Chapter 13

 

Plasticity

 

 

 

For many design calculations, the elastic constitutive equations outlined in Section 3.1 are sufficient, since large plastic strains are by and large undesirable and will lead to failure.  There are some applications, however, where it is of interest to predict the behavior of solids subjected to large loads, sufficient to cause permanent plastic strains.  Examples include:

 Modeling metal forming, machining or other manufacturing processes

 Designing crash resistant vehicles

 Plastic design of structures

 

Plasticity theory was developed to predict the behavior of metals under loads exceeding the plastic range, but the general framework of plasticity theory has since been adapted to other materials, including polymers and some types of soil (clay).  Some concepts from metal plasticity are also used in modeling concrete and other brittle materials such as polycrystalline ceramics.

 

 

13.1 Features of the inelastic response of metals.

 

We begin by reviewing the results of a typical tension/compression test on an annealed, ductile, polycrystalline metal specimen (e.g. copper or Al).  Assume that the test is conducted at moderate temperature (less than ½ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa8xVaaaa@37AC@  the melting point of the solid MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  e.g. room temperature) and at modest strains (less than 10%), at modest strain rates ( 10 1 10 2 s -1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaaigdacaaIWaWaaWbaaSqabeaacaaIXa aaaOGaeyOeI0IaaGymaiaaicdadaahaaWcbeqaaiabgkHiTiaaikda aaGccaaMc8UaaGPaVlaaykW7caqGZbWaaWbaaSqabeaacaqGTaGaae ymaaaaaaa@3E38@  ).

 

The results of such a test are

 For modest stresses (and strains) the solid responds elastically.  This means the stress is proportional to the strain, and the deformation is reversible.

 If the stress exceeds a critical magnitude, the stress MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa8hfGaaa@3723@ strain curve ceases to be linear.  It is often difficult to identify the critical stress accurately, because the stress strain curve starts to curve rather gradually.

 If the critical stress is exceeded, the specimen is permanently changed in length on unloading.

 If the stress is removed from the specimen during a test, the stress MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa8hfGaaa@3723@ strain curve during unloading has a slope equal to that of the elastic part of the stress MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa8hfGaaa@3723@ strain curve.  If the specimen is re-loaded, it will initially follow the same curve, until the stress approaches its maximum value during prior loading.  At this point, the stress MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa8hfGaaa@3723@ strain curve once again ceases to be linear, and the specimen is permanently deformed further.

 If the test is interrupted and the specimen is held at constant strain for a period of time, the stress will relax slowly.  If the straining is resumed, the specimen will behave as though the solid were unloaded elastically.  Similarly, if the specimen is subjected to a constant stress, it will generally continue to deform plastically, although the plastic strain increases very slowly.  This phenomenon is known as `creep.’

 If the specimen is deformed in compression, the stress MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa8hfGaaa@3723@ strain curve is a mirror image of the tensile stress MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa8hfGaaa@3723@ strain curve (of course, this is only true for modest strains.  For large strains, geometry changes will cause differences between the tension and compression tests).

 If the specimen is first deformed in compression, then loaded in tension, it will generally start to deform plastically at a lower tensile stress than an annealed specimen.  This phenomenon is known as the `Bauschinger effect.’

 Material response to cyclic loading can be extremely complex.  One example is shown in the picture above MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  in this case, the material hardens cyclically.  Other materials may soften.

 The detailed shape of the plastic stress MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa8hfGaaa@3723@ strain curve depends on the rate of loading, and also on temperature.

 

We also need to characterize the multi-axial response of an inelastic solid.  This is a much more difficult experiment to do.  Some of the nicest experiments were done by G.I. Taylor and collaborators in the early part of the last century.  Their approach was to measure the response of thin-walled tubes under combined torsion, axial loading and hydrostatic pressure. 

 

The main conclusions of these tests were

 The shape of the uniaxial stress-strain curve is insensitive to hydrostatic pressure.  However, the ductility (strain to failure) can be increased by adding hydrostatic pressure, particularly under torsional loading.

 Plastic strains are volume preserving, i.e. the plastic strain rate must satisfy  ε ˙ kk =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8YjY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqyTduMbaiaadaWgaaWcbaGaam4Aai aadUgaaeqaaOGaeyypa0JaaGimaaaa@3663@

 During plastic loading, the principal components of the plastic strain rate tensor are parallel to the components of stress acting on the solid.  This sounds obvious until you think about it…  To understand what this means, imagine that you take a cylindrical shaft and pull it until it starts to deform plastically.  Then, holding the axial stress fixed, apply a torque to the shaft.  Experiments show that the shaft will initially stretch, rather than rotate.  The plastic strain increment is proportional to the stress acting on the shaft, not the stress increment.  This is totally unlike elastic deformation.

