaaOqaaiaado fadaWgaaWcbaGaeqiUdeNaeqy1dygabeaaaOqaaiaadofadaWgaaWc baGaeqy1dyMaamOuaaqabaaakeaacaWGtbWaaSbaaSqaaiabew9aMj abeI7aXbqabaaakeaacaWGtbWaaSbaaSqaaiabew9aMjabew9aMbqa baaaaaGccaGLBbGaayzxaaGaaGPaVpaadmaabaqbaeqabmWaaaqaai GacohacaGGPbGaaiOBaiabeI7aXjGacogacaGGVbGaai4Caiabew9a MbqaaiGacohacaGGPbGaaiOBaiabeI7aXjGacohacaGGPbGaaiOBai abew9aMbqaaiGacogacaGGVbGaai4CaiabeI7aXbqaaiGacogacaGG VbGaai4CaiabeI7aXjGacogacaGGVbGaai4Caiabew9aMbqaaiGaco gacaGGVbGaai4CaiabeI7aXjGacohacaGGPbGaaiOBaiabew9aMbqa aiabgkHiTiGacohacaGGPbGaaiOBaiabeI7aXbqaaiabgkHiTiGaco hacaGGPbGaaiOBaiabew9aMbqaaiGacogacaGGVbGaai4Caiabew9a MbqaaiaaicdaaaaacaGLBbGaayzxaaaaaa@F212@

[ S RR S Rθ S Rϕ S θR S θθ S θϕ S ϕR S ϕθ S ϕϕ ]=[ sinθcosϕ sinθsinϕ cosθ cosθcosϕ cosθsinϕ sinθ sinϕ cosϕ 0 ][ S xx S xy S xz S yx S yy S yz S zx S xy S zz ][ sinθcosϕ cosθcosϕ sinϕ sinθsinϕ cosθsinϕ cosϕ cosθ sinθ 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaauaabe qadmaaaeaacaWGtbWaaSbaaSqaaiaadkfacaWGsbaabeaaaOqaaiaa dofadaWgaaWcbaGaamOuaiabeI7aXbqabaaakeaacaWGtbWaaSbaaS qaaiaadkfacqaHvpGzaeqaaaGcbaGaam4uamaaBaaaleaacqaH4oqC caWGsbaabeaaaOqaaiaadofadaWgaaWcbaGaeqiUdeNaeqiUdehabe aaaOqaaiaadofadaWgaaWcbaGaeqiUdeNaeqy1dygabeaaaOqaaiaa dofadaWgaaWcbaGaeqy1dyMaamOuaaqabaaakeaacaWGtbWaaSbaaS qaaiabew9aMjabeI7aXbqabaaakeaacaWGtbWaaSbaaSqaaiabew9a Mjabew9aMbqabaaaaaGccaGLBbGaayzxaaGaeyypa0JaaGPaVpaadm aabaqbaeqabmWaaaqaaiGacohacaGGPbGaaiOBaiabeI7aXjGacoga caGGVbGaai4Caiabew9aMbqaaiGacohacaGGPbGaaiOBaiabeI7aXj GacohacaGGPbGaaiOBaiabew9aMbqaaiGacogacaGGVbGaai4Caiab eI7aXbqaaiGacogacaGGVbGaai4CaiabeI7aXjGacogacaGGVbGaai 4Caiabew9aMbqaaiGacogacaGGVbGaai4CaiabeI7aXjGacohacaGG PbGaaiOBaiabew9aMbqaaiabgkHiTiGacohacaGGPbGaaiOBaiabeI 7aXbqaaiabgkHiTiGacohacaGGPbGaaiOBaiabew9aMbqaaiGacoga caGGVbGaai4Caiabew9aMbqaaiaaicdaaaaacaGLBbGaayzxaaWaam WaaeaafaqabeWadaaabaGaam4uamaaBaaaleaacaWG4bGaamiEaaqa baaakeaacaWGtbWaaSbaaSqaaiaadIhacaWG5baabeaaaOqaaiaado fadaWgaaWcbaGaamiEaiaadQhaaeqaaaGcbaGaam4uamaaBaaaleaa caWG5bGaamiEaaqabaaakeaacaWGtbWaaSbaaSqaaiaadMhacaWG5b aabeaaaOqaaiaadofadaWgaaWcbaGaamyEaiaadQhaaeqaaaGcbaGa am4uamaaBaaaleaacaWG6bGaamiEaaqabaaakeaacaWGtbWaaSbaaS qaaiaadIhacaWG5baabeaaaOqaaiaadofadaWgaaWcbaGaamOEaiaa dQhaaeqaaaaaaOGaay5waiaaw2faamaadmaabaqbaeqabmWaaaqaai GacohacaGGPbGaaiOBaiabeI7aXjGacogacaGGVbGaai4Caiabew9a MbqaaiGacogacaGGVbGaai4CaiabeI7aXjGacogacaGGVbGaai4Cai abew9aMbqaaiabgkHiTiGacohacaGGPbGaaiOBaiabew9aMbqaaiGa cohacaGGPbGaaiOBaiabeI7aXjGacohacaGGPbGaaiOBaiabew9aMb qaaiGacogacaGGVbGaai4CaiabeI7aXjGacohacaGGPbGaaiOBaiab ew9aMbqaaiGacogacaGGVbGaai4Caiabew9aMbqaaiGacogacaGGVb Gaai4CaiabeI7aXbqaaiabgkHiTiGacohacaGGPbGaaiOBaiabeI7a XbqaaiaaicdaaaaacaGLBbGaayzxaaaaaa@F212@

 

These results follow immediately from the general basis change formulas for tensors given in Appendix B.

 

 

3.5.8 Vector Calculus using Spherical-Polar Coordinates

 

Calculating derivatives of scalar, vector and tensor functions of position in spherical-polar coordinates is complicated by the fact that the basis vectors are functions of position.  The results can be expressed in a compact form by defining the gradient operator, which, in spherical-polar coordinates, has the representation

( e R R + e θ 1 R θ + e ϕ 1 Rsinθ ϕ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqGHhis0cqGHHj IUdaqadaqaaiaahwgadaWgaaWcbaGaamOuaaqabaGcdaWcaaqaaiab gkGi2cqaaiabgkGi2kaadkfaaaGaey4kaSIaaCyzamaaBaaaleaacq aH4oqCaeqaaOWaaSaaaeaacaaIXaaabaGaamOuaaaadaWcaaqaaiab gkGi2cqaaiabgkGi2kabeI7aXbaacqGHRaWkcaWHLbWaaSbaaSqaai abew9aMbqabaGcdaWcaaqaaiaaigdaaeaacaWGsbGaci4CaiaacMga caGGUbGaeqiUdehaamaalaaabaGaeyOaIylabaGaeyOaIyRaeqy1dy gaaaGaayjkaiaawMcaaaaa@588E@

In addition, the derivatives of the basis vectors are

e R R = e θ R = e ϕ R =0 e R θ = e θ e θ θ = e R e ϕ θ =0 e R ϕ =sinθ e ϕ e θ ϕ =cosθ e ϕ e ϕ ϕ =sinθ e R cosθ e θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaamaalaaaba GaeyOaIyRaaCyzamaaBaaaleaacaWGsbaabeaaaOqaaiabgkGi2kaa dkfaaaGaeyypa0ZaaSaaaeaacqGHciITcaWHLbWaaSbaaSqaaiabeI 7aXbqabaaakeaacqGHciITcaWGsbaaaiabg2da9maalaaabaGaeyOa IyRaaCyzamaaBaaaleaacqaHvpGzaeqaaaGcbaGaeyOaIyRaamOuaa aacqGH9aqpcaaIWaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7daWcaaqaaiabgkGi2kaahwgadaWgaaWcbaGaam OuaaqabaaakeaacqGHciITcqaH4oqCaaGaeyypa0JaaCyzamaaBaaa leaacqaH4oqCaeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7daWcaaqaaiabgkGi2kaahwgadaWgaaWcbaGa eqiUdehabeaaaOqaaiabgkGi2kabeI7aXbaacqGH9aqpcqGHsislca WHLbWaaSbaaSqaaiaadkfaaeqaaOGaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7daWcaaqaaiabgkGi2kaahwgada WgaaWcbaGaeqy1dygabeaaaOqaaiabgkGi2kabeI7aXbaacqGH9aqp caaIWaaabaWaaSaaaeaacqGHciITcaWHLbWaaSbaaSqaaiaadkfaae qaaaGcbaGaeyOaIyRaeqy1dygaaiabg2da9iGacohacaGGPbGaaiOB aiabeI7aXjaahwgadaWgaaWcbaGaeqy1dygabeaakiaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8+aaSaaaeaacqGHciITcaWHLbWaaSbaaSqaaiabeI7aXbqaba aakeaacqGHciITcqaHvpGzaaGaeyypa0Jaci4yaiaac+gacaGGZbGa eqiUdeNaaCyzamaaBaaaleaacqaHvpGzaeqaaOGaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8+aaSaaaeaa cqGHciITcaWHLbWaaSbaaSqaaiabew9aMbqabaaakeaacqGHciITcq aHvpGzaaGaeyypa0JaeyOeI0Iaci4CaiaacMgacaGGUbGaeqiUdeNa aCyzamaaBaaaleaacaWGsbaabeaakiabgkHiTiGacogacaGGVbGaai 4CaiabeI7aXjaahwgadaWgaaWcbaGaeqiUdehabeaaaaaa@E676@

You can derive these formulas by differentiating the expressions for the basis vectors in terms of {i,j,k}

e R =sinθcosϕi+sinθsinϕj+cosθk MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHLbWaaSbaaS qaaiaadkfaaeqaaOGaeyypa0Jaci4CaiaacMgacaGGUbGaeqiUdeNa ci4yaiaac+gacaGGZbGaeqy1dyMaaCyAaiabgUcaRiGacohacaGGPb GaaiOBaiabeI7aXjGacohacaGGPbGaaiOBaiabew9aMjaahQgacqGH RaWkciGGJbGaai4BaiaacohacqaH4oqCcaWHRbGaaGPaVdaa@557E@    e θ =cosθcosϕi+cosθsinϕjsinθk MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHLbWaaSbaaS qaaiabeI7aXbqabaGccqGH9aqpciGGJbGaai4BaiaacohacqaH4oqC ciGGJbGaai4BaiaacohacqaHvpGzcaWHPbGaey4kaSIaci4yaiaac+ gacaGGZbGaeqiUdeNaci4CaiaacMgacaGGUbGaeqy1dyMaaCOAaiab gkHiTiGacohacaGGPbGaaiOBaiabeI7aXjaahUgacaaMc8oaaa@5663@       e ϕ =sinϕi+cosϕj MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHLbWaaSbaaS qaaiabew9aMbqabaGccqGH9aqpcqGHsislciGGZbGaaiyAaiaac6ga cqaHvpGzcaWHPbGaey4kaSIaci4yaiaac+gacaGGZbGaeqy1dyMaaC OAaiaaykW7aaa@47E1@

and evaluating the various derivatives. When differentiating, note that {i,j,k} are fixed, so their derivatives are zero.  The details are left as an exercise.

 

The various derivatives of scalars, vectors and tensors can be expressed using operator notation as follows. 

 

Gradient of a scalar function: Let f(R,θ,ϕ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGMbGaaiikai aadkfacaGGSaGaeqiUdeNaaiilaiabew9aMjaacMcaaaa@3D6F@  denote a scalar function of position.  The gradient of f is denoted by

f=f( e R R + e θ 1 R θ + e ϕ 1 Rsinθ ϕ )= e R f R + e θ 1 R f θ + e ϕ 1 Rsinθ f ϕ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqGHhis0caWGMb Gaeyypa0JaamOzamaabmaabaGaaCyzamaaBaaaleaacaWGsbaabeaa kmaalaaabaGaeyOaIylabaGaeyOaIyRaamOuaaaacqGHRaWkcaWHLb WaaSbaaSqaaiabeI7aXbqabaGcdaWcaaqaaiaaigdaaeaacaWGsbaa amaalaaabaGaeyOaIylabaGaeyOaIyRaeqiUdehaaiabgUcaRiaahw gadaWgaaWcbaGaeqy1dygabeaakmaalaaabaGaaGymaaqaaiaadkfa ciGGZbGaaiyAaiaac6gacqaH4oqCaaWaaSaaaeaacqGHciITaeaacq GHciITcqaHvpGzaaaacaGLOaGaayzkaaGaeyypa0JaaCyzamaaBaaa leaacaWGsbaabeaakmaalaaabaGaeyOaIyRaamOzaaqaaiabgkGi2k aadkfaaaGaey4kaSIaaCyzamaaBaaaleaacqaH4oqCaeqaaOWaaSaa aeaacaaIXaaabaGaamOuaaaadaWcaaqaaiabgkGi2kaadAgaaeaacq GHciITcqaH4oqCaaGaey4kaSIaaCyzamaaBaaaleaacqaHvpGzaeqa aOWaaSaaaeaacaaIXaaabaGaamOuaiGacohacaGGPbGaaiOBaiabeI 7aXbaadaWcaaqaaiabgkGi2kaadAgaaeaacqGHciITcqaHvpGzaaaa aa@7BA8@

Alternatively, in matrix form

f= [ f R , 1 R f θ , 1 Rsinθ f ϕ ] T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqGHhis0caWGMb Gaeyypa0ZaamWaaeaadaWcaaqaaiabgkGi2kaadAgaaeaacqGHciIT caWGsbaaaiaacYcadaWcaaqaaiaaigdaaeaacaWGsbaaamaalaaaba GaeyOaIyRaamOzaaqaaiabgkGi2kabeI7aXbaacaGGSaWaaSaaaeaa caaIXaaabaGaamOuaiGacohacaGGPbGaaiOBaiabeI7aXbaadaWcaa qaaiabgkGi2kaadAgaaeaacqGHciITcqaHvpGzaaaacaGLBbGaayzx aaWaaWbaaSqabeaacaWGubaaaaaa@54C1@

 

Gradient of a vector function Let v= v R e R + v θ e θ + v ϕ e ϕ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH2bGaeyypa0 JaamODamaaBaaaleaacaWGsbaabeaakiaahwgadaWgaaWcbaGaamOu aaqabaGccqGHRaWkcaWG2bWaaSbaaSqaaiabeI7aXbqabaGccaWHLb WaaSbaaSqaaiabeI7aXbqabaGccqGHRaWkcaWG2bWaaSbaaSqaaiab ew9aMbqabaGccaWHLbWaaSbaaSqaaiabew9aMbqabaaaaa@48DE@  be a vector function of position. The gradient of v is a tensor, which can be represented as a dyadic product of the vector with the gradient operator as

v=( v R e R + v θ e θ + v ϕ e ϕ )( e R R + e θ 1 R θ + e ϕ 1 Rsinθ ϕ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH2bGaey4LIq Saey4bIeTaeyypa0ZaaeWaaeaacaWG2bWaaSbaaSqaaiaadkfaaeqa aOGaaCyzamaaBaaaleaacaWGsbaabeaakiabgUcaRiaadAhadaWgaa WcbaGaeqiUdehabeaakiaahwgadaWgaaWcbaGaeqiUdehabeaakiab gUcaRiaadAhadaWgaaWcbaGaeqy1dygabeaakiaahwgadaWgaaWcba Gaeqy1dygabeaaaOGaayjkaiaawMcaaiabgEPiepaabmaabaGaaCyz amaaBaaaleaacaWGsbaabeaakmaalaaabaGaeyOaIylabaGaeyOaIy RaamOuaaaacqGHRaWkcaWHLbWaaSbaaSqaaiabeI7aXbqabaGcdaWc aaqaaiaaigdaaeaacaWGsbaaamaalaaabaGaeyOaIylabaGaeyOaIy RaeqiUdehaaiabgUcaRiaahwgadaWgaaWcbaGaeqy1dygabeaakmaa laaabaGaaGymaaqaaiaadkfaciGGZbGaaiyAaiaac6gacqaH4oqCaa WaaSaaaeaacqGHciITaeaacqGHciITcqaHvpGzaaaacaGLOaGaayzk aaaaaa@6FD2@

The dyadic product can be expanded MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  but when evaluating the derivatives it is important to recall that the basis vectors are functions of the coordinates (R,θ,ϕ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaamOuai aacYcacqaH4oqCcaGGSaGaeqy1dyMaaiykaaaa@3C84@  and consequently their derivatives do not vanish.  For example

1 R θ ( v R e R ) e θ = 1 R v R θ e R e θ + v R R e R θ e θ = 1 R v R θ e R e θ + v R R e θ e θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWcaaqaaiaaig daaeaacaWGsbaaamaalaaabaGaeyOaIylabaGaeyOaIyRaeqiUdeha amaabmaabaGaamODamaaBaaaleaacaWGsbaabeaakiaahwgadaWgaa WcbaGaamOuaaqabaaakiaawIcacaGLPaaacqGHxkcXcaWHLbWaaSba aSqaaiabeI7aXbqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaWGsb aaamaalaaabaGaeyOaIyRaamODamaaBaaaleaacaWGsbaabeaaaOqa aiabgkGi2kabeI7aXbaacaWHLbWaaSbaaSqaaiaadkfaaeqaaOGaey 4LIqSaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaey4kaSYaaSaaaeaa caWG2bWaaSbaaSqaaiaadkfaaeqaaaGcbaGaamOuaaaadaWcaaqaai abgkGi2kaahwgadaWgaaWcbaGaamOuaaqabaaakeaacqGHciITcqaH 4oqCaaGaey4LIqSaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaeyypa0 ZaaSaaaeaacaaIXaaabaGaamOuaaaadaWcaaqaaiabgkGi2kaadAha daWgaaWcbaGaamOuaaqabaaakeaacqGHciITcqaH4oqCaaGaaCyzam aaBaaaleaacaWGsbaabeaakiabgEPielaahwgadaWgaaWcbaGaeqiU dehabeaakiabgUcaRmaalaaabaGaamODamaaBaaaleaacaWGsbaabe aaaOqaaiaadkfaaaGaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaey4L IqSaaCyzamaaBaaaleaacqaH4oqCaeqaaaaa@811D@