 Under multi-axial loading, most annealed polycrystalline solids obey the Levy-Mises flow rule, which relates the principal components of strain rate during plastic loading to the principal stresses as follows

ε ˙ 1 ε ˙ 2 σ 1 σ 2 = ε ˙ 1 ε ˙ 3 σ 1 σ 3 = ε ˙ 2 ε ˙ 3 σ 2 σ 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacuaH1oqzgaGaamaaBaaale aacaaIXaaabeaakiabgkHiTiqbew7aLzaacaWaaSbaaSqaaiaaikda aeqaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaeyOeI0Iaeq 4Wdm3aaSbaaSqaaiaaikdaaeqaaaaakiabg2da9maalaaabaGafqyT duMbaiaadaWgaaWcbaGaaGymaaqabaGccqGHsislcuaH1oqzgaGaam aaBaaaleaacaaIZaaabeaaaOqaaiabeo8aZnaaBaaaleaacaaIXaaa beaakiabgkHiTiabeo8aZnaaBaaaleaacaaIZaaabeaaaaGccqGH9a qpdaWcaaqaaiqbew7aLzaacaWaaSbaaSqaaiaaikdaaeqaaOGaeyOe I0IafqyTduMbaiaadaWgaaWcbaGaaG4maaqabaaakeaacqaHdpWCda WgaaWcbaGaaGOmaaqabaGccqGHsislcqaHdpWCdaWgaaWcbaGaaG4m aaqabaaaaaaa@5899@

 

In this section, we will outline the simplest plastic constitutive equations that capture the most important features of metal plasticity.  There are many different plastic constitutive laws, which are intended to be used in different applications.   There are two broad classes:

1.      Rate independent plasticity MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  which is used to model metals deformed at low temperatures (less than half the material’s melting point) and modest strain rates (of order 0.01-10/s).  This is the focus of this section.

2.      Rate dependent plasticity, or viscoplasticity MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  used to model high temperature creep (steady accumulation of plastic strain at contstant stress) and also to model metals deformed at high strain rates (100/s or greater), where flow strength is sensitive to deformation rate.   

 

There are also various different models within these two broad categories.   The models generally differ in two respects (i) the yield criterion; (ii) the strain hardening law.  There is no completely general model that describes all the features that were just listed, so in any application, you will need to decide which aspect of material behavior is most important, and then choose a model that accurately characterizes this behavior.

 

 

Key ideas in modeling metal plasticity

 

Five key concepts form the basis of almost all classical theories of plasticity.  They are

1.      The decomposition of strain into elastic and plastic parts;

2.      Yield criteria, which predict whether the solid responds elastically or plastically;

3.      Strain hardening rules, which control the way in which resistance to plastic flow increases with plastic straining;

4.      The plastic flow rule, which determines the relationship between stress and plastic strain under multi-axial loading;

5.      The elastic unloading criterion, which models the irreversible behavior of the solid.

These concepts will be described in more detail in the sections below.

 

For simplicity, we will at this stage restrict attention to infinitesimal deformations.

 

Consequently, we adopt the infinitesimal strain tensor

ε ij = 1 2 ( u i x j + u j x i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaWaaeWaaeaa daWcaaqaaiabgkGi2kaadwhadaWgaaWcbaGaamyAaaqabaaakeaacq GHciITcaWG4bWaaSbaaSqaaiaadQgaaeqaaaaakiabgUcaRmaalaaa baGaeyOaIyRaamyDamaaBaaaleaacaWGQbaabeaaaOqaaiabgkGi2k aadIhadaWgaaWcbaGaamyAaaqabaaaaaGccaGLOaGaayzkaaaaaa@47B9@

as our deformation measure.  We have no need to distinguish between the various stress measures and will use σ ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@34AB@  to denote stress.

 

It is also important to note that the plastic strains in a solid depend on the load history.  This means that the stress-strain laws are not just simple equations relating stress to strain.  Instead, plastic strain laws must either relate the strain rate in the solid to the stress and stress rate, or else specify the relationship between a small increment of plastic strain d ε ij p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgacqaH1oqzdaqhaaWcbaGaamyAai aadQgaaeaacaWGWbaaaaaa@35F7@  in terms of strain, stress and stress increment d σ ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgacqaHdpWCdaWgaaWcbaGaamyAai aadQgaaeqaaaaa@351D@ .  In addition, plasticity problems are almost always solved using the finite element method.  Consequently, numerical methods are used to integrate the plastic stress-strain equations.

 

 

 

13.2. Decomposition of strain into elastic and plastic parts

Experiments show that under uniaxial loading, the strain at a given stress has two parts: a small recoverable elastic strain, and a large, irreversible plastic strain, as shown in the picture.  In uniaxial tension, we would write

ε= ε e + ε p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTduMaeyypa0JaeqyTdu2aaWbaaS qabeaacaWGLbaaaOGaey4kaSIaeqyTdu2aaWbaaSqabeaacaWGWbaa aaaa@39EF@

Experiments suggest that the reversible part is related to the stress through the usual linear elastic equations.   Plasticity theory is concerned with characterizing the irreversible part.

 

For multiaxial loading, we generalize this by decomposing a general strain increment d ε ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabew7aLnaaBaaaleaacaWGPb GaamOAaaqabaaaaa@3578@  into elastic and plastic parts (as well as an optional thermal expansion), as

d ε ij =d ε ij e +d ε ij p +d ε ij T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabew7aLnaaBaaaleaacaWGPb GaamOAaaqabaGccqGH9aqpcaWGKbGaeqyTdu2aa0baaSqaaiaadMga caWGQbaabaGaamyzaaaakiabgUcaRiaadsgacqaH1oqzdaqhaaWcba GaamyAaiaadQgaaeaacaWGWbaaaOGaey4kaSIaamizaiabew7aLnaa DaaaleaacaWGPbGaamOAaaqaaiaadsfaaaaaaa@48E6@

The elastic part of the strain is related to stress using the linear elastic equations

d ε ij e = 1+ν E d σ ij ν E d σ kk δ ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgacqaH1oqzdaqhaaWcbaGaamyAai aadQgaaeaacaWGLbaaaOGaeyypa0ZaaSaaaeaacaaIXaGaey4kaSIa eqyVd4gabaGaamyraaaacaWGKbGaeq4Wdm3aaSbaaSqaaiaadMgaca WGQbaabeaakiabgkHiTmaalaaabaGaeqyVd4gabaGaamyraaaacaWG KbGaeq4Wdm3aaSbaaSqaaiaadUgacaWGRbaabeaakiabes7aKnaaBa aaleaacaWGPbGaamOAaaqabaaaaa@4BD8@

The thermal strain is

d ε ij T =αdT δ ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgacqaH1oqzdaqhaaWcbaGaamyAai aadQgaaeaacaWGubaaaOGaeyypa0JaeqySdeMaamizaiaadsfacqaH 0oazdaWgaaWcbaGaamyAaiaadQgaaeqaaaaa@3DFA@  

 

 

 

13.3 Yield Criteria

 

The yield criterion is used to determine the critical stress required to cause permanent deformation in a material.  There are many different yield criteria MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  here we will just list the simplest ones.  Let σ ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaWGPbGaamOAaa qabaaaaa@3433@  be the stress acting on a solid, and let σ 1 , σ 2 , σ 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaaIXaaabeaaki aacYcacaaMc8UaaGPaVlabeo8aZnaaBaaaleaacaaIYaaabeaakiaa cYcacaaMc8UaaGPaVlaaykW7cqaHdpWCdaWgaaWcbaGaaG4maaqaba aaaa@4193@  denote the principal values of stress.  In addition, let Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadMfaaaa@3156@  denote the yield stress of the material in uniaxial tension.  Then, define

 Von MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieqajugybabaaa aaaaaapeGaa8hfGaaa@3724@ Mises yield criterion

f( σ ij , ε ¯ p )= 1 2 [ ( σ 1 σ 2 ) 2 + ( σ 1 σ 3 ) 2 + ( σ 2 σ 3 ) 2 ] Y( ε ¯ p )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAgadaqadaqaaiabeo8aZnaaBaaale aacaWGPbGaamOAaaqabaGccaGGSaGafqyTduMbaebadaahaaWcbeqa aiaadchaaaaakiaawIcacaGLPaaacqGH9aqpdaGcaaqaamaalaaaba GaaGymaaqaaiaaikdaaaWaamWaaeaadaqadaqaaiabeo8aZnaaBaaa leaacaaIXaaabeaakiabgkHiTiabeo8aZnaaBaaaleaacaaIYaaabe aaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiabgUcaRmaa bmaabaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaeyOeI0Iaeq4Wdm 3aaSbaaSqaaiaaiodaaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaa caaIYaaaaOGaey4kaSYaaeWaaeaacqaHdpWCdaWgaaWcbaGaaGOmaa qabaGccqGHsislcqaHdpWCdaWgaaWcbaGaaG4maaqabaaakiaawIca caGLPaaadaahaaWcbeqaaiaaikdaaaaakiaawUfacaGLDbaaaSqaba GccqGHsislcaWGzbWaaeWaaeaacuaH1oqzgaqeamaaCaaaleqabaGa amiCaaaaaOGaayjkaiaawMcaaiabg2da9iaaicdaaaa@632C@

 

 Tresca yield criterion

f( σ ij , ε ¯ p )=max{ | σ 1 σ 2 |,| σ 1 σ 3 |,| σ 2 σ 3 | }Y( ε ¯ p )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAgadaqadaqaaiabeo8aZnaaBaaale aacaWGPbGaamOAaaqabaGccaGGSaGafqyTduMbaebadaahaaWcbeqa aiaadchaaaaakiaawIcacaGLPaaacqGH9aqpciGGTbGaaiyyaiaacI hadaGadaqaamaaemaabaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGa eyOeI0Iaeq4Wdm3aaSbaaSqaaiaaikdaaeqaaaGccaGLhWUaayjcSd GaaiilamaaemaabaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaeyOe I0Iaeq4Wdm3aaSbaaSqaaiaaiodaaeqaaaGccaGLhWUaayjcSdGaai ilamaaemaabaGaeq4Wdm3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0Ia eq4Wdm3aaSbaaSqaaiaaiodaaeqaaaGccaGLhWUaayjcSdaacaGL7b GaayzFaaGaeyOeI0IaamywamaabmaabaGafqyTduMbaebadaahaaWc beqaaiaadchaaaaakiaawIcacaGLPaaacqGH9aqpcaaIWaaaaa@6621@

In both cases, the criteria are defined so that the material deforms elastically for f( σ ij )<0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAgadaqadaqaaiabeo8aZnaaBaaale aacaWGPbGaamOAaaqabaaakiaawIcacaGLPaaacqGH8aapcaaIWaaa aa@386F@ , and plastically for f( σ ij )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAgadaqadaqaaiabeo8aZnaaBaaale aacaWGPbGaamOAaaqabaaakiaawIcacaGLPaaacqGH9aqpcaaIWaaa aa@3871@ .  The yield stress Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadMfaaaa@3156@  may increase during plastic straining, so we have shown that Y is a function of a measure of total plastic strain ε ¯ p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqbew7aLzaaraWaaWbaaSqabeaacaWGWb aaaaaa@3359@ , to be defined in below.