Verify for yourself that the matrix representing the components of the gradient of a vector is

v[ v R R 1 R v R θ v θ R 1 Rsinθ v R ϕ v ϕ R v θ R 1 R v θ θ + v R R 1 Rsinθ v θ ϕ cotθ v ϕ R v ϕ R 1 R v ϕ θ 1 Rsinθ v ϕ ϕ +cotθ v θ R + v R R ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH2bGaey4LIq Saey4bIeTaeyyyIO7aamWaaeaafaqabeWadaaabaWaaSaaaeaacqGH ciITcaWG2bWaaSbaaSqaaiaadkfaaeqaaaGcbaGaeyOaIyRaamOuaa aaaeaadaWcaaqaaiaaigdaaeaacaWGsbaaamaalaaabaGaeyOaIyRa amODamaaBaaaleaacaWGsbaabeaaaOqaaiabgkGi2kabeI7aXbaacq GHsisldaWcaaqaaiaadAhadaWgaaWcbaGaeqiUdehabeaaaOqaaiaa dkfaaaaabaWaaSaaaeaacaaIXaaabaGaamOuaiGacohacaGGPbGaai OBaiabeI7aXbaadaWcaaqaaiabgkGi2kaadAhadaWgaaWcbaGaamOu aaqabaaakeaacqGHciITcqaHvpGzaaGaeyOeI0YaaSaaaeaacaWG2b WaaSbaaSqaaiabew9aMbqabaaakeaacaWGsbaaaaqaamaalaaabaGa eyOaIyRaamODamaaBaaaleaacqaH4oqCaeqaaaGcbaGaeyOaIyRaam OuaaaaaeaadaWcaaqaaiaaigdaaeaacaWGsbaaamaalaaabaGaeyOa IyRaamODamaaBaaaleaacqaH4oqCaeqaaaGcbaGaeyOaIyRaeqiUde haaiabgUcaRmaalaaabaGaamODamaaBaaaleaacaWGsbaabeaaaOqa aiaadkfaaaaabaWaaSaaaeaacaaIXaaabaGaamOuaiGacohacaGGPb GaaiOBaiabeI7aXbaadaWcaaqaaiabgkGi2kaadAhadaWgaaWcbaGa eqiUdehabeaaaOqaaiabgkGi2kabew9aMbaacqGHsislciGGJbGaai 4BaiaacshacqaH4oqCdaWcaaqaaiaadAhadaWgaaWcbaGaeqy1dyga beaaaOqaaiaadkfaaaaabaWaaSaaaeaacqGHciITcaWG2bWaaSbaaS qaaiabew9aMbqabaaakeaacqGHciITcaWGsbaaaaqaamaalaaabaGa aGymaaqaaiaadkfaaaWaaSaaaeaacqGHciITcaWG2bWaaSbaaSqaai abew9aMbqabaaakeaacqGHciITcqaH4oqCaaaabaWaaSaaaeaacaaI XaaabaGaamOuaiGacohacaGGPbGaaiOBaiabeI7aXbaadaWcaaqaai abgkGi2kaadAhadaWgaaWcbaGaeqy1dygabeaaaOqaaiabgkGi2kab ew9aMbaacqGHRaWkciGGJbGaai4BaiaacshacqaH4oqCdaWcaaqaai aadAhadaWgaaWcbaGaeqiUdehabeaaaOqaaiaadkfaaaGaey4kaSYa aSaaaeaacaWG2bWaaSbaaSqaaiaadkfaaeqaaaGcbaGaamOuaaaaaa aacaGLBbGaayzxaaaaaa@B77A@

 

Divergence of a vector function Let v= v R e R + v θ e θ + v ϕ e ϕ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH2bGaeyypa0 JaamODamaaBaaaleaacaWGsbaabeaakiaahwgadaWgaaWcbaGaamOu aaqabaGccqGHRaWkcaWG2bWaaSbaaSqaaiabeI7aXbqabaGccaWHLb WaaSbaaSqaaiabeI7aXbqabaGccqGHRaWkcaWG2bWaaSbaaSqaaiab ew9aMbqabaGccaWHLbWaaSbaaSqaaiabew9aMbqabaaaaa@48DE@  be a vector function of position. The divergence of v is a scalar, which can be represented as a dot product of the vector with the gradient operator as

v=( e R R + e θ 1 R θ + e ϕ 1 Rsinθ ϕ )( v R e R + v θ e θ + v ϕ e ϕ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqGHhis0cqGHfl Y1caWH2bGaeyypa0ZaaeWaaeaacaWHLbWaaSbaaSqaaiaadkfaaeqa aOWaaSaaaeaacqGHciITaeaacqGHciITcaWGsbaaaiabgUcaRiaahw gadaWgaaWcbaGaeqiUdehabeaakmaalaaabaGaaGymaaqaaiaadkfa aaWaaSaaaeaacqGHciITaeaacqGHciITcqaH4oqCaaGaey4kaSIaaC yzamaaBaaaleaacqaHvpGzaeqaaOWaaSaaaeaacaaIXaaabaGaamOu aiGacohacaGGPbGaaiOBaiabeI7aXbaadaWcaaqaaiabgkGi2cqaai abgkGi2kabew9aMbaaaiaawIcacaGLPaaacqGHflY1daqadaqaaiaa dAhadaWgaaWcbaGaamOuaaqabaGccaWHLbWaaSbaaSqaaiaadkfaae qaaOGaey4kaSIaamODamaaBaaaleaacqaH4oqCaeqaaOGaaCyzamaa BaaaleaacqaH4oqCaeqaaOGaey4kaSIaamODamaaBaaaleaacqaHvp GzaeqaaOGaaCyzamaaBaaaleaacqaHvpGzaeqaaaGccaGLOaGaayzk aaaaaa@7054@

Again, when expanding the dot product, it is important to remember to differentiate the basis vectors. Alternatively, the divergence can be expressed as trace(v) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaqG0bGaaeOCai aabggacaqGJbGaaeyzaiaacIcacaWH2bGaey4LIqSaey4bIeTaaiyk aaaa@3FFB@ , which immediately gives

v v R R +2 v R R + 1 R v θ θ + 1 Rsinθ v ϕ ϕ +cotθ v θ R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqGHhis0cqGHfl Y1caWH2bGaeyyyIO7aaSaaaeaacqGHciITcaWG2bWaaSbaaSqaaiaa dkfaaeqaaaGcbaGaeyOaIyRaamOuaaaacqGHRaWkcaaIYaWaaSaaae aacaWG2bWaaSbaaSqaaiaadkfaaeqaaaGcbaGaamOuaaaacqGHRaWk daWcaaqaaiaaigdaaeaacaWGsbaaamaalaaabaGaeyOaIyRaamODam aaBaaaleaacqaH4oqCaeqaaaGcbaGaeyOaIyRaeqiUdehaaiabgUca RmaalaaabaGaaGymaaqaaiaadkfaciGGZbGaaiyAaiaac6gacqaH4o qCaaWaaSaaaeaacqGHciITcaWG2bWaaSbaaSqaaiabew9aMbqabaaa keaacqGHciITcqaHvpGzaaGaey4kaSIaci4yaiaac+gacaGG0bGaeq iUde3aaSaaaeaacaWG2bWaaSbaaSqaaiabeI7aXbqabaaakeaacaWG sbaaaaaa@683C@

 

Curl of a vector function Let v= v R e R + v θ e θ + v ϕ e ϕ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH2bGaeyypa0 JaamODamaaBaaaleaacaWGsbaabeaakiaahwgadaWgaaWcbaGaamOu aaqabaGccqGHRaWkcaWG2bWaaSbaaSqaaiabeI7aXbqabaGccaWHLb WaaSbaaSqaaiabeI7aXbqabaGccqGHRaWkcaWG2bWaaSbaaSqaaiab ew9aMbqabaGccaWHLbWaaSbaaSqaaiabew9aMbqabaaaaa@48DE@  be a vector function of position. The curl of v is a vector, which can be represented as a cross product of the vector with the gradient operator as

×v=( e R R + e θ 1 R θ + e ϕ 1 Rsinθ ϕ )×( v R e R + v θ e θ + v ϕ e ϕ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqGHhis0cqGHxd aTcaWH2bGaeyypa0ZaaeWaaeaacaWHLbWaaSbaaSqaaiaadkfaaeqa aOWaaSaaaeaacqGHciITaeaacqGHciITcaWGsbaaaiabgUcaRiaahw gadaWgaaWcbaGaeqiUdehabeaakmaalaaabaGaaGymaaqaaiaadkfa aaWaaSaaaeaacqGHciITaeaacqGHciITcqaH4oqCaaGaey4kaSIaaC yzamaaBaaaleaacqaHvpGzaeqaaOWaaSaaaeaacaaIXaaabaGaamOu aiGacohacaGGPbGaaiOBaiabeI7aXbaadaWcaaqaaiabgkGi2cqaai abgkGi2kabew9aMbaaaiaawIcacaGLPaaacqGHxdaTdaqadaqaaiaa dAhadaWgaaWcbaGaamOuaaqabaGccaWHLbWaaSbaaSqaaiaadkfaae qaaOGaey4kaSIaamODamaaBaaaleaacqaH4oqCaeqaaOGaaCyzamaa BaaaleaacqaH4oqCaeqaaOGaey4kaSIaamODamaaBaaaleaacqaHvp GzaeqaaOGaaCyzamaaBaaaleaacqaHvpGzaeqaaaGccaGLOaGaayzk aaaaaa@6FEE@

The curl rarely appears in solid mechanics so the components will not be expanded in full

 

 

Divergence of a tensor function.   Let S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHtbaaaa@3652@  be a tensor, with dyadic representation

S= S RR e R e R + S Rθ e R e θ + S Rϕ e R e ϕ + S θR e θ e R + S θθ e θ e θ + S θϕ e θ e ϕ + S ϕR e ϕ e R + S ϕθ e ϕ e θ + S ϕϕ e ϕ e ϕ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaahofacq GH9aqpcaaMc8UaaGPaVlaaykW7caaMc8Uaam4uamaaBaaaleaacaWG sbGaamOuaaqabaGccaWHLbWaaSbaaSqaaiaadkfaaeqaaOGaey4LIq SaaCyzamaaBaaaleaacaWGsbaabeaakiabgUcaRiaadofadaWgaaWc baGaamOuaiabeI7aXbqabaGccaWHLbWaaSbaaSqaaiaadkfaaeqaaO Gaey4LIqSaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaey4kaSIaam4u amaaBaaaleaacaWGsbGaeqy1dygabeaakiaahwgadaWgaaWcbaGaam OuaaqabaGccqGHxkcXcaWHLbWaaSbaaSqaaiabew9aMbqabaaakeaa caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGHRaWkcaaMc8 Uaam4uamaaBaaaleaacqaH4oqCcaWGsbaabeaakiaahwgadaWgaaWc baGaeqiUdehabeaakiabgEPielaahwgadaWgaaWcbaGaamOuaaqaba GccqGHRaWkcaWGtbWaaSbaaSqaaiabeI7aXjabeI7aXbqabaGccaWH LbWaaSbaaSqaaiabeI7aXbqabaGccqGHxkcXcaWHLbWaaSbaaSqaai abeI7aXbqabaGccqGHRaWkcaWGtbWaaSbaaSqaaiabeI7aXjabew9a MbqabaGccaWHLbWaaSbaaSqaaiabeI7aXbqabaGccqGHxkcXcaWHLb WaaSbaaSqaaiabew9aMbqabaaakeaacaaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7cqGHRaWkcaWGtbWaaSbaaSqaaiabew9aMjaadk faaeqaaOGaaCyzamaaBaaaleaacqaHvpGzaeqaaOGaey4LIqSaaCyz amaaBaaaleaacaWGsbaabeaakiabgUcaRiaadofadaWgaaWcbaGaeq y1dyMaeqiUdehabeaakiaahwgadaWgaaWcbaGaeqy1dygabeaakiab gEPielaahwgadaWgaaWcbaGaeqiUdehabeaakiabgUcaRiaadofada WgaaWcbaGaeqy1dyMaeqy1dygabeaakiaahwgadaWgaaWcbaGaeqy1 dygabeaakiabgEPielaahwgadaWgaaWcbaGaeqy1dygabeaaaaaa@BCF4@

The divergence of S is a vector, which can be represented as

S=( e R R + e θ 1 R θ + e ϕ 1 Rsinθ ϕ )( S RR e R e R + S Rθ e R e θ + S Rϕ e R e ϕ + S θR e θ e R + S θθ e θ e θ + S θϕ e θ e ϕ + S ϕR e ϕ e R + S ϕθ e ϕ e θ + S ϕϕ e ϕ e ϕ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqGHhis0cqGHfl Y1caWHtbGaeyypa0JaaGPaVlaaykW7caaMc8+aaeWaaeaacaWHLbWa aSbaaSqaaiaadkfaaeqaaOWaaSaaaeaacqGHciITaeaacqGHciITca WGsbaaaiabgUcaRiaahwgadaWgaaWcbaGaeqiUdehabeaakmaalaaa baGaaGymaaqaaiaadkfaaaWaaSaaaeaacqGHciITaeaacqGHciITcq aH4oqCaaGaey4kaSIaaCyzamaaBaaaleaacqaHvpGzaeqaaOWaaSaa aeaacaaIXaaabaGaamOuaiGacohacaGGPbGaaiOBaiabeI7aXbaada WcaaqaaiabgkGi2cqaaiabgkGi2kabew9aMbaaaiaawIcacaGLPaaa cqGHflY1caaMc8+aaeWaaeaafaqabeWabaaabaGaam4uamaaBaaale aacaWGsbGaamOuaaqabaGccaWHLbWaaSbaaSqaaiaadkfaaeqaaOGa ey4LIqSaaCyzamaaBaaaleaacaWGsbaabeaakiabgUcaRiaadofada WgaaWcbaGaamOuaiabeI7aXbqabaGccaWHLbWaaSbaaSqaaiaadkfa aeqaaOGaey4LIqSaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaey4kaS Iaam4uamaaBaaaleaacaWGsbGaeqy1dygabeaakiaahwgadaWgaaWc baGaamOuaaqabaGccqGHxkcXcaWHLbWaaSbaaSqaaiabew9aMbqaba aakeaacqGHRaWkcaaMc8Uaam4uamaaBaaaleaacqaH4oqCcaWGsbaa beaakiaahwgadaWgaaWcbaGaeqiUdehabeaakiabgEPielaahwgada WgaaWcbaGaamOuaaqabaGccqGHRaWkcaWGtbWaaSbaaSqaaiabeI7a XjabeI7aXbqabaGccaWHLbWaaSbaaSqaaiabeI7aXbqabaGccqGHxk cXcaWHLbWaaSbaaSqaaiabeI7aXbqabaGccqGHRaWkcaWGtbWaaSba aSqaaiabeI7aXjabew9aMbqabaGccaWHLbWaaSbaaSqaaiabeI7aXb qabaGccqGHxkcXcaWHLbWaaSbaaSqaaiabew9aMbqabaaakeaacqGH RaWkcaWGtbWaaSbaaSqaaiabew9aMjaadkfaaeqaaOGaaCyzamaaBa aaleaacqaHvpGzaeqaaOGaey4LIqSaaCyzamaaBaaaleaacaWGsbaa beaakiabgUcaRiaadofadaWgaaWcbaGaeqy1dyMaeqiUdehabeaaki aahwgadaWgaaWcbaGaeqy1dygabeaakiabgEPielaahwgadaWgaaWc baGaeqiUdehabeaakiabgUcaRiaadofadaWgaaWcbaGaeqy1dyMaeq y1dygabeaakiaahwgadaWgaaWcbaGaeqy1dygabeaakiabgEPielaa hwgadaWgaaWcbaGaeqy1dygabeaaaaaakiaawIcacaGLPaaacaaMc8 oaaa@D378@

Evaluating the components of the divergence is an extremely tedious operation, because each of the basis vectors in the dyadic representation of S must be differentiated, in addition to the components themselves.  The final result (expressed as a column vector) is

S[ S RR R +2 S RR R + 1 R S θR θ +cotθ S θR R + 1 Rsinθ S ϕR ϕ 1 R ( S θθ + S ϕϕ ) S Rθ R +2 S Rθ R + 1 R S θθ θ +cotθ S θθ R + 1 Rsinθ S ϕθ ϕ + S θR R cotθ S ϕϕ R S Rϕ R +2 S Rϕ R + sinθ R S θϕ θ +cosθ S θϕ R + 1 Rsinθ S ϕϕ ϕ + 1 R ( S ϕR + S ϕθ ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqGHhis0cqGHfl Y1caWHtbGaeyyyIO7aamWaaeaafaqabeWabaaabaWaaSaaaeaacqGH ciITcaWGtbWaaSbaaSqaaiaadkfacaWGsbaabeaaaOqaaiabgkGi2k aadkfaaaGaey4kaSIaaGOmamaalaaabaGaam4uamaaBaaaleaacaWG sbGaamOuaaqabaaakeaacaWGsbaaaiabgUcaRmaalaaabaGaaGymaa qaaiaadkfaaaWaaSaaaeaacqGHciITcaWGtbWaaSbaaSqaaiabeI7a XjaadkfaaeqaaaGcbaGaeyOaIyRaeqiUdehaaiabgUcaRiGacogaca GGVbGaaiiDaiabeI7aXnaalaaabaGaam4uamaaBaaaleaacqaH4oqC caWGsbaabeaaaOqaaiaadkfaaaGaey4kaSYaaSaaaeaacaaIXaaaba GaamOuaiGacohacaGGPbGaaiOBaiabeI7aXbaadaWcaaqaaiabgkGi 2kaadofadaWgaaWcbaGaeqy1dyMaamOuaaqabaaakeaacqGHciITcq aHvpGzaaGaeyOeI0YaaSaaaeaacaaIXaaabaGaamOuaaaadaqadaqa aiaadofadaWgaaWcbaGaeqiUdeNaeqiUdehabeaakiabgUcaRiaado fadaWgaaWcbaGaeqy1dyMaeqy1dygabeaaaOGaayjkaiaawMcaaaqa amaalaaabaGaeyOaIyRaam4uamaaBaaaleaacaWGsbGaeqiUdehabe aaaOqaaiabgkGi2kaadkfaaaGaey4kaSIaaGOmamaalaaabaGaam4u amaaBaaaleaacaWGsbGaeqiUdehabeaaaOqaaiaadkfaaaGaey4kaS YaaSaaaeaacaaIXaaabaGaamOuaaaadaWcaaqaaiabgkGi2kaadofa daWgaaWcbaGaeqiUdeNaeqiUdehabeaaaOqaaiabgkGi2kabeI7aXb aacqGHRaWkciGGJbGaai4BaiaacshacqaH4oqCdaWcaaqaaiaadofa daWgaaWcbaGaeqiUdeNaeqiUdehabeaaaOqaaiaadkfaaaGaey4kaS YaaSaaaeaacaaIXaaabaGaamOuaiGacohacaGGPbGaaiOBaiabeI7a XbaadaWcaaqaaiabgkGi2kaadofadaWgaaWcbaGaeqy1dyMaeqiUde habeaaaOqaaiabgkGi2kabew9aMbaacqGHRaWkdaWcaaqaaiaadofa daWgaaWcbaGaeqiUdeNaamOuaaqabaaakeaacaWGsbaaaiabgkHiTi GacogacaGGVbGaaiiDaiabeI7aXnaalaaabaGaam4uamaaBaaaleaa cqaHvpGzcqaHvpGzaeqaaaGcbaGaamOuaaaaaeaadaWcaaqaaiabgk Gi2kaadofadaWgaaWcbaGaamOuaiabew9aMbqabaaakeaacqGHciIT caWGsbaaaiabgUcaRiaaikdadaWcaaqaaiaadofadaWgaaWcbaGaam Ouaiabew9aMbqabaaakeaacaWGsbaaaiabgUcaRmaalaaabaGaci4C aiaacMgacaGGUbGaeqiUdehabaGaamOuaaaadaWcaaqaaiabgkGi2k aadofadaWgaaWcbaGaeqiUdeNaeqy1dygabeaaaOqaaiabgkGi2kab eI7aXbaacqGHRaWkciGGJbGaai4BaiaacohacqaH4oqCdaWcaaqaai aadofadaWgaaWcbaGaeqiUdeNaeqy1dygabeaaaOqaaiaadkfaaaGa ey4kaSYaaSaaaeaacaaIXaaabaGaamOuaiGacohacaGGPbGaaiOBai abeI7aXbaadaWcaaqaaiabgkGi2kaadofadaWgaaWcbaGaeqy1dyMa eqy1dygabeaaaOqaaiabgkGi2kabew9aMbaacqGHRaWkdaWcaaqaai aaigdaaeaacaWGsbaaamaabmaabaGaam4uamaaBaaaleaacqaHvpGz caWGsbaabeaakiabgUcaRiaadofadaWgaaWcbaGaeqy1dyMaeqiUde habeaaaOGaayjkaiaawMcaaaaaaiaawUfacaGLDbaaaaa@057D@

 

 

 

 

 

3.6 Vectors and Tensors in Cylindrical-Polar Coordintes

3.6.1 Specifying points in space using in cylindrical-polar coordinates

 

To specify the location of a point in cylindrical-polar coordinates, we choose an origin at some point on the axis of the cylinder, select a unit vector k to be parallel to the axis of the cylinder, and choose a convenient direction for the basis vector i, as shown in the picture.  We then use the three numbers r,θ,z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGYbGaaiilai abeI7aXjaacYcacaWG6baaaa@3A81@  to locate a point inside the cylinder, as shown in the picture.  These are not components of a vector.

 

In words

r is the radial distance of P from the axis of the cylinder

 is the angle between the i direction and the  projection of OP onto the i,j plane

z is the length of the projection of OP on the axis of the cylinder.

By convention r>0 and 0θ 360 o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaaIWaGaeyizIm QaeqiUdeNaeyizImQaaG4maiaaiAdacaaIWaWaaWbaaSqabeaacaWG Vbaaaaaa@3EA7@

 

3.6.2 Converting between cylindrical polar and rectangular cartesian coordinates

 

When we use a Cartesian basis, we identify points in space by specifying the components of their position vector relative to the origin (x,y,z), such that r=xi+yj+zk MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHYbGaeyypa0 JaamiEaiaahMgacqGHRaWkcaWG5bGaaCOAaiabgUcaRiaadQhacaWH Rbaaaa@3F0E@   When we use a spherical-polar coordinate system, we locate points by specifying their spherical-polar coordinates r,θ,z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGYbGaaiilai abeI7aXjaacYcacaWG6baaaa@3A81@

 

The formulas below relate the two representations.  They are derived using basic trigonometry

x=rcosθ y=rsinθ z=z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaadIhacq GH9aqpcaWGYbGaci4yaiaac+gacaGGZbGaeqiUdeNaaGPaVdqaaiaa dMhacqGH9aqpcaWGYbGaci4CaiaacMgacaGGUbGaeqiUdehabaGaam OEaiabg2da9iaadQhaaaaa@4918@                   r= x 2 + y 2 θ= tan 1 y/x z=z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaadkhacq GH9aqpdaGcaaqaaiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHRaWk caWG5bWaaWbaaSqabeaacaaIYaaaaaqabaGccaaMc8oabaGaeqiUde Naeyypa0JaciiDaiaacggacaGGUbWaaWbaaSqabeaacqGHsislcaaI XaaaaOGaamyEaiaac+cacaWG4baabaGaamOEaiabg2da9iaadQhaaa aa@4AF6@

 

 

 

 

 

 

 

3.6.3 Cylindrical-polar representation of vectors

When we work with vectors in spherical-polar coordinates, we specify vectors as components in the .. basis shown in the figure.  For example, an arbitrary vector a is written as a= a r e r + a θ e θ + a z e z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHHbGaeyypa0 JaamyyamaaBaaaleaacaWGYbaabeaakiaahwgadaWgaaWcbaGaamOC aaqabaGccqGHRaWkcaWGHbWaaSbaaSqaaiabeI7aXbqabaGccaWHLb WaaSbaaSqaaiabeI7aXbqabaGccqGHRaWkcaWGHbWaaSbaaSqaaiaa dQhaaeqaaOGaaCyzamaaBaaaleaacaWG6baabeaakiaaykW7aaa@48CC@ , where ( a r , a θ , a z ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaamyyam aaBaaaleaacaWGYbaabeaakiaacYcacaWGHbWaaSbaaSqaaiabeI7a XbqabaGccaGGSaGaamyyamaaBaaaleaacaWG6baabeaakiaacMcaaa a@3F2F@  denote the components of a.

 

The basis vectors are selected as follows

e r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHLbWaaSbaaS qaaiaadkhaaeqaaaaa@3786@  is a unit vector normal to the cylinder at P

e θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHLbWaaSbaaS qaaiabeI7aXbqabaaaaa@3845@  is a unit vector circumferential to the cylinder at P, chosen to make { e r , e θ , e z } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGG7bGaaCyzam aaBaaaleaacaWGYbaabeaakiaacYcacaWHLbWaaSbaaSqaaiabeI7a XbqabaGccaGGSaGaaCyzamaaBaaaleaacaWG6baabeaakiaac2haaa a@3FED@  a right handed triad

e z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHLbWaaSbaaS qaaiaadQhaaeqaaaaa@378E@  is parallel to the k vector.

 

You will see that the position vector of point P would be expressed as

r=r e r +z e z =rcosθi+rsinθj+zk MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHYbGaeyypa0 JaamOCaiaahwgadaWgaaWcbaGaamOCaaqabaGccqGHRaWkcaWG6bGa aCyzamaaBaaaleaacaWG6baabeaakiabg2da9iaadkhaciGGJbGaai 4BaiaacohacqaH4oqCcaWHPbGaey4kaSIaamOCaiGacohacaGGPbGa aiOBaiabeI7aXjaahQgacqGHRaWkcaWG6bGaaC4AaiaaykW7aaa@51BE@

 

Note also that the basis vectors are intentionally chosen to satisfy

e r = 1 | r r | r r e ϕ = 1 | r θ | r θ e z = 1 | r z | r z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHLbWaaSbaaS qaaiaadkhaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaWaaqWaaeaa daWcaaqaaiabgkGi2kaahkhaaeaacqGHciITcaWGYbaaaaGaay5bSl aawIa7aaaadaWcaaqaaiabgkGi2kaahkhaaeaacqGHciITcaWGYbaa aiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaahwgadaWgaaWcbaGaeqy1dygabeaakiabg2da9m aalaaabaGaaGymaaqaamaaemaabaWaaSaaaeaacqGHciITcaWHYbaa baGaeyOaIyRaeqiUdehaaaGaay5bSlaawIa7aaaadaWcaaqaaiabgk Gi2kaahkhaaeaacqGHciITcqaH4oqCaaGaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaCyzamaa BaaaleaacaWG6baabeaakiabg2da9maalaaabaGaaGymaaqaamaaem aabaWaaSaaaeaacqGHciITcaWHYbaabaGaeyOaIyRaamOEaaaaaiaa wEa7caGLiWoaaaWaaSaaaeaacqGHciITcaWHYbaabaGaeyOaIyRaam OEaaaacaaMc8oaaa@A2F1@

The basis vectors have unit length, are mutually perpendicular, and form a right handed triad and therefore { e r , e θ , e z } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGG7bGaaCyzam aaBaaaleaacaWGYbaabeaakiaacYcacaWHLbWaaSbaaSqaaiabeI7a XbqabaGccaGGSaGaaCyzamaaBaaaleaacaWG6baabeaakiaac2haaa a@3FED@  is an orthonormal basis.  The basis vectors are parallel to (but not equivalent to) the natural basis vectors for a cylindrical polar coordinate system (see Chapter 10 for a more detailed discussion).

 

 

3.6.4 Converting vectors between Cylindrical and Cartesian bases

Let a= a r e r + a θ e θ + a z e z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHHbGaeyypa0 JaamyyamaaBaaaleaacaWGYbaabeaakiaahwgadaWgaaWcbaGaamOC aaqabaGccqGHRaWkcaWGHbWaaSbaaSqaaiabeI7aXbqabaGccaWHLb WaaSbaaSqaaiabeI7aXbqabaGccqGHRaWkcaWGHbWaaSbaaSqaaiaa dQhaaeqaaOGaaCyzamaaBaaaleaacaWG6baabeaakiaaykW7aaa@48CC@  be a vector, with components ( a r , a θ , a z ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaamyyam aaBaaaleaacaWGYbaabeaakiaacYcacaWGHbWaaSbaaSqaaiabeI7a XbqabaGccaGGSaGaamyyamaaBaaaleaacaWG6baabeaakiaacMcaaa a@3F2F@  in the spherical-polar basis { e R , e θ , e ϕ } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGG7bGaaCyzam aaBaaaleaacaWGsbaabeaakiaacYcacaWHLbWaaSbaaSqaaiabeI7a XbqabaGccaGGSaGaaCyzamaaBaaaleaacqaHvpGzaeqaaOGaaiyFaa aa@4096@ .  Let a x , a y , a z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaadIhaaeqaaOGaaiilaiaadggadaWgaaWcbaGaamyEaaqabaGc caGGSaGaamyyamaaBaaaleaacaWG6baabeaaaaa@3D19@  denote the components of a in the basis {i,j,k}.

 

The two sets of components are related by

[ a x a y a z ]=[ cosθ sinθ 0 sinθ cosθ 0 0 0 1 ][ a r a θ a z ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaauaabe qadeaaaeaacaWGHbWaaSbaaSqaaiaadIhaaeqaaaGcbaGaamyyamaa BaaaleaacaWG5baabeaaaOqaaiaadggadaWgaaWcbaGaamOEaaqaba aaaaGccaGLBbGaayzxaaGaeyypa0ZaamWaaeaafaqabeWadaaabaGa ci4yaiaac+gacaGGZbGaeqiUdehabaGaeyOeI0Iaci4CaiaacMgaca GGUbGaeqiUdehabaGaaGimaaqaaiGacohacaGGPbGaaiOBaiabeI7a XbqaaiGacogacaGGVbGaai4CaiabeI7aXbqaaiaaicdaaeaacaaIWa aabaGaaGimaaqaaiaaigdaaaaacaGLBbGaayzxaaWaamWaaeaafaqa beWabaaabaGaamyyamaaBaaaleaacaWGYbaabeaaaOqaaiaadggada WgaaWcbaGaeqiUdehabeaaaOqaaiaadggadaWgaaWcbaGaamOEaaqa baaaaaGccaGLBbGaayzxaaGaaGPaVdaa@621D@      [ a r a θ a z ]=[ cosθ sinθ 0 sinθ cosθ 0 0 0 1 ][ a x a y a z ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaauaabe qadeaaaeaacaWGHbWaaSbaaSqaaiaadkhaaeqaaaGcbaGaamyyamaa BaaaleaacqaH4oqCaeqaaaGcbaGaamyyamaaBaaaleaacaWG6baabe aaaaaakiaawUfacaGLDbaacqGH9aqpdaWadaqaauaabeqadmaaaeaa ciGGJbGaai4BaiaacohacqaH4oqCaeaaciGGZbGaaiyAaiaac6gacq aH4oqCaeaacaaIWaaabaGaeyOeI0Iaci4CaiaacMgacaGGUbGaeqiU dehabaGaci4yaiaac+gacaGGZbGaeqiUdehabaGaaGimaaqaaiaaic daaeaacaaIWaaabaGaaGymaaaaaiaawUfacaGLDbaadaWadaqaauaa beqadeaaaeaacaWGHbWaaSbaaSqaaiaadIhaaeqaaaGcbaGaamyyam aaBaaaleaacaWG5baabeaaaOqaaiaadggadaWgaaWcbaGaamOEaaqa baaaaaGccaGLBbGaayzxaaGaaGPaVdaa@621D@

 

Observe that the two 3x3 matrices involved in this transformation are transposes (and inverses) of one another.   The transformation matrix is therefore orthogonal, satisfying [Q] [Q] T =[I] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGBbGaamyuai aac2facaGGBbGaamyuaiaac2fadaahaaWcbeqaaiaadsfaaaGccqGH 9aqpcaGGBbGaamysaiaac2faaaa@3F46@ , where [I] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGBbGaamysai aac2faaaa@3804@  denotes the 3x3 identity matrix.

 

The derivation of these results follows the procedure outlined in E.1.4 exactly, and is left as an exercise.
 

 

 

 

3.6.5 Cylindrical-Polar representation of tensors

 

The triad of vectors { e r , e θ , e z } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGG7bGaaCyzam aaBaaaleaacaWGYbaabeaakiaacYcacaWHLbWaaSbaaSqaaiabeI7a XbqabaGccaGGSaGaaCyzamaaBaaaleaacaWG6baabeaakiaac2haaa a@3FED@  is an orthonormal basis (i.e. the three basis vectors have unit length, and are mutually perpendicular).  Consequently, tensors can be represented as components in this basis in exactly the same way as for a fixed Cartesian basis { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGG7bGaaCyzam aaBaaaleaacaaIXaaabeaakiaacYcacaWHLbWaaSbaaSqaaiaaikda aeqaaOGaaiilaiaahwgadaWgaaWcbaGaaG4maaqabaGccaGG9baaaa@3E75@ .  In particular, a general second order tensor S can be represented as a 3x3 matrix

S[ S rr S rθ S rz S θr S θθ S θz S zr S zθ S zz ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHtbGaeyyyIO 7aamWaaeaafaqabeWadaaabaGaam4uamaaBaaaleaacaWGYbGaamOC aaqabaaakeaacaWGtbWaaSbaaSqaaiaadkhacqaH4oqCaeqaaaGcba Gaam4uamaaBaaaleaacaWGYbGaamOEaaqabaaakeaacaWGtbWaaSba aSqaaiabeI7aXjaadkhaaeqaaaGcbaGaam4uamaaBaaaleaacqaH4o qCcqaH4oqCaeqaaaGcbaGaam4uamaaBaaaleaacqaH4oqCcaWG6baa beaaaOqaaiaadofadaWgaaWcbaGaamOEaiaadkhaaeqaaaGcbaGaam 4uamaaBaaaleaacaWG6bGaeqiUdehabeaaaOqaaiaadofadaWgaaWc baGaamOEaiaadQhaaeqaaaaaaOGaay5waiaaw2faaaaa@59A9@

You can think of S rr MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGtbWaaSbaaS qaaiaadkhacaWGYbaabeaaaaa@3868@  as being equivalent to S 11 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGtbWaaSbaaS qaaiaaigdacaaIXaaabeaaaaa@37F0@ , S rθ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGtbWaaSbaaS qaaiaadkhacqaH4oqCaeqaaaaa@3927@  as S 12 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGtbWaaSbaaS qaaiaaigdacaaIYaaabeaaaaa@37F1@ , and so on. All tensor operations such as addition, multiplication by a vector, tensor products, etc can be expressed in terms of the corresponding operations on this matrix, as discussed in Section B2 of Appendix B.

 

The component representation of a tensor can also be expressed in dyadic form as

S= S rr e r e r + S rθ e r e θ + S rz e r e z + S θr e θ e r + S θθ e θ e θ + S θz e θ e z + S zr e z e r + S zθ e z e θ + S zz e z e z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaahofacq GH9aqpcaaMc8UaaGPaVlaaykW7caaMc8Uaam4uamaaBaaaleaacaWG YbGaamOCaaqabaGccaWHLbWaaSbaaSqaaiaadkhaaeqaaOGaey4LIq SaaCyzamaaBaaaleaacaWGYbaabeaakiabgUcaRiaadofadaWgaaWc baGaamOCaiabeI7aXbqabaGccaWHLbWaaSbaaSqaaiaadkhaaeqaaO Gaey4LIqSaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaey4kaSIaam4u amaaBaaaleaacaWGYbGaamOEaaqabaGccaWHLbWaaSbaaSqaaiaadk haaeqaaOGaey4LIqSaaCyzamaaBaaaleaacaWG6baabeaaaOqaaiaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabgUcaRiaaykW7ca WGtbWaaSbaaSqaaiabeI7aXjaadkhaaeqaaOGaaCyzamaaBaaaleaa cqaH4oqCaeqaaOGaey4LIqSaaCyzamaaBaaaleaacaWGYbaabeaaki abgUcaRiaadofadaWgaaWcbaGaeqiUdeNaeqiUdehabeaakiaahwga daWgaaWcbaGaeqiUdehabeaakiabgEPielaahwgadaWgaaWcbaGaeq iUdehabeaakiabgUcaRiaadofadaWgaaWcbaGaeqiUdeNaamOEaaqa baGccaWHLbWaaSbaaSqaaiabeI7aXbqabaGccqGHxkcXcaWHLbWaaS baaSqaaiaadQhaaeqaaaGcbaGaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8Uaey4kaSIaam4uamaaBaaaleaacaWG6bGaamOCaaqaba GccaWHLbWaaSbaaSqaaiaadQhaaeqaaOGaey4LIqSaaCyzamaaBaaa leaacaWGYbaabeaakiabgUcaRiaadofadaWgaaWcbaGaamOEaiabeI 7aXbqabaGccaWHLbWaaSbaaSqaaiaadQhaaeqaaOGaey4LIqSaaCyz amaaBaaaleaacqaH4oqCaeqaaOGaey4kaSIaam4uamaaBaaaleaaca WG6bGaamOEaaqabaGccaWHLbWaaSbaaSqaaiaadQhaaeqaaOGaey4L IqSaaCyzamaaBaaaleaacaWG6baabeaaaaaa@B508@

 

 

3.6.6 Constitutive equations in cylindrical-polar coordinates

 

The constitutive equations listed in Chapter 3 all relate some measure of stress in the solid (expressed as a tensor) to some measure of local internal deformation (deformation gradient, Eulerian strain, rate of deformation tensor, etc), also expressed as a tensor.  The constitutive equations can be used without modification in cylindrical-polar coordinates, as long as the matrices of Cartesian components of the various tensors are replaced by their equivalent matrices in spherical-polar coordinates.