 

 An alternative form of Von MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieqajugybabaaa aaaaaapeGaa8hfGaaa@3724@ Mises criterion. For a general stress state, it is a nuisance having to compute the principal stresses in order to apply von Mises yield criterion.  Fortunately, the criterion can be expressed directly in terms of the stress tensor

f( σ ij , ε ¯ p )= σ e Y( ε ¯ p ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAgadaqadaqaaiabeo8aZnaaBaaale aacaWGPbGaamOAaaqabaGccaGGSaGafqyTduMbaebadaahaaWcbeqa aiaadchaaaaakiaawIcacaGLPaaacqGH9aqpcqaHdpWCdaWgaaWcba GaamyzaaqabaGccqGHsislcaWGzbWaaeWaaeaacuaH1oqzgaqeamaa CaaaleqabaGaamiCaaaaaOGaayjkaiaawMcaaaaa@4474@

where

σ e = 3 2 S ij S ij S ij = σ ij 1 3 σ kk δ ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaWGLbaabeaaki abg2da9maakaaabaWaaSaaaeaacaaIZaaabaGaaGOmaaaacaWGtbWa aSbaaSqaaiaadMgacaWGQbaabeaakiaadofadaWgaaWcbaGaamyAai aadQgaaeqaaaqabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadofadaWg aaWcbaGaamyAaiaadQgaaeqaaOGaeyypa0Jaeq4Wdm3aaSbaaSqaai aadMgacaWGQbaabeaakiabgkHiTmaalaaabaGaaGymaaqaaiaaioda aaGaeq4Wdm3aaSbaaSqaaiaadUgacaWGRbaabeaakiabes7aKnaaBa aaleaacaWGPbGaamOAaaqabaaaaa@6C5E@

are the components of the `von Mises effective stress’ and  `deviatoric stress tensor’ respectively.

 

These yield criteria are based largely on the following experimental observations:

(1)  A hydrostatic stress (all principal stresses equal) will never cause yield, no matter how large the stress;

(2) Most polycrystalline metals are isotropic.  Since the yield criterion depends only on the magnitudes of the principal stresses, and not their directions, the yield criteria predict isotropic behavior.

 

Tests suggest that von Mises yield criterion provides a slightly better fit to experiment than Tresca, but the difference between them is very small.   Sometimes it simplifies calculations to use Tresca’s criterion instead of von Mises.

 

 

 

13.4 Graphical representation of the yield surface.

 

Any arbitrary stress state can be plotted in  `principal stress space,’ with the three principal stresses as axes.

 

The Von MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa8hfGaaa@3723@ Mises yield criterion is plotted in this way in the picture to the right.  The yield criterion is a cylinder, radius Y/ 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadMfacaGGVaWaaOaaaeaacaaIZaaale qaaaaa@32D0@ , with its axis parallel to the line

σ 1 = σ 2 = σ 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaaIXaaabeaaki abg2da9iabeo8aZnaaBaaaleaacaaIYaaabeaakiabg2da9iabeo8a ZnaaBaaaleaacaaIZaaabeaaaaa@3A88@

If the state of stress falls within the cylinder, the material is below yield and responds elastically.  If the state of stress lies on the surface of the cylinder, the material yields and deforms plastically.  If the plastic deformation causes the material to strain harden, the radius of the cylinder increases.  The stress state cannot lie outside the cylinder MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  this would lead to an infinite plastic strain.

 

Because the yield criterion f( σ ij )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAgacaGGOaGaeq4Wdm3aaSbaaSqaai aadMgacaWGQbaabeaakiaacMcacqGH9aqpcaaIWaaaaa@3841@  defines a surface in stress space, it is often referred to as a yield surface. The yield surface is often drawn as it would appear when viewed down the axis of the cylinder, as shown below. The Tresca yield criterion can also be plotted in this way.  It looks like a cylinder with a hexagonal cross section, as shown.

        

 

 

13.5. Strain hardening laws

 

Experiments show that if you plastically deform a solid, then unload it, and then try to re-load it so as to induce further plastic flow, its resistance to plastic flow will have increased.  This is known as strain hardening.

 

Obviously, we can model strain hardening by relating the size and shape of the yield surface to plastic strain in some appropriate way.  There are many ways to do this.  Here we describe the two simplest approaches.

 

 Isotropic hardening

Rather obviously, the easiest way to model strain hardening is to make the yield surface increase in size, but remain the same shape, as a result of plastic straining.