 

For example, the stress-strain relations for an isotropic, linear elastic material in cylindrical-polar coordinates read

[ ε rr ε θθ ε zz 2 ε θz 2 ε rz 2 ε rθ ]= 1 E [ 1 ν ν 0 0 0 ν 1 ν 0 0 0 ν ν 1 0 0 0 0 0 0 2( 1+ν ) 0 0 0 0 0 0 2( 1+ν ) 0 0 0 0 0 0 2( 1+ν ) ][ σ rr σ θθ σ zz σ θz σ rz σ rθ ]+αΔT[ 1 1 1 0 0 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaauaabe qageaaaaqaaiabew7aLnaaBaaaleaacaWGYbGaamOCaaqabaaakeaa cqaH1oqzdaWgaaWcbaGaeqiUdeNaeqiUdehabeaaaOqaaiabew7aLn aaBaaaleaacaWG6bGaamOEaaqabaaakeaacaaIYaGaeqyTdu2aaSba aSqaaiabeI7aXjaadQhaaeqaaaGcbaGaaGOmaiabew7aLnaaBaaale aacaWGYbGaamOEaaqabaaakeaacaaIYaGaeqyTdu2aaSbaaSqaaiaa dkhacqaH4oqCaeqaaaaaaOGaay5waiaaw2faaiabg2da9maalaaaba GaaGymaaqaaiaadweaaaWaamWaaeaafaqabeGbgaaaaaqaaiaaigda aeaacqGHsislcqaH9oGBaeaacqGHsislcqaH9oGBaeaacaaIWaaaba GaaGimaaqaaiaaicdaaeaacqGHsislcqaH9oGBaeaacaaIXaaabaGa eyOeI0IaeqyVd4gabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaey OeI0IaeqyVd4gabaGaeyOeI0IaeqyVd4gabaGaaGymaaqaaiaaicda aeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaa qaaiaaikdadaqadaqaaiaaigdacqGHRaWkcqaH9oGBaiaawIcacaGL PaaaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaG imaaqaaiaaicdaaeaacaaIYaWaaeWaaeaacaaIXaGaey4kaSIaeqyV d4gacaGLOaGaayzkaaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaaba GaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGOmamaabmaabaGaaGym aiabgUcaRiabe27aUbGaayjkaiaawMcaaaaaaiaawUfacaGLDbaada Wadaqaauaabeqageaaaaqaaiabeo8aZnaaBaaaleaacaWGYbGaamOC aaqabaaakeaacqaHdpWCdaWgaaWcbaGaeqiUdeNaeqiUdehabeaaaO qaaiabeo8aZnaaBaaaleaacaWG6bGaamOEaaqabaaakeaacqaHdpWC daWgaaWcbaGaeqiUdeNaamOEaaqabaaakeaacqaHdpWCdaWgaaWcba GaamOCaiaadQhaaeqaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadkhacqaH 4oqCaeqaaaaaaOGaay5waiaaw2faaiabgUcaRiabeg7aHjabfs5aej aadsfadaWadaqaauaabeqageaaaaqaaiaaigdaaeaacaaIXaaabaGa aGymaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaaaaiaawUfacaGLDb aaaaa@B453@

The cautionary remarks regarding anisotropic materials in E.1.6 also applies to cylindrical-polar coordinate systems.

 

 

 

 

 

 

 

 

 

 

3.6.7 Converting tensors between Cartesian and Spherical-Polar bases

                                               

Let S be a tensor, with components

S[ S rr S rθ S rz S θr S θθ S θz S zr S zθ S zz ][ S xx S xy S xz S yx S yy S yz S zx S xy S zz ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHtbGaeyyyIO 7aamWaaeaafaqabeWadaaabaGaam4uamaaBaaaleaacaWGYbGaamOC aaqabaaakeaacaWGtbWaaSbaaSqaaiaadkhacqaH4oqCaeqaaaGcba Gaam4uamaaBaaaleaacaWGYbGaamOEaaqabaaakeaacaWGtbWaaSba aSqaaiabeI7aXjaadkhaaeqaaaGcbaGaam4uamaaBaaaleaacqaH4o qCcqaH4oqCaeqaaaGcbaGaam4uamaaBaaaleaacqaH4oqCcaWG6baa beaaaOqaaiaadofadaWgaaWcbaGaamOEaiaadkhaaeqaaaGcbaGaam 4uamaaBaaaleaacaWG6bGaeqiUdehabeaaaOqaaiaadofadaWgaaWc baGaamOEaiaadQhaaeqaaaaaaOGaay5waiaaw2faaiaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaeyyyIORaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8+aamWaaeaafaqabeWadaaabaGaam4uamaaBaaale aacaWG4bGaamiEaaqabaaakeaacaWGtbWaaSbaaSqaaiaadIhacaWG 5baabeaaaOqaaiaadofadaWgaaWcbaGaamiEaiaadQhaaeqaaaGcba Gaam4uamaaBaaaleaacaWG5bGaamiEaaqabaaakeaacaWGtbWaaSba aSqaaiaadMhacaWG5baabeaaaOqaaiaadofadaWgaaWcbaGaamyEai aadQhaaeqaaaGcbaGaam4uamaaBaaaleaacaWG6bGaamiEaaqabaaa keaacaWGtbWaaSbaaSqaaiaadIhacaWG5baabeaaaOqaaiaadofada WgaaWcbaGaamOEaiaadQhaaeqaaaaaaOGaay5waiaaw2faaaaa@89CC@

in the cylindrical-polar basis { e r , e θ , e z } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGG7bGaaCyzam aaBaaaleaacaWGYbaabeaakiaacYcacaWHLbWaaSbaaSqaaiabeI7a XbqabaGccaGGSaGaaCyzamaaBaaaleaacaWG6baabeaakiaac2haaa a@3FED@  and the Cartesian basis {i,j,k}, respectively.  The two sets of components are related by

 

 

 

 

MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakaa@3575@  

[ S xx S xy S xz S yx S yy S yz S zx S xy S zz ]=[ cosθ sinθ 0 sinθ cosθ 0 0 0 1 ][ S rr S rθ S rz S θr S θθ S θz S zr S zθ S zz ][ cosθ sinθ 0 sinθ cosθ 0 0 0 1 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaauaabe qadmaaaeaacaWGtbWaaSbaaSqaaiaadIhacaWG4baabeaaaOqaaiaa dofadaWgaaWcbaGaamiEaiaadMhaaeqaaaGcbaGaam4uamaaBaaale aacaWG4bGaamOEaaqabaaakeaacaWGtbWaaSbaaSqaaiaadMhacaWG 4baabeaaaOqaaiaadofadaWgaaWcbaGaamyEaiaadMhaaeqaaaGcba Gaam4uamaaBaaaleaacaWG5bGaamOEaaqabaaakeaacaWGtbWaaSba aSqaaiaadQhacaWG4baabeaaaOqaaiaadofadaWgaaWcbaGaamiEai aadMhaaeqaaaGcbaGaam4uamaaBaaaleaacaWG6bGaamOEaaqabaaa aaGccaGLBbGaayzxaaGaeyypa0ZaamWaaeaafaqabeWadaaabaGaci 4yaiaac+gacaGGZbGaeqiUdehabaGaeyOeI0Iaci4CaiaacMgacaGG UbGaeqiUdehabaGaaGimaaqaaiGacohacaGGPbGaaiOBaiabeI7aXb qaaiGacogacaGGVbGaai4CaiabeI7aXbqaaiaaicdaaeaacaaIWaaa baGaaGimaaqaaiaaigdaaaaacaGLBbGaayzxaaWaamWaaeaafaqabe WadaaabaGaam4uamaaBaaaleaacaWGYbGaamOCaaqabaaakeaacaWG tbWaaSbaaSqaaiaadkhacqaH4oqCaeqaaaGcbaGaam4uamaaBaaale aacaWGYbGaamOEaaqabaaakeaacaWGtbWaaSbaaSqaaiabeI7aXjaa dkhaaeqaaaGcbaGaam4uamaaBaaaleaacqaH4oqCcqaH4oqCaeqaaa GcbaGaam4uamaaBaaaleaacqaH4oqCcaWG6baabeaaaOqaaiaadofa daWgaaWcbaGaamOEaiaadkhaaeqaaaGcbaGaam4uamaaBaaaleaaca WG6bGaeqiUdehabeaaaOqaaiaadofadaWgaaWcbaGaamOEaiaadQha aeqaaaaaaOGaay5waiaaw2faaiaaykW7daWadaqaauaabeqadmaaae aaciGGJbGaai4BaiaacohacqaH4oqCaeaaciGGZbGaaiyAaiaac6ga cqaH4oqCaeaacaaIWaaabaGaeyOeI0Iaci4CaiaacMgacaGGUbGaeq iUdehabaGaci4yaiaac+gacaGGZbGaeqiUdehabaGaaGimaaqaaiaa icdaaeaacaaIWaaabaGaaGymaaaaaiaawUfacaGLDbaaaaa@A884@

[ S rr S rθ S rz S θr S θθ S θz S zr S zθ S zz ]=[ cosθ sinθ 0 sinθ cosθ 0 0 0 1 ][ S xx S xy S xz S yx S yy S yz S zx S xy S zz ][ cosθ sinθ 0 sinθ cosθ 0 0 0 1 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaauaabe qadmaaaeaacaWGtbWaaSbaaSqaaiaadkhacaWGYbaabeaaaOqaaiaa dofadaWgaaWcbaGaamOCaiabeI7aXbqabaaakeaacaWGtbWaaSbaaS qaaiaadkhacaWG6baabeaaaOqaaiaadofadaWgaaWcbaGaeqiUdeNa amOCaaqabaaakeaacaWGtbWaaSbaaSqaaiabeI7aXjabeI7aXbqaba aakeaacaWGtbWaaSbaaSqaaiabeI7aXjaadQhaaeqaaaGcbaGaam4u amaaBaaaleaacaWG6bGaamOCaaqabaaakeaacaWGtbWaaSbaaSqaai aadQhacqaH4oqCaeqaaaGcbaGaam4uamaaBaaaleaacaWG6bGaamOE aaqabaaaaaGccaGLBbGaayzxaaGaeyypa0JaaGPaVpaadmaabaqbae qabmWaaaqaaiGacogacaGGVbGaai4CaiabeI7aXbqaaiGacohacaGG PbGaaiOBaiabeI7aXbqaaiaaicdaaeaacqGHsislciGGZbGaaiyAai aac6gacqaH4oqCaeaaciGGJbGaai4BaiaacohacqaH4oqCaeaacaaI WaaabaGaaGimaaqaaiaaicdaaeaacaaIXaaaaaGaay5waiaaw2faam aadmaabaqbaeqabmWaaaqaaiaadofadaWgaaWcbaGaamiEaiaadIha aeqaaaGcbaGaam4uamaaBaaaleaacaWG4bGaamyEaaqabaaakeaaca WGtbWaaSbaaSqaaiaadIhacaWG6baabeaaaOqaaiaadofadaWgaaWc baGaamyEaiaadIhaaeqaaaGcbaGaam4uamaaBaaaleaacaWG5bGaam yEaaqabaaakeaacaWGtbWaaSbaaSqaaiaadMhacaWG6baabeaaaOqa aiaadofadaWgaaWcbaGaamOEaiaadIhaaeqaaaGcbaGaam4uamaaBa aaleaacaWG4bGaamyEaaqabaaakeaacaWGtbWaaSbaaSqaaiaadQha caWG6baabeaaaaaakiaawUfacaGLDbaadaWadaqaauaabeqadmaaae aaciGGJbGaai4BaiaacohacqaH4oqCaeaacqGHsislciGGZbGaaiyA aiaac6gacqaH4oqCaeaacaaIWaaabaGaci4CaiaacMgacaGGUbGaeq iUdehabaGaci4yaiaac+gacaGGZbGaeqiUdehabaGaaGimaaqaaiaa icdaaeaacaaIWaaabaGaaGymaaaaaiaawUfacaGLDbaaaaa@A884@

 

 

 

3.6.8 Vector Calculus using Cylindrical-Polar Coordinates

 

Calculating derivatives of scalar, vector and tensor functions of position in cylindrical-polar coordinates is complicated by the fact that the basis vectors are functions of position.  The results can be expressed in a compact form by defining the gradient operator, which, in spherical-polar coordinates, has the representation

( e r r + e θ 1 r θ + e z z ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqGHhis0cqGHHj IUdaqadaqaaiaahwgadaWgaaWcbaGaamOCaaqabaGcdaWcaaqaaiab gkGi2cqaaiabgkGi2kaadkhaaaGaey4kaSIaaCyzamaaBaaaleaacq aH4oqCaeqaaOWaaSaaaeaacaaIXaaabaGaamOCaaaadaWcaaqaaiab gkGi2cqaaiabgkGi2kabeI7aXbaacqGHRaWkcaWHLbWaaSbaaSqaai aadQhaaeqaaOWaaSaaaeaacqGHciITaeaacqGHciITcaWG6baaaaGa ayjkaiaawMcaaaaa@512C@

In addition, the nonzero derivatives of the basis vectors are

e r θ = e θ e θ θ = e r (all other derivatives are zero) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWcaaqaaiabgk Gi2kaahwgadaWgaaWcbaGaamOCaaqabaaakeaacqGHciITcqaH4oqC aaGaeyypa0JaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7daWcaaqaaiab gkGi2kaahwgadaWgaaWcbaGaeqiUdehabeaaaOqaaiabgkGi2kabeI 7aXbaacqGH9aqpcqGHsislcaWHLbWaaSbaaSqaaiaadkhaaeqaaOGa aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaiikaiaabggacaqGSbGaaeiBaiaabccacaqGVbGaaeiDaiaa bIgacaqGLbGaaeOCaiaabccacaqGKbGaaeyzaiaabkhacaqGPbGaae ODaiaabggacaqG0bGaaeyAaiaabAhacaqGLbGaae4CaiaabccacaqG HbGaaeOCaiaabwgacaqGGaGaaeOEaiaabwgacaqGYbGaae4BaiaabM caaaa@81E3@

 

The various derivatives of scalars, vectors and tensors can be expressed using operator notation as follows. 

 

Gradient of a scalar function: Let f(r,θ,z) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGMbGaaiikai aadkhacaGGSaGaeqiUdeNaaiilaiaadQhacaGGPaaaaa@3CC6@  denote a scalar function of position.  The gradient of f is denoted by

f=( e r r + e θ 1 r θ + e z z )f= e r f r + e θ 1 r f θ + e z f z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqGHhis0caWGMb Gaeyypa0ZaaeWaaeaacaWHLbWaaSbaaSqaaiaadkhaaeqaaOWaaSaa aeaacqGHciITaeaacqGHciITcaWGYbaaaiabgUcaRiaahwgadaWgaa WcbaGaeqiUdehabeaakmaalaaabaGaaGymaaqaaiaadkhaaaWaaSaa aeaacqGHciITaeaacqGHciITcqaH4oqCaaGaey4kaSIaaCyzamaaBa aaleaacaWG6baabeaakmaalaaabaGaeyOaIylabaGaeyOaIyRaamOE aaaaaiaawIcacaGLPaaacaWGMbGaeyypa0JaaCyzamaaBaaaleaaca WGYbaabeaakmaalaaabaGaeyOaIyRaamOzaaqaaiabgkGi2kaadkha aaGaey4kaSIaaCyzamaaBaaaleaacqaH4oqCaeqaaOWaaSaaaeaaca aIXaaabaGaamOCaaaadaWcaaqaaiabgkGi2kaadAgaaeaacqGHciIT cqaH4oqCaaGaey4kaSIaaCyzamaaBaaaleaacaWG6baabeaakmaala aabaGaeyOaIyRaamOzaaqaaiabgkGi2kaadQhaaaaaaa@6CE4@

Alternatively, in matrix form

f= [ f r , 1 r f θ , f z ] T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqGHhis0caWGMb Gaeyypa0ZaamWaaeaadaWcaaqaaiabgkGi2kaadAgaaeaacqGHciIT caWGYbaaaiaacYcadaWcaaqaaiaaigdaaeaacaWGYbaaamaalaaaba GaeyOaIyRaamOzaaqaaiabgkGi2kabeI7aXbaacaGGSaWaaSaaaeaa cqGHciITcaWGMbaabaGaeyOaIyRaamOEaaaaaiaawUfacaGLDbaada ahaaWcbeqaaiaadsfaaaaaaa@4E08@

 

Gradient of a vector function Let v= v r e r + v θ e θ + v z e z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH2bGaeyypa0 JaamODamaaBaaaleaacaWGYbaabeaakiaahwgadaWgaaWcbaGaamOC aaqabaGccqGHRaWkcaWG2bWaaSbaaSqaaiabeI7aXbqabaGccaWHLb WaaSbaaSqaaiabeI7aXbqabaGccqGHRaWkcaWG2bWaaSbaaSqaaiaa dQhaaeqaaOGaaCyzamaaBaaaleaacaWG6baabeaaaaa@478C@  be a vector function of position. The gradient of v is a tensor, which can be represented as a dyadic product of the vector with the gradient operator as

v=( v r e r + v θ e θ + v z e z )( e r r + e θ 1 r θ + e z z ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH2bGaey4LIq Saey4bIeTaeyypa0ZaaeWaaeaacaWG2bWaaSbaaSqaaiaadkhaaeqa aOGaaCyzamaaBaaaleaacaWGYbaabeaakiabgUcaRiaadAhadaWgaa WcbaGaeqiUdehabeaakiaahwgadaWgaaWcbaGaeqiUdehabeaakiab gUcaRiaadAhadaWgaaWcbaGaamOEaaqabaGccaWHLbWaaSbaaSqaai aadQhaaeqaaaGccaGLOaGaayzkaaGaey4LIq8aaeWaaeaacaWHLbWa aSbaaSqaaiaadkhaaeqaaOWaaSaaaeaacqGHciITaeaacqGHciITca WGYbaaaiabgUcaRiaahwgadaWgaaWcbaGaeqiUdehabeaakmaalaaa baGaaGymaaqaaiaadkhaaaWaaSaaaeaacqGHciITaeaacqGHciITcq aH4oqCaaGaey4kaSIaaCyzamaaBaaaleaacaWG6baabeaakmaalaaa baGaeyOaIylabaGaeyOaIyRaamOEaaaaaiaawIcacaGLPaaaaaa@671E@

The dyadic product can be expanded MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  but when evaluating the derivatives it is important to recall that the basis vectors are functions of the coordinate θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH4oqCaaa@372C@  and consequently their derivatives may not vanish.  For example

1 r θ ( v r e r ) e θ = 1 r v r θ e r e θ + v r r e r θ e θ = 1 r v r θ e r e θ + v r r e θ e θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWcaaqaaiaaig daaeaacaWGYbaaamaalaaabaGaeyOaIylabaGaeyOaIyRaeqiUdeha amaabmaabaGaamODamaaBaaaleaacaWGYbaabeaakiaahwgadaWgaa WcbaGaamOCaaqabaaakiaawIcacaGLPaaacqGHxkcXcaWHLbWaaSba aSqaaiabeI7aXbqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaWGYb aaamaalaaabaGaeyOaIyRaamODamaaBaaaleaacaWGYbaabeaaaOqa aiabgkGi2kabeI7aXbaacaWHLbWaaSbaaSqaaiaadkhaaeqaaOGaey 4LIqSaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaey4kaSYaaSaaaeaa caWG2bWaaSbaaSqaaiaadkhaaeqaaaGcbaGaamOCaaaadaWcaaqaai abgkGi2kaahwgadaWgaaWcbaGaamOCaaqabaaakeaacqGHciITcqaH 4oqCaaGaey4LIqSaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaeyypa0 ZaaSaaaeaacaaIXaaabaGaamOCaaaadaWcaaqaaiabgkGi2kaadAha daWgaaWcbaGaamOCaaqabaaakeaacqGHciITcqaH4oqCaaGaaCyzam aaBaaaleaacaWGYbaabeaakiabgEPielaahwgadaWgaaWcbaGaeqiU dehabeaakiabgUcaRmaalaaabaGaamODamaaBaaaleaacaWGYbaabe aaaOqaaiaadkhaaaGaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaey4L IqSaaCyzamaaBaaaleaacqaH4oqCaeqaaaaa@82DD@

Verify for yourself that the matrix representing the components of the gradient of a vector is

v[ v r r 1 r v r θ v θ r v r z v θ r 1 r v θ θ + v r r v θ z v z r 1 r v z θ v z z ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH2bGaey4LIq Saey4bIeTaeyyyIO7aamWaaeaafaqabeWadaaabaWaaSaaaeaacqGH ciITcaWG2bWaaSbaaSqaaiaadkhaaeqaaaGcbaGaeyOaIyRaamOCaa aaaeaadaWcaaqaaiaaigdaaeaacaWGYbaaamaalaaabaGaeyOaIyRa amODamaaBaaaleaacaWGYbaabeaaaOqaaiabgkGi2kabeI7aXbaacq GHsisldaWcaaqaaiaadAhadaWgaaWcbaGaeqiUdehabeaaaOqaaiaa dkhaaaaabaWaaSaaaeaacqGHciITcaWG2bWaaSbaaSqaaiaadkhaae qaaaGcbaGaeyOaIyRaamOEaaaaaeaadaWcaaqaaiabgkGi2kaadAha daWgaaWcbaGaeqiUdehabeaaaOqaaiabgkGi2kaadkhaaaaabaWaaS aaaeaacaaIXaaabaGaamOCaaaadaWcaaqaaiabgkGi2kaadAhadaWg aaWcbaGaeqiUdehabeaaaOqaaiabgkGi2kabeI7aXbaacqGHRaWkda WcaaqaaiaadAhadaWgaaWcbaGaamOCaaqabaaakeaacaWGYbaaaaqa amaalaaabaGaeyOaIyRaamODamaaBaaaleaacqaH4oqCaeqaaaGcba GaeyOaIyRaamOEaaaaaeaadaWcaaqaaiabgkGi2kaadAhadaWgaaWc baGaamOEaaqabaaakeaacqGHciITcaWGYbaaaaqaamaalaaabaGaaG ymaaqaaiaadkhaaaWaaSaaaeaacqGHciITcaWG2bWaaSbaaSqaaiaa dQhaaeqaaaGcbaGaeyOaIyRaeqiUdehaaaqaamaalaaabaGaeyOaIy RaamODamaaBaaaleaacaWG6baabeaaaOqaaiabgkGi2kaadQhaaaaa aaGaay5waiaaw2faaaaa@8684@

 

Divergence of a vector function Let v= v r e r + v θ e θ + v z e z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH2bGaeyypa0 JaamODamaaBaaaleaacaWGYbaabeaakiaahwgadaWgaaWcbaGaamOC aaqabaGccqGHRaWkcaWG2bWaaSbaaSqaaiabeI7aXbqabaGccaWHLb WaaSbaaSqaaiabeI7aXbqabaGccqGHRaWkcaWG2bWaaSbaaSqaaiaa dQhaaeqaaOGaaCyzamaaBaaaleaacaWG6baabeaaaaa@478C@  be a vector function of position. The divergence of v is a scalar, which can be represented as a dot product of the vector with the gradient operator as

v=( e r r + e θ 1 r θ + e z z )( v r e r + v θ e θ + v z e z ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqGHhis0cqGHfl Y1caWH2bGaeyypa0ZaaeWaaeaacaWHLbWaaSbaaSqaaiaadkhaaeqa aOWaaSaaaeaacqGHciITaeaacqGHciITcaWGYbaaaiabgUcaRiaahw gadaWgaaWcbaGaeqiUdehabeaakmaalaaabaGaaGymaaqaaiaadkha aaWaaSaaaeaacqGHciITaeaacqGHciITcqaH4oqCaaGaey4kaSIaaC yzamaaBaaaleaacaWG6baabeaakmaalaaabaGaeyOaIylabaGaeyOa IyRaamOEaaaaaiaawIcacaGLPaaacqGHflY1daqadaqaaiaadAhada WgaaWcbaGaamOCaaqabaGccaWHLbWaaSbaaSqaaiaadkhaaeqaaOGa ey4kaSIaamODamaaBaaaleaacqaH4oqCaeqaaOGaaCyzamaaBaaale aacqaH4oqCaeqaaOGaey4kaSIaamODamaaBaaaleaacaWG6baabeaa kiaahwgadaWgaaWcbaGaamOEaaqabaaakiaawIcacaGLPaaaaaa@67A0@

Again, when expanding the dot product, it is important to remember to differentiate the basis vectors. Alternatively, the divergence can be expressed as trace(v) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaqG0bGaaeOCai aabggacaqGJbGaaeyzaiaacIcacaWH2bGaey4LIqSaey4bIeTaaiyk aaaa@3FFB@ , which immediately gives

v v r r + v r r + 1 r v θ θ + v z z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqGHhis0cqGHfl Y1caWH2bGaeyyyIO7aaSaaaeaacqGHciITcaWG2bWaaSbaaSqaaiaa dkhaaeqaaaGcbaGaeyOaIyRaamOCaaaacqGHRaWkdaWcaaqaaiaadA hadaWgaaWcbaGaamOCaaqabaaakeaacaWGYbaaaiabgUcaRmaalaaa baGaaGymaaqaaiaadkhaaaWaaSaaaeaacqGHciITcaWG2bWaaSbaaS qaaiabeI7aXbqabaaakeaacqGHciITcqaH4oqCaaGaey4kaSYaaSaa aeaacqGHciITcaWG2bWaaSbaaSqaaiaadQhaaeqaaaGcbaGaeyOaIy RaamOEaaaaaaa@5724@

 

Curl of a vector function Let v= v R e R + v θ e θ + v z e z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH2bGaeyypa0 JaamODamaaBaaaleaacaWGsbaabeaakiaahwgadaWgaaWcbaGaamOu aaqabaGccqGHRaWkcaWG2bWaaSbaaSqaaiabeI7aXbqabaGccaWHLb WaaSbaaSqaaiabeI7aXbqabaGccqGHRaWkcaWG2bWaaSbaaSqaaiaa dQhaaeqaaOGaaCyzamaaBaaaleaacaWG6baabeaaaaa@474C@  be a vector function of position. The curl of v is a vector, which can be represented as a cross product of the vector with the gradient operator as

×v=( e r r + e θ 1 r θ + e z z )×( v r e r + v θ e θ + v z e z ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqGHhis0cqGHxd aTcaWH2bGaeyypa0ZaaeWaaeaacaWHLbWaaSbaaSqaaiaadkhaaeqa aOWaaSaaaeaacqGHciITaeaacqGHciITcaWGYbaaaiabgUcaRiaahw gadaWgaaWcbaGaeqiUdehabeaakmaalaaabaGaaGymaaqaaiaadkha aaWaaSaaaeaacqGHciITaeaacqGHciITcqaH4oqCaaGaey4kaSIaaC yzamaaBaaaleaacaWG6baabeaakmaalaaabaGaeyOaIylabaGaeyOa IyRaamOEaaaaaiaawIcacaGLPaaacqGHxdaTdaqadaqaaiaadAhada WgaaWcbaGaamOCaaqabaGccaWHLbWaaSbaaSqaaiaadkhaaeqaaOGa ey4kaSIaamODamaaBaaaleaacqaH4oqCaeqaaOGaaCyzamaaBaaale aacqaH4oqCaeqaaOGaey4kaSIaamODamaaBaaaleaacaWG6baabeaa kiaahwgadaWgaaWcbaGaamOEaaqabaaakiaawIcacaGLPaaaaaa@673A@

The curl rarely appears in solid mechanics so the components will not be expanded in full

 

 

Divergence of a tensor function.   Let S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHtbaaaa@3652@  be a tensor, with dyadic representation

S= S rr e r e r + S rθ e r e θ + S rz e r e z + S θr e θ e r + S θθ e θ e θ + S θz e θ e z + S zr e z e r + S zθ e z e θ + S zz e z e z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaahofacq GH9aqpcaaMc8UaaGPaVlaaykW7caaMc8Uaam4uamaaBaaaleaacaWG YbGaamOCaaqabaGccaWHLbWaaSbaaSqaaiaadkhaaeqaaOGaey4LIq SaaCyzamaaBaaaleaacaWGYbaabeaakiabgUcaRiaadofadaWgaaWc baGaamOCaiabeI7aXbqabaGccaWHLbWaaSbaaSqaaiaadkhaaeqaaO Gaey4LIqSaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaey4kaSIaam4u amaaBaaaleaacaWGYbGaamOEaaqabaGccaWHLbWaaSbaaSqaaiaadk haaeqaaOGaey4LIqSaaCyzamaaBaaaleaacaWG6baabeaaaOqaaiaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabgUcaRiaaykW7ca WGtbWaaSbaaSqaaiabeI7aXjaadkhaaeqaaOGaaCyzamaaBaaaleaa cqaH4oqCaeqaaOGaey4LIqSaaCyzamaaBaaaleaacaWGYbaabeaaki abgUcaRiaadofadaWgaaWcbaGaeqiUdeNaeqiUdehabeaakiaahwga daWgaaWcbaGaeqiUdehabeaakiabgEPielaahwgadaWgaaWcbaGaeq iUdehabeaakiabgUcaRiaadofadaWgaaWcbaGaeqiUdeNaamOEaaqa baGccaWHLbWaaSbaaSqaaiabeI7aXbqabaGccqGHxkcXcaWHLbWaaS baaSqaaiaadQhaaeqaaaGcbaGaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8Uaey4kaSIaam4uamaaBaaaleaacaWG6bGaamOCaaqaba GccaWHLbWaaSbaaSqaaiaadQhaaeqaaOGaey4LIqSaaCyzamaaBaaa leaacaWGYbaabeaakiabgUcaRiaadofadaWgaaWcbaGaamOEaiabeI 7aXbqabaGccaWHLbWaaSbaaSqaaiaadQhaaeqaaOGaey4LIqSaaCyz amaaBaaaleaacqaH4oqCaeqaaOGaey4kaSIaam4uamaaBaaaleaaca WG6bGaamOEaaqabaGccaWHLbWaaSbaaSqaaiaadQhaaeqaaOGaey4L IqSaaCyzamaaBaaaleaacaWG6baabeaaaaaa@B508@

The divergence of S is a vector, which can be represented as

S=( e r r + e θ 1 r θ + e z z )( S rr e r e r + S rθ e r e θ + S rz e r e z + S θr e θ e r + S θθ e θ e θ + S θz e θ e z + S zr e z e r + S zθ e z e θ + S zz e z e z ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqGHhis0cqGHfl Y1caWHtbGaeyypa0JaaGPaVlaaykW7caaMc8+aaeWaaeaacaWHLbWa aSbaaSqaaiaadkhaaeqaaOWaaSaaaeaacqGHciITaeaacqGHciITca WGYbaaaiabgUcaRiaahwgadaWgaaWcbaGaeqiUdehabeaakmaalaaa baGaaGymaaqaaiaadkhaaaWaaSaaaeaacqGHciITaeaacqGHciITcq aH4oqCaaGaey4kaSIaaCyzamaaBaaaleaacaWG6baabeaakmaalaaa baGaeyOaIylabaGaeyOaIyRaamOEaaaaaiaawIcacaGLPaaacqGHfl Y1caaMc8+aaeWaaqaabeqaaiaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaadofadaWgaaWcbaGaamOCai aadkhaaeqaaOGaaCyzamaaBaaaleaacaWGYbaabeaakiabgEPielaa hwgadaWgaaWcbaGaamOCaaqabaGccqGHRaWkcaWGtbWaaSbaaSqaai aadkhacqaH4oqCaeqaaOGaaCyzamaaBaaaleaacaWGYbaabeaakiab gEPielaahwgadaWgaaWcbaGaeqiUdehabeaakiabgUcaRiaadofada WgaaWcbaGaamOCaiaadQhaaeqaaOGaaCyzamaaBaaaleaacaWGYbaa beaakiabgEPielaahwgadaWgaaWcbaGaamOEaaqabaaakeaacaaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGHRaWkcaaMc8Uaam4u amaaBaaaleaacqaH4oqCcaWGYbaabeaakiaahwgadaWgaaWcbaGaeq iUdehabeaakiabgEPielaahwgadaWgaaWcbaGaamOCaaqabaGccqGH RaWkcaWGtbWaaSbaaSqaaiabeI7aXjabeI7aXbqabaGccaWHLbWaaS baaSqaaiabeI7aXbqabaGccqGHxkcXcaWHLbWaaSbaaSqaaiabeI7a XbqabaGccqGHRaWkcaWGtbWaaSbaaSqaaiabeI7aXjaadQhaaeqaaO GaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaey4LIqSaaCyzamaaBaaa leaacaWG6baabeaaaOqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlabgUcaRiaadofadaWgaaWcbaGaamOEaiaadkhaaeqaaOGa aCyzamaaBaaaleaacaWG6baabeaakiabgEPielaahwgadaWgaaWcba GaamOCaaqabaGccqGHRaWkcaWGtbWaaSbaaSqaaiaadQhacqaH4oqC aeqaaOGaaCyzamaaBaaaleaacaWG6baabeaakiabgEPielaahwgada WgaaWcbaGaeqiUdehabeaakiabgUcaRiaadofadaWgaaWcbaGaamOE aiaadQhaaeqaaOGaaCyzamaaBaaaleaacaWG6baabeaakiabgEPiel aahwgadaWgaaWcbaGaamOEaaqabaaaaOGaayjkaiaawMcaaiaaykW7 aaa@E48A@

Evaluating the components of the divergence is an extremely tedious operation, because each of the basis vectors in the dyadic representation of S must be differentiated, in addition to the components themselves.  The final result (expressed as a column vector) is

S[ S rr r + S rr r + 1 r S θr θ + S zR z S θθ r 1 r S θθ θ + S rθ r + S rθ r + S θr r + S zθ z S zz z + S rz r + S rz r + 1 r S θz θ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqGHhis0cqGHfl Y1caWHtbGaeyyyIO7aamWaaeaafaqabeWabaaabaWaaSaaaeaacqGH ciITcaWGtbWaaSbaaSqaaiaadkhacaWGYbaabeaaaOqaaiabgkGi2k aadkhaaaGaey4kaSYaaSaaaeaacaWGtbWaaSbaaSqaaiaadkhacaWG YbaabeaaaOqaaiaadkhaaaGaey4kaSYaaSaaaeaacaaIXaaabaGaam OCaaaadaWcaaqaaiabgkGi2kaadofadaWgaaWcbaGaeqiUdeNaamOC aaqabaaakeaacqGHciITcqaH4oqCaaGaey4kaSYaaSaaaeaacqGHci ITcaWGtbWaaSbaaSqaaiaadQhacaWGsbaabeaaaOqaaiabgkGi2kaa dQhaaaGaeyOeI0YaaSaaaeaacaWGtbWaaSbaaSqaaiabeI7aXjabeI 7aXbqabaaakeaacaWGYbaaaaqaamaalaaabaGaaGymaaqaaiaadkha aaWaaSaaaeaacqGHciITcaWGtbWaaSbaaSqaaiabeI7aXjabeI7aXb qabaaakeaacqGHciITcqaH4oqCaaGaey4kaSYaaSaaaeaacqGHciIT caWGtbWaaSbaaSqaaiaadkhacqaH4oqCaeqaaaGcbaGaeyOaIyRaam OCaaaacqGHRaWkdaWcaaqaaiaadofadaWgaaWcbaGaamOCaiabeI7a XbqabaaakeaacaWGYbaaaiabgUcaRmaalaaabaGaam4uamaaBaaale aacqaH4oqCcaWGYbaabeaaaOqaaiaadkhaaaGaey4kaSYaaSaaaeaa cqGHciITcaWGtbWaaSbaaSqaaiaadQhacqaH4oqCaeqaaaGcbaGaey OaIyRaamOEaaaaaeaadaWcaaqaaiabgkGi2kaadofadaWgaaWcbaGa amOEaiaadQhaaeqaaaGcbaGaeyOaIyRaamOEaaaacqGHRaWkdaWcaa qaaiabgkGi2kaadofadaWgaaWcbaGaamOCaiaadQhaaeqaaaGcbaGa eyOaIyRaamOCaaaacqGHRaWkdaWcaaqaaiaadofadaWgaaWcbaGaam OCaiaadQhaaeqaaaGcbaGaamOCaaaacqGHRaWkdaWcaaqaaiaaigda aeaacaWGYbaaamaalaaabaGaeyOaIyRaam4uamaaBaaaleaacqaH4o qCcaWG6baabeaaaOqaaiabgkGi2kabeI7aXbaaaaaacaGLBbGaayzx aaaaaa@A82B@

 

 

 

 

 

3.7 Index Notation for Vector and Tensor Operations

 

 

Operations on Cartesian components of vectors and tensors may be expressed very efficiently and clearly using index notation.