 

This means we must devise some appropriate relationship between Y and the plastic strain.  To get a suitable scalar measure of plastic strain we define the accumulated plastic strain magnitude

ε ¯ p = 2 3 d ε ij p d ε ij p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqyTduMbaebadaahaaWcbeqaaiaadc haaaGccqGH9aqpdaWdbaqaamaakaaabaWaaSaaaeaacaaIYaaabaGa aG4maaaacaWGKbGaeqyTdu2aa0baaSqaaiaadMgacaWGQbaabaGaam iCaaaakiaadsgacqaH1oqzdaqhaaWcbaGaamyAaiaadQgaaeaacaWG Wbaaaaqabaaabeqab0Gaey4kIipaaaa@4371@

(the factor of 2/3 is introduced so that ε ¯ p = ε 11 p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqyTduMbaebadaahaaWcbeqaaiaadc haaaGccqGH9aqpcqaH1oqzdaqhaaWcbaGaaGymaiaaigdaaeaacaWG Wbaaaaaa@38FF@  in a uniaxial tensile test in which the specimen is stretched parallel to the e 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaaGymaaqabaaaaa@324D@  direction.  To see this, note that plastic strains do not change volume, so that d ε 22 =d ε 33 =d ε 11 /2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgacqaH1oqzdaWgaaWcbaGaaGOmai aaikdaaeqaaOGaeyypa0Jaamizaiabew7aLnaaBaaaleaacaaIZaGa aG4maaqabaGccqGH9aqpcqGHsislcaWGKbGaeqyTdu2aaSbaaSqaai aaigdacaaIXaaabeaakiaac+cacaaIYaaaaa@418A@  and substitute into the formula.)

 

Then we make Y a function of ε ¯ p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqbew7aLzaaraWaaWbaaSqabeaacaWGWb aaaaaa@3349@ .  People often use power laws or piecewise linear approximations in practice. A few of the more common forms of hardening functions are

Perfectly plastic solid:  Y=constant MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadMfacqGH9aqpcaqGJbGaae4Baiaab6 gacaqGZbGaaeiDaiaabggacaqGUbGaaeiDaaaa@39CE@

Linear strain hardening solid: Y( ε ¯ p )= Y 0 +h ε ¯ p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadMfadaqadaqaaiqbew7aLzaaraWaaW baaSqabeaacaWGWbaaaaGccaGLOaGaayzkaaGaeyypa0Jaamywamaa BaaaleaacaaIWaaabeaakiabgUcaRiaadIgacuaH1oqzgaqeamaaCa aaleqabaGaamiCaaaaaaa@3D3D@

Power MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa8hfGaaa@3723@ law hardening material: Y= Y 0 +h ( ε ¯ p ) 1/m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadMfacqGH9aqpcaWGzbWaaSbaaSqaai aaicdaaeqaaOGaey4kaSIaamiAamaabmaabaGafqyTduMbaebadaah aaWcbeqaaiaadchaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaig dacaGGVaGaamyBaaaaaaa@3CE9@

In these formulas, , h and m are material properties.  These functions are illustrated in the figures below

 

Perfectly plastic solid

Linear strain hardening solid

Power-law hardening solid

 

     

 Kinematic hardening

 

An isotropic hardening law is generally not useful in situations where components are subjected to cyclic loading.  It does not account for the Bauschinger effect, and so predicts that after a few cycles the solid will just harden until it responds elastically.

 

To fix this, an alternative hardening law allows the yield surface to translate, without changing its shape.  The idea is illustrated graphically in the picture.  As you deform the material in tension, you drag the yield surface in the direction of increasing stress, thus modeling strain hardening.  This softens the material in compression, however.  So, this constitutive law can model cyclic plastic deformation.  The stress-strain curves for isotropic and kinematic hardening materials are contrasted in the figure on the right.

 

To account for the fact that the center of the yield locus is at a position α ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySde2aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@3487@  in stress space, the Von-Mises yield criterion needs to be modified as follows

f( σ ij , α ij )= 3 2 ( S ij α ij )( S ij α ij ) Y=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzaiaacIcacqaHdpWCdaWgaaWcba GaamyAaiaadQgaaeqaaOGaaiilaiabeg7aHnaaBaaaleaacaWGPbGa amOAaaqabaGccaGGPaGaeyypa0ZaaOaaaeaadaWcaaqaaiaaiodaae aacaaIYaaaamaabmaabaGaam4uamaaBaaaleaacaWGPbGaamOAaaqa baGccqGHsislcqaHXoqydaWgaaWcbaGaamyAaiaadQgaaeqaaaGcca GLOaGaayzkaaWaaeWaaeaacaWGtbWaaSbaaSqaaiaadMgacaWGQbaa beaakiabgkHiTiabeg7aHnaaBaaaleaacaWGPbGaamOAaaqabaaaki aawIcacaGLPaaaaSqabaGccqGHsislcaWGzbGaeyypa0JaaGimaaaa @53B0@

Here, Y is now a constant, and hardening is modeled by the motion of the yield surface. To do so, we need to relate α ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySde2aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@3477@  to the plastic strain history somehow.  There are many ways to do this, which can model subtle features of the plastic response of solids under cyclic and nonproportional loading. The simplest approach is to set

d α ij = 2 3 cd ε ij p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabeg7aHnaaBaaaleaacaWGPb GaamOAaaqabaGccqGH9aqpdaWcaaqaaiaaikdaaeaacaaIZaaaaiaa dogacaWGKbGaeqyTdu2aa0baaSqaaiaadMgacaWGQbaabaGaamiCaa aaaaa@3E70@ .

 This hardening law predicts that the stress-plastic strain curve is a straight line with slope c.  This is known as linear kinematic hardening

 

 

A more sophisticated approach is to set

d α ij = 2 3 cd ε ij p γ α ij d ε ¯ p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabeg7aHnaaBaaaleaacaWGPb GaamOAaaqabaGccqGH9aqpdaWcaaqaaiaaikdaaeaacaaIZaaaaiaa dogacaWGKbGaeqyTdu2aa0baaSqaaiaadMgacaWGQbaabaGaamiCaa aakiabgkHiTiabeo7aNjabeg7aHnaaBaaaleaacaWGPbGaamOAaaqa baGccaWGKbGafqyTduMbaebadaahaaWcbeqaaiaadchaaaaaaa@488A@

where c and γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8YjY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4SdCgaaa@3284@  are material constants.  It’s not so easy to visualize what this does MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  it turns out that that this relation can model cyclic creep MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  the tendency of a material to accumulate strain in the direction of mean stress under cyclic loading, as illustrated in the figure on the right.  It is known as the Armstrong-Frederick hardening law.

 

There are many other kinematic type hardening laws.  New ones are still being developed. 

 

 

 

13.6 The plastic flow law

 

To complete the plastic stress-strain relations, we need a way to predict the plastic strains induced by stressing the material beyond the yield point.  Specifically, given

1.      The current stress σ ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaWGPbGaamOAaa qabaaaaa@3434@  applied to the material

2.      The current yield stress (characterized by Y( ε ¯ p ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadMfacaGGOaGafqyTduMbaebadaahaa WcbeqaaiaadchaaaGccaGGPaaaaa@358A@  for isotropic hardening, or α ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeg7aHnaaBaaaleaacaWGPbGaamOAaa qabaaaaa@3410@  for kinematic hardening)

3.      A small increase in stress d σ ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgacqaHdpWCdaWgaaWcbaGaamyAai aadQgaaeqaaaaa@351D@  applied to the solid

we wish to determine the small change in plastic strain d ε ij p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgacqaH1oqzdaqhaaWcbaGaamyAai aadQgaaeaacaWGWbaaaaaa@35F7@ .

 

The formulas are given below, for isotropic and kinematic hardening.  These are just fits to experiment (specifically, to the Levy-Mises flow rule).  The physical significance and reason for the structure of the equations will be discussed later.

 

The plastic strains are usually derived from the yield criterion f defined in 3.6.3, and so are slightly different for isotropic and kinematic hardening.  A material that has its plastic flow law derived from f is said to have an `associated’ flow law MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  i.e.the flow law is associated with f.

 

 

Isotropic Hardening (Von-Mises yield criterion)

d ε ij p =d ε ¯ p f σ ij =d ε ¯ p 3 2 S ij Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgacqaH1oqzdaqhaaWcbaGaamyAai aadQgaaeaacaWGWbaaaOGaeyypa0Jaamizaiqbew7aLzaaraWaaWba aSqabeaacaWGWbaaaOWaaSaaaeaacqGHciITcaWGMbaabaGaeyOaIy Raeq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaaaaGccqGH9aqpcaWG KbGafqyTduMbaebadaahaaWcbeqaaiaadchaaaGcdaWcaaqaaiaaio daaeaacaaIYaaaamaalaaabaGaam4uamaaBaaaleaacaWGPbGaamOA aaqabaaakeaacaWGzbaaaaaa@4CB4@

where

f( σ ij , ε ¯ p )= 3 2 S ij S ij Y( ε ¯ p ) S ij = σ ij 1 3 σ kk δ ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAgadaqadaqaaiabeo8aZnaaBaaale aacaWGPbGaamOAaaqabaGccaGGSaGafqyTduMbaebadaahaaWcbeqa aiaadchaaaaakiaawIcacaGLPaaacqGH9aqpdaGcaaqaamaalaaaba GaaG4maaqaaiaaikdaaaGaam4uamaaBaaaleaacaWGPbGaamOAaaqa baGccaWGtbWaaSbaaSqaaiaadMgacaWGQbaabeaaaeqaaOGaeyOeI0 IaamywamaabmaabaGafqyTduMbaebadaahaaWcbeqaaiaadchaaaaa kiaawIcacaGLPaaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caWGtbWaaSbaaSqaaiaadMgacaWGQbaabeaakiabg2da9i abeo8aZnaaBaaaleaacaWGPbGaamOAaaqabaGccqGHsisldaWcaaqa aiaaigdaaeaacaaIZaaaaiabeo8aZnaaBaaaleaacaWGRbGaam4Aaa qabaGccqaH0oazdaWgaaWcbaGaamyAaiaadQgaaeqaaaaa@71E8@

denotes the Von-Mises yield criterion, and d ε ¯ p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgacuaH1oqzgaqeamaaCaaaleqaba GaamiCaaaaaaa@3442@  is determined from the condition that the yield criterion must be satisfied at all times during plastic straining.  This shows that