 

3.7.1. Vector and tensor components.

 

Let x be a (three dimensional) vector and let S be a second order tensor.   Let { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaahw gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaCyzamaaBaaaleaacaaI YaaabeaakiaacYcacaWHLbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7b GaayzFaaaaaa@3EA6@  be a Cartesian basis. Denote the components of x in this basis by ( x 1 , x 2 , x 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaaiaadI hadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamiEamaaBaaaleaacaaI YaaabeaakiaacYcacaWG4bWaaSbaaSqaaiaaiodaaeqaaaGccaGLOa Gaayzkaaaaaa@3E2B@ , and denote the components of S by

[ S 11 S 12 S 13 S 21 S 22 S 23 S 31 S 32 S 33 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaabaeqaba Gaam4uamaaBaaaleaacaaIXaGaaGymaaqabaGccaaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaadofadaWgaaWcbaGaaGymaiaaikdaaeqaaO GaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam4uamaaBaaa leaacaaIXaGaaG4maaqabaaakeaacaWGtbWaaSbaaSqaaiaaikdaca aIXaaabeaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam4uamaa BaaaleaacaaIYaGaaGOmaaqabaGccaaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caWGtbWaaSbaaSqaaiaaikdacaaIZaaabeaaaOqa aiaadofadaWgaaWcbaGaaG4maiaaigdaaeqaaOGaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caWGtbWaaSbaaSqaaiaaiodacaaIYaaabeaa kiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadofadaWgaa WcbaGaaG4maiaaiodaaeqaaaaakiaawUfacaGLDbaaaaa@8110@

Using index notation, we would express x and S as

x x i S S ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH4bGaeyyyIO RaamiEamaaBaaaleaacaWGPbGaaGPaVdqabaGccaaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaahofacqGHHjIUcaWGtbWaaSbaaSqa aiaadMgacaWGQbaabeaaaaa@570B@

 

3.7.2. Conventions and special symbols for index notation

 

 Range Convention: Lower case Latin subscripts (i, j, k…) have the range ( 1,2,3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaaiaaig dacaGGSaGaaGOmaiaacYcacaaIZaaacaGLOaGaayzkaaaaaa@3A92@ .  The symbol x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4bWaaSbaaS qaaiaadMgaaeqaaaaa@378C@  denotes three components of a vector x 1 , x 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4bWaaSbaaS qaaiaaigdaaeqaaOGaaiilaiaaykW7caaMc8UaamiEamaaBaaaleaa caaIYaaabeaaaaa@3D0E@  and x 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4bWaaSbaaS qaaiaaiodaaeqaaaaa@375B@ .  The symbol S ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGtbWaaSbaaS qaaiaadMgacaWGQbaabeaaaaa@3856@  denotes nine components of a second order tensor, S 11 , S 12 , S 13 , S 21 S 33 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGtbWaaSbaaS qaaiaaigdacaaIXaaabeaakiaacYcacaaMc8UaaGPaVlaaykW7caaM c8Uaam4uamaaBaaaleaacaaIXaGaaGOmaaqabaGccaGGSaGaaGPaVl aaykW7caaMc8UaaGPaVlaadofadaWgaaWcbaGaaGymaiaaiodaaeqa aOGaaiilaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam4uamaaBa aaleaacaaIYaGaaGymaaqabaGccaaMc8UaaGPaVlablAciljaaykW7 caaMc8Uaam4uamaaBaaaleaacaaIZaGaaG4maaqabaaaaa@5F74@

 

 Summation convention (Einstein convention): If an index is repeated in a product of vectors or tensors, summation is implied over the repeated index.  Thus

λ= a i b i λ= i=1 3 a i b i λ= a 1 b 1 + a 2 b 2 + a 3 b 3 c i = S ik x k c i = k=1 3 S ik x k { c 1 = S 11 x 1 + S 12 x 2 + S 13 x 3 c 2 = S 21 x 1 + S 22 x 2 + S 23 x 3 c 3 = S 31 x 1 + S 32 x 2 + S 33 x 3 λ= S ij S ij λ= i=1 3 j=1 3 S ij S ij λ= S 11 S 11 + S 12 S 12 ++ S 31 S 31 + S 32 S 32 + S 33 S 33 C ij = A ik B kj C ij = k=1 3 A ik B kj [ C ]=[ A ][ B ] C ij = A ki B kj C ij = k=1 3 A ki B kj [ C ]= [ A ] T [ B ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiabeU7aSj abg2da9iaadggadaWgaaWcbaGaamyAaaqabaGccaWGIbWaaSbaaSqa aiaadMgaaeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7cqGHHjIUcaaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7cqaH7oaBcqGH9aqpcaaMc8+aaabCaeaacaWGHbWaaSbaaS qaaiaadMgaaeqaaOGaamOyamaaBaaaleaacaWGPbaabeaakiaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaeyyyIORaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqaH7oaBcqGH9aqpcaWG HbWaaSbaaSqaaiaaigdaaeqaaOGaamOyamaaBaaaleaacaaIXaaabe aakiabgUcaRiaadggadaWgaaWcbaGaaGOmaaqabaGccaWGIbWaaSba aSqaaiaaikdaaeqaaOGaey4kaSIaamyyamaaBaaaleaacaaIZaaabe aakiaadkgadaWgaaWcbaGaaG4maaqabaaabaGaamyAaiabg2da9iaa igdaaeaacaaIZaaaniabggHiLdaakeaacaWGJbWaaSbaaSqaaiaadM gaaeqaaOGaeyypa0Jaam4uamaaBaaaleaacaWGPbGaam4AaaqabaGc caWG4bWaaSbaaSqaaiaadUgaaeqaaOGaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7cqGHHjIUcaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa dogadaWgaaWcbaGaamyAaaqabaGccqGH9aqpdaaeWbqaaiaadofada WgaaWcbaGaamyAaiaadUgaaeqaaOGaamiEamaaBaaaleaacaWGRbaa beaaaeaacaWGRbGaeyypa0JaaGymaaqaaiaaiodaa0GaeyyeIuoaki abggMi6kaaykW7caaMc8UaaGPaVlaaykW7caaMc8+aaiqaaqaabeqa aiaadogadaWgaaWcbaGaaGymaaqabaGccqGH9aqpcaWGtbWaaSbaaS qaaiaaigdacaaIXaaabeaakiaadIhadaWgaaWcbaGaaGymaaqabaGc cqGHRaWkcaWGtbWaaSbaaSqaaiaaigdacaaIYaaabeaakiaadIhada WgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWGtbWaaSbaaSqaaiaaigda caaIZaaabeaakiaadIhadaWgaaWcbaGaaG4maaqabaaakeaacaWGJb WaaSbaaSqaaiaaikdaaeqaaOGaeyypa0Jaam4uamaaBaaaleaacaaI YaGaaGymaaqabaGccaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaS Iaam4uamaaBaaaleaacaaIYaGaaGOmaaqabaGccaWG4bWaaSbaaSqa aiaaikdaaeqaaOGaey4kaSIaam4uamaaBaaaleaacaaIYaGaaG4maa qabaGccaWG4bWaaSbaaSqaaiaaiodaaeqaaaGcbaGaam4yamaaBaaa leaacaaIZaaabeaakiabg2da9iaadofadaWgaaWcbaGaaG4maiaaig daaeqaaOGaamiEamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadofa daWgaaWcbaGaaG4maiaaikdaaeqaaOGaamiEamaaBaaaleaacaaIYa aabeaakiabgUcaRiaadofadaWgaaWcbaGaaG4maiaaiodaaeqaaOGa amiEamaaBaaaleaacaaIZaaabeaaaaGccaGL7baacaaMc8oabaGaeq 4UdWMaeyypa0Jaam4uamaaBaaaleaacaWGPbGaamOAaaqabaGccaWG tbWaaSbaaSqaaiaadMgacaWGQbaabeaakiaaykW7caaMc8UaaGPaVl abggMi6kaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabeU7a Sjabg2da9maaqahabaWaaabCaeaacaWGtbWaaSbaaSqaaiaadMgaca WGQbaabeaakiaadofadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaaGPa VlaaykW7caaMc8UaaGPaVdWcbaGaamOAaiabg2da9iaaigdaaeaaca aIZaaaniabggHiLdaaleaacaWGPbGaeyypa0JaaGymaaqaaiaaioda a0GaeyyeIuoakiabggMi6kaaykW7caaMc8UaaGPaVlabeU7aSjabg2 da9iaadofadaWgaaWcbaGaaGymaiaaigdaaeqaaOGaam4uamaaBaaa leaacaaIXaGaaGymaaqabaGccqGHRaWkcaWGtbWaaSbaaSqaaiaaig dacaaIYaaabeaakiaadofadaWgaaWcbaGaaGymaiaaikdaaeqaaOGa ey4kaSIaeSOjGSKaey4kaSIaam4uamaaBaaaleaacaaIZaGaaGymaa qabaGccaWGtbWaaSbaaSqaaiaaiodacaaIXaaabeaakiabgUcaRiaa dofadaWgaaWcbaGaaG4maiaaikdaaeqaaOGaam4uamaaBaaaleaaca aIZaGaaGOmaaqabaGccqGHRaWkcaWGtbWaaSbaaSqaaiaaiodacaaI ZaaabeaakiaadofadaWgaaWcbaGaaG4maiaaiodaaeqaaaGcbaGaam 4qamaaBaaaleaacaWGPbGaamOAaaqabaGccqGH9aqpcaWGbbWaaSba aSqaaiaadMgacaWGRbaabeaakiaadkeadaWgaaWcbaGaam4AaiaadQ gaaeqaaOGaaGPaVlaaykW7caaMc8UaeyyyIORaaGPaVlaaykW7caaM c8Uaam4qamaaBaaaleaacaWGPbGaamOAaaqabaGccqGH9aqpdaaeWb qaaiaadgeadaWgaaWcbaGaamyAaiaadUgaaeqaaOGaamOqamaaBaaa leaacaWGRbGaamOAaaqabaaabaGaam4Aaiabg2da9iaaigdaaeaaca aIZaaaniabggHiLdGccaaMc8UaaGPaVlaaykW7caaMc8UaeyyyIORa aGPaVlaaykW7caaMc8UaaGPaVlaaykW7daWadaqaaiaadoeaaiaawU facaGLDbaacqGH9aqpdaWadaqaaiaadgeaaiaawUfacaGLDbaadaWa daqaaiaadkeaaiaawUfacaGLDbaaaeaacaWGdbWaaSbaaSqaaiaadM gacaWGQbaabeaakiabg2da9iaadgeadaWgaaWcbaGaam4AaiaadMga aeqaaOGaamOqamaaBaaaleaacaWGRbGaamOAaaqabaGccaaMc8UaaG PaVlaaykW7cqGHHjIUcaaMc8UaaGPaVlaaykW7caWGdbWaaSbaaSqa aiaadMgacaWGQbaabeaakiabg2da9maaqahabaGaamyqamaaBaaale aacaWGRbGaamyAaaqabaGccaWGcbWaaSbaaSqaaiaadUgacaWGQbaa beaaaeaacaWGRbGaeyypa0JaaGymaaqaaiaaiodaa0GaeyyeIuoaki aaykW7caaMc8UaaGPaVlaaykW7cqGHHjIUcaaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVpaadmaabaGaam4qaaGaay5waiaaw2faaiabg2da9m aadmaabaGaamyqaaGaay5waiaaw2faamaaCaaaleqabaGaamivaaaa kmaadmaabaGaamOqaaGaay5waiaaw2faaaaaaa@C53C@

 

In the last two equations, [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaaaaa@382D@ , [ B ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadk eaaiaawUfacaGLDbaaaaa@382E@  and [ C ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaado eaaiaawUfacaGLDbaaaaa@382F@  denote the ( 3×3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaaiaaio dacqGHxdaTcaaIZaaacaGLOaGaayzkaaaaaa@3A8F@  component matrices of A, B and C.

 

 

 The Kronecker Delta:  The symbol δ ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH0oazdaWgaa WcbaGaamyAaiaadQgaaeqaaaaa@3923@  is known as the Kronecker delta, and has the properties

δ ij ={ 1i=j 0ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH0oazdaWgaa WcbaGaamyAaiaadQgaaeqaaOGaeyypa0Zaaiqaaqaabeqaaiaaigda caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaadMgacqGH9aqpcaWGQbaabaGaaGimaiaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caWGPbGaeyiyIKRaamOAaaaacaGL7baaaaa@63B7@

thus

δ 11 = δ 22 = δ 33 =1 δ 12 = δ 21 = δ 13 = δ 31 = δ 32 = δ 32 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH0oazdaWgaa WcbaGaaGymaiaaigdaaeqaaOGaeyypa0JaeqiTdq2aaSbaaSqaaiaa ikdacaaIYaaabeaakiabg2da9iabes7aKnaaBaaaleaacaaIZaGaaG 4maaqabaGccqGH9aqpcaaIXaGaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeq iTdq2aaSbaaSqaaiaaigdacaaIYaaabeaakiabg2da9iabes7aKnaa BaaaleaacaaIYaGaaGymaaqabaGccqGH9aqpcqaH0oazdaWgaaWcba GaaGymaiaaiodaaeqaaOGaeyypa0JaeqiTdq2aaSbaaSqaaiaaioda caaIXaaabeaakiabg2da9iabes7aKnaaBaaaleaacaaIZaGaaGOmaa qabaGccqGH9aqpcqaH0oazdaWgaaWcbaGaaG4maiaaikdaaeqaaOGa eyypa0JaaGimaaaa@708F@

You can also think of δ ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH0oazdaWgaa WcbaGaamyAaiaadQgaaeqaaaaa@3923@  as the components of the identity tensor, or a ( 3×3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaaiaaio dacqGHxdaTcaaIZaaacaGLOaGaayzkaaaaaa@3A8F@  identity matrix.  Observe the following useful results

δ ij = δ ji δ kk =3 a i = δ ik a k A ij = δ ik A kj MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiabes7aKn aaBaaaleaacaWGPbGaamOAaaqabaGccqGH9aqpcqaH0oazdaWgaaWc baGaamOAaiaadMgaaeqaaaGcbaGaeqiTdq2aaSbaaSqaaiaadUgaca WGRbaabeaakiabg2da9iaaiodaaeaacaWGHbWaaSbaaSqaaiaadMga aeqaaOGaeyypa0JaeqiTdq2aaSbaaSqaaiaadMgacaWGRbaabeaaki aadggadaWgaaWcbaGaam4AaaqabaaakeaacaWGbbWaaSbaaSqaaiaa dMgacaWGQbaabeaakiabg2da9iabes7aKnaaBaaaleaacaWGPbGaam 4AaaqabaGccaWGbbWaaSbaaSqaaiaadUgacaWGQbaabeaaaaaa@56B0@

 

 The Permutation Symbol: The symbol ijk MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqGHiiIZdaWgaa WcbaGaamyAaiaadQgacaWGRbaabeaaaaa@39F2@  has properties

ijk ={ 1i,j,k=1,2,3;2,3,1or3,1,2 1i,j,k=3,2,1;2,1,3or 1,3,2 0otherwise MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqGHiiIZdaWgaa WcbaGaamyAaiaadQgacaWGRbaabeaakiabg2da9maaceaaeaqabeaa caaIXaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaamyAaiaacYcacaWGQbGaaiilaiaadUgacqGH9aqp caaIXaGaaiilaiaaikdacaGGSaGaaG4maiaacUdacaaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaIYaGaaiilaiaaiodacaGGSaGa aGymaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaae4Baiaabkhaca aMc8UaaGPaVlaaykW7caaMc8UaaG4maiaacYcacaaIXaGaaiilaiaa ikdaaeaacqGHsislcaaIXaGaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caWGPbGaaiilaiaadQgacaGGSaGaam4Aaiabg2da9iaaykW7caaI ZaGaaiilaiaaikdacaGGSaGaaGymaiaacUdacaaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaIYaGaaiilaiaaigdacaGGSaGaaG4m aiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaab+gacaqGYb GaaeiiaiaaykW7caaMc8UaaGPaVlaabgdacaqGSaGaae4maiaabYca caqGYaaabaGaaeimaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caqGVbGaaeiDaiaabIgacaqGLbGaaeOCaiaabEhacaqG PbGaae4CaiaabwgaaaGaay5Eaaaaaa@BDA1@

thus

123 = 231 = 312 =1 321 = 213 = 132 =1 111 = 112 = 113 = 121 = 122 = 131 = 133 =0 211 = 212 = 221 = 222 = 223 = 232 = 233 =0 311 = 313 = 322 = 323 = 321 = 332 = 333 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiabgIGiop aaBaaaleaacaaIXaGaaGOmaiaaiodaaeqaaOGaeyypa0JaeyicI48a aSbaaSqaaiaaikdacaaIZaGaaGymaaqabaGccqGH9aqpcqGHiiIZda WgaaWcbaGaaG4maiaaigdacaaIYaaabeaakiabg2da9iaaigdaaeaa cqGHiiIZdaWgaaWcbaGaaG4maiaaikdacaaIXaaabeaakiabg2da9i abgIGiopaaBaaaleaacaaIYaGaaGymaiaaiodaaeqaaOGaeyypa0Ja eyicI48aaSbaaSqaaiaaigdacaaIZaGaaGOmaaqabaGccqGH9aqpcq GHsislcaaIXaaabaGaeyicI48aaSbaaSqaaiaaigdacaaIXaGaaGym aaqabaGccqGH9aqpcqGHiiIZdaWgaaWcbaGaaGymaiaaigdacaaIYa aabeaakiabg2da9iabgIGiopaaBaaaleaacaaIXaGaaGymaiaaioda aeqaaOGaeyypa0JaeyicI48aaSbaaSqaaiaaigdacaaIYaGaaGymaa qabaGccqGH9aqpcqGHiiIZdaWgaaWcbaGaaGymaiaaikdacaaIYaaa beaakiabg2da9iabgIGiopaaBaaaleaacaaIXaGaaG4maiaaigdaae qaaOGaeyypa0JaeyicI48aaSbaaSqaaiaaigdacaaIZaGaaG4maaqa baGccqGH9aqpcaaIWaaabaGaeyicI48aaSbaaSqaaiaaikdacaaIXa GaaGymaaqabaGccqGH9aqpcqGHiiIZdaWgaaWcbaGaaGOmaiaaigda caaIYaaabeaakiabg2da9iabgIGiopaaBaaaleaacaaIYaGaaGOmai aaigdaaeqaaOGaeyypa0JaeyicI48aaSbaaSqaaiaaikdacaaIYaGa aGOmaaqabaGccqGH9aqpcqGHiiIZdaWgaaWcbaGaaGOmaiaaikdaca aIZaaabeaakiabg2da9iabgIGiopaaBaaaleaacaaIYaGaaG4maiaa ikdaaeqaaOGaeyypa0JaeyicI48aaSbaaSqaaiaaikdacaaIZaGaaG 4maaqabaGccqGH9aqpcaaIWaaabaGaeyicI48aaSbaaSqaaiaaioda caaIXaGaaGymaaqabaGccqGH9aqpcqGHiiIZdaWgaaWcbaGaaG4mai aaigdacaaIZaaabeaakiabg2da9iabgIGiopaaBaaaleaacaaIZaGa aGOmaiaaikdaaeqaaOGaeyypa0JaeyicI48aaSbaaSqaaiaaiodaca aIYaGaaG4maaqabaGccqGH9aqpcqGHiiIZdaWgaaWcbaGaaG4maiaa ikdacaaIXaaabeaakiabg2da9iabgIGiopaaBaaaleaacaaIZaGaaG 4maiaaikdaaeqaaOGaeyypa0JaeyicI48aaSbaaSqaaiaaiodacaaI ZaGaaG4maaqabaGccqGH9aqpcaaIWaaaaaa@BFCB@