f( σ ij +d σ ij , ε ¯ p +d ε ¯ p )=f( σ ij , ε ¯ p )+ f σ ij d σ ij + f ε ¯ p d ε ¯ p =0 f σ ij d σ ij Y ε ¯ p d ε ¯ p =0 d ε ¯ p = 1 h f σ ij d σ ij = 1 h 3 2 S ij d σ ij Y h= dY d ε ¯ p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaGaamOzaiaacIcacqaHdpWCdaWgaa WcbaGaamyAaiaadQgaaeqaaOGaey4kaSIaamizaiabeo8aZnaaBaaa leaacaWGPbGaamOAaaqabaGccaGGSaGafqyTduMbaebadaahaaWcbe qaaiaadchaaaGccqGHRaWkcaWGKbGafqyTduMbaebadaahaaWcbeqa aiaadchaaaGccaGGPaGaeyypa0JaamOzaiaacIcacqaHdpWCdaWgaa WcbaGaamyAaiaadQgaaeqaaOGaaiilaiqbew7aLzaaraWaaWbaaSqa beaacaWGWbaaaOGaaiykaiabgUcaRmaalaaabaGaeyOaIyRaamOzaa qaaiabgkGi2kabeo8aZnaaBaaaleaacaWGPbGaamOAaaqabaaaaOGa amizaiabeo8aZnaaBaaaleaacaWGPbGaamOAaaqabaGccqGHRaWkda WcaaqaaiabgkGi2kaadAgaaeaacqGHciITcuaH1oqzgaqeamaaCaaa leqabaGaamiCaaaaaaGccaWGKbGafqyTduMbaebadaahaaWcbeqaai aadchaaaGccqGH9aqpcaaIWaaabaGaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeyO0H49a aSaaaeaacqGHciITcaWGMbaabaGaeyOaIyRaeq4Wdm3aaSbaaSqaai aadMgacaWGQbaabeaaaaGccaWGKbGaeq4Wdm3aaSbaaSqaaiaadMga caWGQbaabeaakiabgkHiTmaalaaabaGaeyOaIyRaamywaaqaaiabgk Gi2kqbew7aLzaaraWaaWbaaSqabeaacaWGWbaaaaaakiaadsgacuaH 1oqzgaqeamaaCaaaleqabaGaamiCaaaakiabg2da9iaaicdaaeaaca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlabgkDiElaadsgacuaH1oqzgaqeamaaCaaaleqabaGaamiC aaaakiabg2da9maalaaabaGaaGymaaqaaiaadIgaaaWaaSaaaeaacq GHciITcaWGMbaabaGaeyOaIyRaeq4Wdm3aaSbaaSqaaiaadMgacaWG QbaabeaaaaGccaWGKbGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabe aakiabg2da9maalaaabaGaaGymaaqaaiaadIgaaaWaaSaaaeaacaaI ZaaabaGaaGOmaaaadaWcaaqaaiaadofadaWgaaWcbaGaamyAaiaadQ gaaeqaaOGaamizaiabeo8aZnaaBaaaleaacaWGPbGaamOAaaqabaaa keaacaWGzbaaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaamiAaiabg2da9maalaaa baGaamizaiaadMfaaeaacaWGKbGafqyTduMbaebadaahaaWcbeqaai aadchaaaaaaaaaaa@5C09@

Here, h=Y/ ε ¯ p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadIgacqGH9aqpcqGHciITcaWGzbGaai 4laiabgkGi2kqbew7aLzaaraWaaWbaaSqabeaacaWGWbaaaaaa@3999@  is the slope of the plastic stress-strain curve.   The algebra involved in differentiating f with respect to stress is outlined below.

 

 

Linear Kinematic Hardening (Von-Mises yield criterion)

d ε ij p =d ε ¯ p f σ ij =d ε ¯ p 3 2 ( S ij α ij ) Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgacqaH1oqzdaqhaaWcbaGaamyAai aadQgaaeaacaWGWbaaaOGaeyypa0Jaamizaiqbew7aLzaaraWaaWba aSqabeaacaWGWbaaaOWaaSaaaeaacqGHciITcaWGMbaabaGaeyOaIy Raeq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaaaaGccqGH9aqpcaWG KbGafqyTduMbaebadaahaaWcbeqaaiaadchaaaGcdaWcaaqaaiaaio daaeaacaaIYaaaamaalaaabaWaaeWaaeaacaWGtbWaaSbaaSqaaiaa dMgacaWGQbaabeaakiabgkHiTiabeg7aHnaaBaaaleaacaWGPbGaam OAaaqabaaakiaawIcacaGLPaaaaeaacaWGzbaaaaaa@52DC@

where the yield criterion is now

f( σ ij , α ij )= 3 2 ( S ij α ij )( S ij α ij ) Y S ij = σ ij 1 3 σ kk δ ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAgadaqadaqaaiabeo8aZnaaBaaale aacaWGPbGaamOAaaqabaGccaGGSaGaeqySde2aaSbaaSqaaiaadMga caWGQbaabeaaaOGaayjkaiaawMcaaiabg2da9maakaaabaWaaSaaae aacaaIZaaabaGaaGOmaaaadaqadaqaaiaadofadaWgaaWcbaGaamyA aiaadQgaaeqaaOGaeyOeI0IaeqySde2aaSbaaSqaaiaadMgacaWGQb aabeaaaOGaayjkaiaawMcaamaabmaabaGaam4uamaaBaaaleaacaWG PbGaamOAaaqabaGccqGHsislcqaHXoqydaWgaaWcbaGaamyAaiaadQ gaaeqaaaGccaGLOaGaayzkaaaaleqaaOGaeyOeI0IaamywaiaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadofadaWgaaWc baGaamyAaiaadQgaaeqaaOGaeyypa0Jaeq4Wdm3aaSbaaSqaaiaadM gacaWGQbaabeaakiabgkHiTmaalaaabaGaaGymaaqaaiaaiodaaaGa eq4Wdm3aaSbaaSqaaiaadUgacaWGRbaabeaakiabes7aKnaaBaaale aacaWGPbGaamOAaaqabaaaaa@7AA0@