Note that

ijk = kij = jki = jik = kji = kji kki =0 ijk imn = δ jm δ kn δ jn δ mk ijk lmn = δ il ( δ jm δ kn δ jn δ km ) δ im ( δ jl δ kn δ jn δ kl )+ δ in ( δ jl δ km δ jm δ kl ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiabgIGiop aaBaaaleaacaWGPbGaamOAaiaadUgaaeqaaOGaeyypa0JaeyicI48a aSbaaSqaaiaadUgacaWGPbGaamOAaaqabaGccqGH9aqpcqGHiiIZda WgaaWcbaGaamOAaiaadUgacaWGPbaabeaakiabg2da9iabgkHiTiab gIGiopaaBaaaleaacaWGQbGaamyAaiaadUgaaeqaaOGaeyypa0Jaey OeI0IaeyicI48aaSbaaSqaaiaadUgacaWGQbGaamyAaaqabaGccqGH 9aqpcqGHsislcqGHiiIZdaWgaaWcbaGaam4AaiaadQgacaWGPbaabe aaaOqaaiabgIGiopaaBaaaleaacaWGRbGaam4AaiaadMgaaeqaaOGa eyypa0JaaGimaaqaaiabgIGiopaaBaaaleaacaWGPbGaamOAaiaadU gaaeqaaOGaeyicI48aaSbaaSqaaiaadMgacaWGTbGaamOBaaqabaGc cqGH9aqpcqaH0oazdaWgaaWcbaGaamOAaiaad2gaaeqaaOGaeqiTdq 2aaSbaaSqaaiaadUgacaWGUbaabeaakiabgkHiTiabes7aKnaaBaaa leaacaWGQbGaamOBaaqabaGccqaH0oazdaWgaaWcbaGaamyBaiaadU gaaeqaaaGcbaGaeyicI48aaSbaaSqaaiaadMgacaWGQbGaam4Aaaqa baGccqGHiiIZdaWgaaWcbaGaamiBaiaad2gacaWGUbaabeaakiabg2 da9iabes7aKnaaBaaaleaacaWGPbGaamiBaaqabaGcdaqadaqaaiab es7aKnaaBaaaleaacaWGQbGaamyBaaqabaGccqaH0oazdaWgaaWcba Gaam4Aaiaad6gaaeqaaOGaeyOeI0IaeqiTdq2aaSbaaSqaaiaadQga caWGUbaabeaakiabes7aKnaaBaaaleaacaWGRbGaamyBaaqabaaaki aawIcacaGLPaaacqGHsislcqaH0oazdaWgaaWcbaGaamyAaiaad2ga aeqaaOWaaeWaaeaacqaH0oazdaWgaaWcbaGaamOAaiaadYgaaeqaaO GaeqiTdq2aaSbaaSqaaiaadUgacaWGUbaabeaakiabgkHiTiabes7a KnaaBaaaleaacaWGQbGaamOBaaqabaGccqaH0oazdaWgaaWcbaGaam 4AaiaadYgaaeqaaaGccaGLOaGaayzkaaGaey4kaSIaeqiTdq2aaSba aSqaaiaadMgacaWGUbaabeaakmaabmaabaGaeqiTdq2aaSbaaSqaai aadQgacaWGSbaabeaakiabes7aKnaaBaaaleaacaWGRbGaamyBaaqa baGccqGHsislcqaH0oazdaWgaaWcbaGaamOAaiaad2gaaeqaaOGaeq iTdq2aaSbaaSqaaiaadUgacaWGSbaabeaaaOGaayjkaiaawMcaaaaa aa@C425@

 

3.7.3. Rules of index notation

 

1. The same index (subscript) may not appear more than twice in a product of two (or more) vectors or tensors.  Thus

are valid, but

are meaningless

 

 

 

 

 

2. Free indices on each term of an equation must agree.  Thus

are valid, but

are meaningless.

 

3.  Free and dummy indices may be changed without altering the meaning of an expression, provided that rules 1 and 2 are not violated. Thus

 

3.7.4. Vector operations expressed using index notation

 

 Addition.   c=a+b c i = a i + b i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHJbGaeyypa0 JaaCyyaiabgUcaRiaahkgacaaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7cqGHHjIUcaaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caWGJbWaaSbaaSqaaiaadMgaaeqaaOGa eyypa0JaamyyamaaBaaaleaacaWGPbaabeaakiabgUcaRiaadkgada WgaaWcbaGaamyAaaqabaaaaa@5B0B@

 

 Dot Product  λ=abλ= a i b i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBcqGH9a qpcaWHHbGaeyyXICTaaCOyaiaaykW7caaMc8UaaGPaVlaaykW7cqGH HjIUcaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabeU7aSjabg2da9i aadggadaWgaaWcbaGaamyAaaqabaGccaWGIbWaaSbaaSqaaiaadMga aeqaaaaa@52BF@

 

 Vector Product c=a×b c i = ijk a j b k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHJbGaeyypa0 JaaCyyaiabgEna0kaahkgacaaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabggMi6kaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam4y amaaBaaaleaacaWGPbaabeaakiabg2da9iaaykW7cqGHiiIZdaWgaa WcbaGaamyAaiaadQgacaWGRbaabeaakiaadggadaWgaaWcbaGaamOA aaqabaGccaWGIbWaaSbaaSqaaiaadUgaaeqaaaaa@679F@

 

 Dyadic Product  

 

 Change of Basis.  Let a be a vector. Let  be a Cartesian basis, and denote the components of a in this basis by .  Let  be a second basis, and denote the components of a in this basis by α i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHXoqydaWgaa WcbaGaamyAaaqabaaaaa@382E@ .  Then, define

Q ij = m i e j =cosθ( m i , e j ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGrbWaaSbaaS qaaiaadMgacaWGQbaabeaakiabg2da9iaah2gadaWgaaWcbaGaamyA aaqabaGccqGHflY1caWHLbWaaSbaaSqaaiaadQgaaeqaaOGaeyypa0 Jaci4yaiaac+gacaGGZbGaeqiUdeNaaiikaiaah2gadaWgaaWcbaGa amyAaaqabaGccaGGSaGaaCyzamaaBaaaleaacaWGQbaabeaakiaacM caaaa@4BA0@

where  denotes the angle between the unit vectors   and .  Then

α i = Q ij a j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHXoqydaWgaa WcbaGaamyAaaqabaGccqGH9aqpcaWGrbWaaSbaaSqaaiaadMgacaWG QbaabeaakiaadggadaWgaaWcbaGaamOAaaqabaaaaa@3E28@

 

3.7.5. Tensor operations expressed using index notation.

 

 Addition.   C=A+B C ij = A ij + B ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHdbGaeyypa0 JaaCyqaiabgUcaRiaahkeacaaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7cqGHHjIUcaaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caWGdbWaaSbaaSqaaiaadMgacaWGQbaa beaakiabg2da9iaadgeadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaey 4kaSIaamOqamaaBaaaleaacaWGPbGaamOAaaqabaaaaa@5D18@

 

 Transpose  A= B T A ij = B ji MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHbbGaeyypa0 JaaCOqamaaCaaaleqabaGaamivaaaakiaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaey yyIORaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa dgeadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaeyypa0JaamOqamaaBa aaleaacaWGQbGaamyAaaqabaaaaa@5D5E@

 

* Scalar Products

λ=A:Bλ= A ij B ij λ=ABλ= A ji B ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiabeU7aSj abg2da9iaahgeacaGG6aGaaCOqaiaaykW7caaMc8UaaGPaVlabggMi 6kaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeq4UdWMaeyypa0Jaam yqamaaBaaaleaacaWGPbGaamOAaaqabaGccaWGcbWaaSbaaSqaaiaa dMgacaWGQbaabeaaaOqaaiabeU7aSjabg2da9iaahgeacqGHflY1cq GHflY1caaMc8UaaCOqaiaaykW7caaMc8UaaGPaVlaaykW7cqGHHjIU cqaH7oaBcqGH9aqpcaWGbbWaaSbaaSqaaiaadQgacaWGPbaabeaaki aadkeadaWgaaWcbaGaamyAaiaadQgaaeqaaaaaaa@6BDD@

 

* Product of a tensor and a vector

c=Ab c i = A ij b j c= A T b c i = A ji b j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaahogacq GH9aqpcaWHbbGaaCOyaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlabggMi6kaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caWGJbWaaSbaaSqaaiaadMgaaeqa aOGaeyypa0JaamyqamaaBaaaleaacaWGPbGaamOAaaqabaGccaWGIb WaaSbaaSqaaiaadQgaaeqaaaGcbaGaaC4yaiabg2da9iaahgeadaah aaWcbeqaaiaadsfaaaGccaWHIbGaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlabggMi6kaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaadogadaWgaaWcbaGaamyAaaqabaGccqGH9aqpca WGbbWaaSbaaSqaaiaadQgacaWGPbaabeaakiaadkgadaWgaaWcbaGa amOAaaqabaaaaaa@7E0F@

 

* Product of two tensors

C=AB C ij = A ik B kj C= A T B C ij = A ki B kj MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaahoeacq GH9aqpcaWHbbGaaCOqaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabggMi6k aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGdbWa aSbaaSqaaiaadMgacaWGQbaabeaakiabg2da9iaadgeadaWgaaWcba GaamyAaiaadUgaaeqaaOGaamOqamaaBaaaleaacaWGRbGaamOAaaqa baaakeaacaWHdbGaeyypa0JaaCyqamaaCaaaleqabaGaamivaaaaki aahkeacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7cqGHHjIUcaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8Uaam4qamaaBaaaleaacaWGPbGaamOAaaqabaGccqGH 9aqpcaWGbbWaaSbaaSqaaiaadUgacaWGPbaabeaakiaadkeadaWgaa WcbaGaam4AaiaadQgaaeqaaaaaaa@8A11@

* Determinant

λ=detAλ= 1 6 ijk lmn A li A mj A nk lmn λ= ijk A li A mj A nk MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiabeU7aSj abg2da9iGacsgacaGGLbGaaiiDaiaahgeacaaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGHHjIUcaaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlabeU7aSjabg2da9iaaykW7caaM c8+aaSaaaeaacaaIXaaabaGaaGOnaaaacqGHiiIZdaWgaaWcbaGaam yAaiaadQgacaWGRbaabeaakiabgIGiopaaBaaaleaacaWGSbGaamyB aiaad6gaaeqaaOGaamyqamaaBaaaleaacaWGSbGaamyAaaqabaGcca WGbbWaaSbaaSqaaiaad2gacaWGQbaabeaakiaadgeadaWgaaWcbaGa amOBaiaadUgaaeqaaOGaaGPaVdqaaiaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7cqGHuhY2caaMc8UaaGPaVlaaykW7cqGHii IZdaWgaaWcbaGaamiBaiaad2gacaWGUbaabeaakiabeU7aSjaaykW7 caaMc8Uaeyypa0JaaGPaVlaaykW7caaMc8UaeyicI48aaSbaaSqaai aadMgacaWGQbGaam4AaaqabaGccaWGbbWaaSbaaSqaaiaadYgacaWG PbaabeaakiaadgeadaWgaaWcbaGaamyBaiaadQgaaeqaaOGaamyqam aaBaaaleaacaWGUbGaam4Aaaqabaaaaaa@C0A9@

 Change of Basis.  Let A be a second order tensor. Let  be a Cartesian basis, and denote the components of A in this basis by A ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGbbWaaSbaaS qaaiaadMgacaWGQbaabeaaaaa@3844@ .  Let { m 1 , m 2 , m 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaah2 gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaCyBamaaBaaaleaacaaI YaaabeaakiaacYcacaWHTbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7b GaayzFaaaaaa@3EBE@  be a second basis, and denote the components of A in this basis by .  Then, define

where  denotes the angle between the unit vectors   and .  Then

 

3.7.6. Calculus using index notation

 

The derivative x i / x j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqGHciITcaWG4b WaaSbaaSqaaiaadMgaaeqaaOGaai4laiabgkGi2kaadIhadaWgaaWc baGaamOAaaqabaaaaa@3D2E@  can be deduced by noting that x i / x j =1i=j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqGHciITcaWG4b WaaSbaaSqaaiaadMgaaeqaaOGaai4laiabgkGi2kaadIhadaWgaaWc baGaamOAaaqabaGccqGH9aqpcaaIXaGaaGPaVlaaykW7caaMc8UaaG PaVlaadMgacqGH9aqpcaWGQbaaaa@4808@  and  x i / x j =0ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqGHciITcaWG4b WaaSbaaSqaaiaadMgaaeqaaOGaai4laiabgkGi2kaadIhadaWgaaWc baGaamOAaaqabaGccqGH9aqpcaaIWaGaaGPaVlaaykW7caaMc8UaaG PaVlaadMgacqGHGjsUcaWGQbaaaa@48C8@ .  Therefore

                                                                  x i x j = δ ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWcaaqaaiabgk Gi2kaadIhadaWgaaWcbaGaamyAaaqabaaakeaacqGHciITcaWG4bWa aSbaaSqaaiaadQgaaeqaaaaakiabg2da9iabes7aKnaaBaaaleaaca WGPbGaamOAaaqabaaaaa@4148@

The same argument can be used for higher order tensors

                                                               A ij A kl = δ ik δ jl MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWcaaqaaiabgk Gi2kaadgeadaWgaaWcbaGaamyAaiaadQgaaeqaaaGcbaGaeyOaIyRa amyqamaaBaaaleaacaWGRbGaamiBaaqabaaaaOGaeyypa0JaeqiTdq 2aaSbaaSqaaiaadMgacaWGRbaabeaakiabes7aKnaaBaaaleaacaWG QbGaamiBaaqabaaaaa@4677@

 

3.7.7. Examples of algebraic manipulations using index notation

 

1. Let a, b, c, d be vectors.  Prove that

( a×b )( c×d )=( ac )( bd )( bc )( ad ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaaiaahg gacqGHxdaTcaWHIbaacaGLOaGaayzkaaGaeyyXIC9aaeWaaeaacaWH JbGaey41aqRaaCizaaGaayjkaiaawMcaaiabg2da9maabmaabaGaaC yyaiabgwSixlaahogaaiaawIcacaGLPaaadaqadaqaaiaahkgacqGH flY1caWHKbaacaGLOaGaayzkaaGaeyOeI0YaaeWaaeaacaWHIbGaey yXICTaaC4yaaGaayjkaiaawMcaamaabmaabaGaaCyyaiabgwSixlaa hsgaaiaawIcacaGLPaaaaaa@5B48@

 

Express the left hand side of the equation using index notation (check the rules for cross products and dot products of vectors to see how this is done)

( a×b )( c×d ) ijk a j b k imn c m d n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaaiaahg gacqGHxdaTcaWHIbaacaGLOaGaayzkaaGaeyyXIC9aaeWaaeaacaWH JbGaey41aqRaaCizaaGaayjkaiaawMcaaiaaykW7caaMc8UaaGPaVl aaykW7cqGHHjIUcaaMc8UaaGPaVlaaykW7caaMc8UaeyicI48aaSba aSqaaiaadMgacaWGQbGaam4AaaqabaGccaWGHbWaaSbaaSqaaiaadQ gaaeqaaOGaamOyamaaBaaaleaacaWGRbaabeaakiabgIGiopaaBaaa leaacaWGPbGaamyBaiaad6gaaeqaaOGaam4yamaaBaaaleaacaWGTb aabeaakiaadsgadaWgaaWcbaGaamOBaaqabaaaaa@6212@

Recall the identity

ijk imn = δ jm δ kn δ jn δ mk MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqGHiiIZdaWgaa WcbaGaamyAaiaadQgacaWGRbaabeaakiabgIGiopaaBaaaleaacaWG PbGaamyBaiaad6gaaeqaaOGaeyypa0JaeqiTdq2aaSbaaSqaaiaadQ gacaWGTbaabeaakiabes7aKnaaBaaaleaacaWGRbGaamOBaaqabaGc cqGHsislcqaH0oazdaWgaaWcbaGaamOAaiaad6gaaeqaaOGaeqiTdq 2aaSbaaSqaaiaad2gacaWGRbaabeaaaaa@4F66@

so

ijk a j b k imn c m d n =( δ jm δ kn δ jn δ mk ) a j b k c m d n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaaMc8UaaGPaVl abgIGiopaaBaaaleaacaWGPbGaamOAaiaadUgaaeqaaOGaamyyamaa BaaaleaacaWGQbaabeaakiaadkgadaWgaaWcbaGaam4AaaqabaGccq GHiiIZdaWgaaWcbaGaamyAaiaad2gacaWGUbaabeaakiaadogadaWg aaWcbaGaamyBaaqabaGccaWGKbWaaSbaaSqaaiaad6gaaeqaaOGaey ypa0ZaaeWaaeaacqaH0oazdaWgaaWcbaGaamOAaiaad2gaaeqaaOGa eqiTdq2aaSbaaSqaaiaadUgacaWGUbaabeaakiabgkHiTiabes7aKn aaBaaaleaacaWGQbGaamOBaaqabaGccqaH0oazdaWgaaWcbaGaamyB aiaadUgaaeqaaaGccaGLOaGaayzkaaGaamyyamaaBaaaleaacaWGQb aabeaakiaadkgadaWgaaWcbaGaam4AaaqabaGccaWGJbWaaSbaaSqa aiaad2gaaeqaaOGaamizamaaBaaaleaacaWGUbaabeaaaaa@6479@

Multiply out, and note that

δ jm a j = a m δ kn b k = b n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH0oazdaWgaa WcbaGaamOAaiaad2gaaeqaaOGaamyyamaaBaaaleaacaWGQbaabeaa kiabg2da9iaadggadaWgaaWcbaGaamyBaaqabaGccaaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7cqaH0oazdaWgaaWcbaGaam4Aaiaad6gaaeqaaOGaam OyamaaBaaaleaacaWGRbaabeaakiabg2da9iaadkgadaWgaaWcbaGa amOBaaqabaaaaa@59AB@

(multiplying by a Kronecker delta has the effect of switching indices…) so

( δ jm δ kn δ jn δ mk ) a j b k c m d n = a m b n c m d n a n b m c m d n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaaMc8UaaGPaVl aaykW7daqadaqaaiabes7aKnaaBaaaleaacaWGQbGaamyBaaqabaGc cqaH0oazdaWgaaWcbaGaam4Aaiaad6gaaeqaaOGaeyOeI0IaeqiTdq 2aaSbaaSqaaiaadQgacaWGUbaabeaakiabes7aKnaaBaaaleaacaWG TbGaam4AaaqabaaakiaawIcacaGLPaaacaWGHbWaaSbaaSqaaiaadQ gaaeqaaOGaamOyamaaBaaaleaacaWGRbaabeaakiaadogadaWgaaWc baGaamyBaaqabaGccaWGKbWaaSbaaSqaaiaad6gaaeqaaOGaeyypa0 JaamyyamaaBaaaleaacaWGTbaabeaakiaadkgadaWgaaWcbaGaamOB aaqabaGccaWGJbWaaSbaaSqaaiaad2gaaeqaaOGaamizamaaBaaale aacaWGUbaabeaakiabgkHiTiaadggadaWgaaWcbaGaamOBaaqabaGc caWGIbWaaSbaaSqaaiaad2gaaeqaaOGaam4yamaaBaaaleaacaWGTb aabeaakiaadsgadaWgaaWcbaGaamOBaaqabaaaaa@6623@

Finally, note that

a m c m ac MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaad2gaaeqaaOGaam4yamaaBaaaleaacaWGTbaabeaakiaaykW7 caaMc8UaaGPaVlaaykW7cqGHHjIUcaWHHbGaeyyXICTaaC4yaaaa@45A8@

and similarly for other products with the same index, so that

a m b n c m d n a n b m c m d n = a m c m b n d n b m c m a n d n ( ac )( bd )( bc )( ad ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaad2gaaeqaaOGaamOyamaaBaaaleaacaWGUbaabeaakiaadoga daWgaaWcbaGaamyBaaqabaGccaWGKbWaaSbaaSqaaiaad6gaaeqaaO GaeyOeI0IaamyyamaaBaaaleaacaWGUbaabeaakiaadkgadaWgaaWc baGaamyBaaqabaGccaWGJbWaaSbaaSqaaiaad2gaaeqaaOGaamizam aaBaaaleaacaWGUbaabeaakiabg2da9iaadggadaWgaaWcbaGaamyB aaqabaGccaWGJbWaaSbaaSqaaiaad2gaaeqaaOGaamOyamaaBaaale aacaWGUbaabeaakiaadsgadaWgaaWcbaGaamOBaaqabaGccqGHsisl caWGIbWaaSbaaSqaaiaad2gaaeqaaOGaam4yamaaBaaaleaacaWGTb aabeaakiaadggadaWgaaWcbaGaamOBaaqabaGccaWGKbWaaSbaaSqa aiaad6gaaeqaaOGaeyyyIO7aaeWaaeaacaWHHbGaeyyXICTaaC4yaa GaayjkaiaawMcaamaabmaabaGaaCOyaiabgwSixlaahsgaaiaawIca caGLPaaacqGHsisldaqadaqaaiaahkgacqGHflY1caWHJbaacaGLOa GaayzkaaWaaeWaaeaacaWHHbGaeyyXICTaaCizaaGaayjkaiaawMca aaaa@72B3@

 

2. The stress MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa8hfGaaa@3723@ strain relation for linear elasticity may be expressed as

σ ij = E 1+ν ( ε ij + ν 12ν ε kk δ ij ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHdpWCdaWgaa WcbaGaamyAaiaadQgaaeqaaOGaeyypa0ZaaSaaaeaacaWGfbaabaGa aGymaiabgUcaRiabe27aUbaadaqadaqaaiabew7aLnaaBaaaleaaca WGPbGaamOAaaqabaGccqGHRaWkdaWcaaqaaiabe27aUbqaaiaaigda cqGHsislcaaIYaGaeqyVd4gaaiabew7aLnaaBaaaleaacaWGRbGaam 4AaaqabaGccqaH0oazdaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGL OaGaayzkaaaaaa@51FE@

where σ ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHdpWCdaWgaa WcbaGaamyAaiaadQgaaeqaaaaa@3941@  and ε ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH1oqzdaWgaa WcbaGaamyAaiaadQgaaeqaaaaa@3925@  are the components of the stress and strain tensor, and E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfbaaaa@363F@  and ν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH9oGBaaa@372D@  denote Young’s modulus and Poisson’s ratio.  Find an expression for strain in terms of stress.

 

Set i=j to see that

σ ii = E 1+ν ( ε ii + ν 12ν ε kk δ ii ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHdpWCdaWgaa WcbaGaamyAaiaadMgaaeqaaOGaeyypa0ZaaSaaaeaacaWGfbaabaGa aGymaiabgUcaRiabe27aUbaadaqadaqaaiabew7aLnaaBaaaleaaca WGPbGaamyAaaqabaGccqGHRaWkdaWcaaqaaiabe27aUbqaaiaaigda cqGHsislcaaIYaGaeqyVd4gaaiabew7aLnaaBaaaleaacaWGRbGaam 4AaaqabaGccqaH0oazdaWgaaWcbaGaamyAaiaadMgaaeqaaaGccaGL OaGaayzkaaaaaa@51FB@

Recall that δ ii =3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH0oazdaWgaa WcbaGaamyAaiaadMgaaeqaaOGaeyypa0JaaG4maaaa@3AEF@ , and notice that we can replace the remaining ii by kk

σ kk = E 1+ν ( ε kk + ν 12ν 3 ε kk )= E 12ν ε kk ε kk = 12ν E σ kk MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiabeo8aZn aaBaaaleaacaWGRbGaam4AaaqabaGccqGH9aqpdaWcaaqaaiaadwea aeaacaaIXaGaey4kaSIaeqyVd4gaamaabmaabaGaeqyTdu2aaSbaaS qaaiaadUgacaWGRbaabeaakiabgUcaRmaalaaabaGaeqyVd4gabaGa aGymaiabgkHiTiaaikdacqaH9oGBaaGaaG4maiabew7aLnaaBaaale aacaWGRbGaam4AaaqabaaakiaawIcacaGLPaaacqGH9aqpdaWcaaqa aiaadweaaeaacaaIXaGaeyOeI0IaaGOmaiabe27aUbaacqaH1oqzda WgaaWcbaGaam4AaiaadUgaaeqaaaGcbaGaeyi1HSTaaGPaVlaaykW7 caaMc8UaeqyTdu2aaSbaaSqaaiaadUgacaWGRbaabeaakiabg2da9m aalaaabaGaaGymaiabgkHiTiaaikdacqaH9oGBaeaacaWGfbaaaiab eo8aZnaaBaaaleaacaWGRbGaam4Aaaqabaaaaaa@6D4E@

Now, substitute for ε kk MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH1oqzdaWgaa WcbaGaam4AaiaadUgaaeqaaaaa@3928@  in the given stress MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa8hfGaaa@3723@ strain relation

σ ij = E 1+ν ( ε ij + ν E σ kk δ ij ) ε ij = 1+ν E ( σ ij ν 1+ν σ kk δ ij ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiabeo8aZn aaBaaaleaacaWGPbGaamOAaaqabaGccqGH9aqpdaWcaaqaaiaadwea aeaacaaIXaGaey4kaSIaeqyVd4gaamaabmaabaGaeqyTdu2aaSbaaS qaaiaadMgacaWGQbaabeaakiabgUcaRmaalaaabaGaeqyVd4gabaGa amyraaaacqaHdpWCdaWgaaWcbaGaam4AaiaadUgaaeqaaOGaeqiTdq 2aaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaaqaaiab gsDiBlabew7aLnaaBaaaleaacaWGPbGaamOAaaqabaGccqGH9aqpda WcaaqaaiaaigdacqGHRaWkcqaH9oGBaeaacaWGfbaaamaabmaabaGa eq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaakiabgkHiTmaalaaaba GaeqyVd4gabaGaaGymaiabgUcaRiabe27aUbaacqaHdpWCdaWgaaWc baGaam4AaiaadUgaaeqaaOGaeqiTdq2aaSbaaSqaaiaadMgacaWGQb aabeaaaOGaayjkaiaawMcaaaaaaa@6D14@

 

3. Solve the equation

μ{ δ kj a i a i + 1 12ν a k a j } U k = P j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH8oqBdaGada qaaiabes7aKnaaBaaaleaacaWGRbGaamOAaaqabaGccaWGHbWaaSba aSqaaiaadMgaaeqaaOGaamyyamaaBaaaleaacaWGPbaabeaakiabgU caRmaalaaabaGaaGymaaqaaiaaigdacqGHsislcaaIYaGaeqyVd4ga aiaadggadaWgaaWcbaGaam4AaaqabaGccaWGHbWaaSbaaSqaaiaadQ gaaeqaaaGccaGL7bGaayzFaaGaamyvamaaBaaaleaacaWGRbaabeaa kiabg2da9iaadcfadaWgaaWcbaGaamOAaaqabaaaaa@5000@

for U k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGvbWaaSbaaS qaaiaadUgaaeqaaaaa@376B@  in terms of P i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbWaaSbaaS qaaiaadMgaaeqaaaaa@3764@  and a i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaadMgaaeqaaaaa@3775@

 

Multiply both sides by  to see that

μ{ a j δ kj a i a i + 1 12ν a k a j a j } U k = P j a j μ{ a k a i a i + 1 12ν a k a j a j } U k = P j a j μ U k a k 2( 1ν ) 12ν a i a i = P j a j U k a k = (12ν) P j a j 2μ( 1ν ) a i a i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiabeY7aTn aacmaabaGaamyyamaaBaaaleaacaWGQbaabeaakiabes7aKnaaBaaa leaacaWGRbGaamOAaaqabaGccaWGHbWaaSbaaSqaaiaadMgaaeqaaO GaamyyamaaBaaaleaacaWGPbaabeaakiabgUcaRmaalaaabaGaaGym aaqaaiaaigdacqGHsislcaaIYaGaeqyVd4gaaiaadggadaWgaaWcba Gaam4AaaqabaGccaWGHbWaaSbaaSqaaiaadQgaaeqaaOGaamyyamaa BaaaleaacaWGQbaabeaaaOGaay5Eaiaaw2haaiaadwfadaWgaaWcba Gaam4AaaqabaGccqGH9aqpcaWGqbWaaSbaaSqaaiaadQgaaeqaaOGa amyyamaaBaaaleaacaWGQbaabeaaaOqaaiabgsDiBlaaykW7caaMc8 UaeqiVd02aaiWaaeaacaWGHbWaaSbaaSqaaiaadUgaaeqaaOGaamyy amaaBaaaleaacaWGPbaabeaakiaadggadaWgaaWcbaGaamyAaaqaba GccqGHRaWkdaWcaaqaaiaaigdaaeaacaaIXaGaeyOeI0IaaGOmaiab e27aUbaacaWGHbWaaSbaaSqaaiaadUgaaeqaaOGaamyyamaaBaaale aacaWGQbaabeaakiaadggadaWgaaWcbaGaamOAaaqabaaakiaawUha caGL9baacaWGvbWaaSbaaSqaaiaadUgaaeqaaOGaeyypa0Jaamiuam aaBaaaleaacaWGQbaabeaakiaadggadaWgaaWcbaGaamOAaaqabaaa keaacqGHuhY2cqaH8oqBcaWGvbWaaSbaaSqaaiaadUgaaeqaaOGaam yyamaaBaaaleaacaWGRbaabeaakmaalaaabaGaaGOmamaabmaabaGa aGymaiabgkHiTiabe27aUbGaayjkaiaawMcaaaqaaiaaigdacqGHsi slcaaIYaGaeqyVd4gaaiaadggadaWgaaWcbaGaamyAaaqabaGccaWG HbWaaSbaaSqaaiaadMgaaeqaaOGaeyypa0JaamiuamaaBaaaleaaca WGQbaabeaakiaadggadaWgaaWcbaGaamOAaaqabaGccaaMc8UaaGPa VlaaykW7cqGHuhY2caWGvbWaaSbaaSqaaiaadUgaaeqaaOGaamyyam aaBaaaleaacaWGRbaabeaakiabg2da9maalaaabaGaaiikaiaaigda cqGHsislcaaIYaGaeqyVd4MaaiykaiaadcfadaWgaaWcbaGaamOAaa qabaGccaWGHbWaaSbaaSqaaiaadQgaaeqaaaGcbaGaaGOmaiabeY7a TnaabmaabaGaaGymaiabgkHiTiabe27aUbGaayjkaiaawMcaaiaadg gadaWgaaWcbaGaamyAaaqabaGccaWGHbWaaSbaaSqaaiaadMgaaeqa aaaaaaaa@B4AE@

Substitute back into the equation given for U k a k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGvbWaaSbaaS qaaiaadUgaaeqaaOGaamyyamaaBaaaleaacaWGRbaabeaaaaa@3977@  to see that

μ U j a i a i + P k a k 2(1ν) a i a i a j = P j U j = 1 μ a i a i ( P j P k a k 2(1ν) a n a n a j ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH8oqBcaWGvb WaaSbaaSqaaiaadQgaaeqaaOGaamyyamaaBaaaleaacaWGPbaabeaa kiaadggadaWgaaWcbaGaamyAaaqabaGccqGHRaWkdaWcaaqaaiaadc fadaWgaaWcbaGaam4AaaqabaGccaWGHbWaaSbaaSqaaiaadUgaaeqa aaGcbaGaaGOmaiaacIcacaaIXaGaeyOeI0IaeqyVd4Maaiykaiaadg gadaWgaaWcbaGaamyAaaqabaGccaWGHbWaaSbaaSqaaiaadMgaaeqa aaaakiaadggadaWgaaWcbaGaamOAaaqabaGccqGH9aqpcaWGqbWaaS baaSqaaiaadQgaaeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlabgkDi ElaadwfadaWgaaWcbaGaamOAaaqabaGccqGH9aqpdaWcaaqaaiaaig daaeaacqaH8oqBcaWGHbWaaSbaaSqaaiaadMgaaeqaaOGaamyyamaa BaaaleaacaWGPbaabeaaaaGcdaqadaqaaiaadcfadaWgaaWcbaGaam OAaaqabaGccqGHsisldaWcaaqaaiaadcfadaWgaaWcbaGaam4Aaaqa baGccaWGHbWaaSbaaSqaaiaadUgaaeqaaaGcbaGaaGOmaiaacIcaca aIXaGaeyOeI0IaeqyVd4MaaiykaiaadggadaWgaaWcbaGaamOBaaqa baGccaWGHbWaaSbaaSqaaiaad6gaaeqaaaaakiaadggadaWgaaWcba GaamOAaaqabaaakiaawIcacaGLPaaaaaa@7713@

 

4. Let r= x k x k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGYbGaeyypa0 ZaaOaaaeaacaWG4bWaaSbaaSqaaiaadUgaaeqaaOGaamiEamaaBaaa leaacaWGRbaabeaaaeqaaaaa@3BBF@ .  Calculate r x i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWcaaqaaiabgk Gi2kaadkhaaeaacqGHciITcaWG4bWaaSbaaSqaaiaadMgaaeqaaaaa aaa@3B60@

 

We can just apply the usual chain and product rules of differentiation

r x i = 1 2 1 x k x k ( x k x k x i + x k x i x k )= 1 x k x k x k δ ik = x i x k x k = x i r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWcaaqaaiabgk Gi2kaadkhaaeaacqGHciITcaWG4bWaaSbaaSqaaiaadMgaaeqaaaaa kiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaWaaSaaaeaacaaIXa aabaWaaOaaaeaacaWG4bWaaSbaaSqaaiaadUgaaeqaaOGaamiEamaa BaaaleaacaWGRbaabeaaaeqaaaaakmaabmaabaGaamiEamaaBaaale aacaWGRbaabeaakmaalaaabaGaeyOaIyRaamiEamaaBaaaleaacaWG RbaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaamyAaaqabaaaaO Gaey4kaSYaaSaaaeaacqGHciITcaWG4bWaaSbaaSqaaiaadUgaaeqa aaGcbaGaeyOaIyRaamiEamaaBaaaleaacaWGPbaabeaaaaGccaWG4b WaaSbaaSqaaiaadUgaaeqaaaGccaGLOaGaayzkaaGaeyypa0ZaaSaa aeaacaaIXaaabaWaaOaaaeaacaWG4bWaaSbaaSqaaiaadUgaaeqaaO GaamiEamaaBaaaleaacaWGRbaabeaaaeqaaaaakiaadIhadaWgaaWc baGaam4AaaqabaGccqaH0oazdaWgaaWcbaGaamyAaiaadUgaaeqaaO Gaeyypa0ZaaSaaaeaacaWG4bWaaSbaaSqaaiaadMgaaeqaaaGcbaWa aOaaaeaacaWG4bWaaSbaaSqaaiaadUgaaeqaaOGaamiEamaaBaaale aacaWGRbaabeaaaeqaaaaakiabg2da9maalaaabaGaamiEamaaBaaa leaacaWGPbaabeaaaOqaaiaadkhaaaaaaa@6FC7@

 

5. Let λ= A ij A ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBcqGH9a qpcaWGbbWaaSbaaSqaaiaadMgacaWGQbaabeaakiaadgeadaWgaaWc baGaamyAaiaadQgaaeqaaaaa@3DD8@ .  Calculate λ/ A kl MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqGHciITcqaH7o aBcaGGVaGaeyOaIyRaamyqamaaBaaaleaacaWGRbGaamiBaaqabaaa aa@3D7C@

 

Using the product rule

λ A kl = A ij δ ik δ jl + δ ik δ jl A ij =2 A kl MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWcaaqaaiabgk Gi2kabeU7aSbqaaiabgkGi2kaadgeadaWgaaWcbaGaam4AaiaadYga aeqaaaaakiabg2da9iaadgeadaWgaaWcbaGaamyAaiaadQgaaeqaaO GaeqiTdq2aaSbaaSqaaiaadMgacaWGRbaabeaakiabes7aKnaaBaaa leaacaWGQbGaamiBaaqabaGccqGHRaWkcqaH0oazdaWgaaWcbaGaam yAaiaadUgaaeqaaOGaeqiTdq2aaSbaaSqaaiaadQgacaWGSbaabeaa kiaadgeadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaeyypa0JaaGOmai aadgeadaWgaaWcbaGaam4AaiaadYgaaeqaaaaa@57FA@