and as before d ε ¯ p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgacuaH1oqzgaqeamaaCaaaleqaba GaamiCaaaaaaa@3442@  is determined from the condition that the yield criterion must be satisfied at all times during plastic straining.  This shows that

f( σ ij +d σ ij , α ij +d α ij )=f( σ ij , α ij )+ f σ ij d σ ij + f α ij d α ij =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAgacaGGOaGaeq4Wdm3aaSbaaSqaai aadMgacaWGQbaabeaakiabgUcaRiaadsgacqaHdpWCdaWgaaWcbaGa amyAaiaadQgaaeqaaOGaaiilaiabeg7aHnaaBaaaleaacaWGPbGaam OAaaqabaGccqGHRaWkcaWGKbGaeqySde2aaSbaaSqaaiaadMgacaWG QbaabeaakiaacMcacqGH9aqpcaWGMbGaaiikaiabeo8aZnaaBaaale aacaWGPbGaamOAaaqabaGccaGGSaGaeqySde2aaSbaaSqaaiaadMga caWGQbaabeaakiaacMcacqGHRaWkdaWcaaqaaiabgkGi2kaadAgaae aacqGHciITcqaHdpWCdaWgaaWcbaGaamyAaiaadQgaaeqaaaaakiaa dsgacqaHdpWCdaWgaaWcbaGaamyAaiaadQgaaeqaaOGaey4kaSYaaS aaaeaacqGHciITcaWGMbaabaGaeyOaIyRaeqySde2aaSbaaSqaaiaa dMgacaWGQbaabeaaaaGccaWGKbGaeqySde2aaSbaaSqaaiaadMgaca WGQbaabeaakiabg2da9iaaicdaaaa@6D78@

Recall that for linear kinematic hardening the hardening law is

d α ij = 2 3 cd ε ij p =cd ε ¯ p ( S ij α ij ) Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgacqaHXoqydaWgaaWcbaGaamyAai aadQgaaeqaaOGaeyypa0ZaaSaaaeaacaaIYaaabaGaaG4maaaacaWG JbGaamizaiabew7aLnaaDaaaleaacaWGPbGaamOAaaqaaiaadchaaa GccqGH9aqpcaWGJbGaamizaiqbew7aLzaaraWaaWbaaSqabeaacaWG WbaaaOWaaSaaaeaadaqadaqaaiaadofadaWgaaWcbaGaamyAaiaadQ gaaeqaaOGaeyOeI0IaeqySde2aaSbaaSqaaiaadMgacaWGQbaabeaa aOGaayjkaiaawMcaaaqaaiaadMfaaaaaaa@4DD6@

Substituting into the Taylor expansion of the yield criterion and simplifying shows that

d ε ¯ p = 1 c 3 2 ( S ij α ij )d σ ij Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgacuaH1oqzgaqeamaaCaaaleqaba GaamiCaaaakiabg2da9maalaaabaGaaGymaaqaaiaadogaaaWaaSaa aeaacaaIZaaabaGaaGOmaaaadaWcaaqaamaabmaabaGaam4uamaaBa aaleaacaWGPbGaamOAaaqabaGccqGHsislcqaHXoqydaWgaaWcbaGa amyAaiaadQgaaeqaaaGccaGLOaGaayzkaaGaamizaiabeo8aZnaaBa aaleaacaWGPbGaamOAaaqabaaakeaacaWGzbaaaaaa@473E@

 

 

 

Comparison of flow law formulas with the Levy-Mises flow rule

 

The Levy-Mises flow law (based on experimental observations) states that principal values of the plastic strain increment d ε 1 ,d ε 2 ,d ε 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgacqaH1oqzdaWgaaWcbaGaaGymaa qabaGccaGGSaGaamizaiabew7aLnaaBaaaleaacaaIYaaabeaakiaa cYcacaWGKbGaeqyTdu2aaSbaaSqaaiaaiodaaeqaaaaa@3C54@  induced by a stress increment are related to the principal stresses σ 1 , σ 2 , σ 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaaIXaaabeaaki aacYcacqaHdpWCdaWgaaWcbaGaaGOmaaqabaGccaGGSaGaeq4Wdm3a aSbaaSqaaiaaiodaaeqaaaaa@39ED@  by

d ε 1 d ε 2 σ 1 σ 2 = d ε 1 d ε 3 σ 1 σ 3 = d ε 2 d ε 3 σ 2 σ 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8XjY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaeqyTdu2aaSbaaS qaaiaaigdaaeqaaOGaeyOeI0Iaamizaiabew7aLnaaBaaaleaacaaI YaaabeaaaOqaaiabeo8aZnaaBaaaleaacaaIXaaabeaakiabgkHiTi abeo8aZnaaBaaaleaacaaIYaaabeaaaaGccqGH9aqpdaWcaaqaaiaa dsgacqaH1oqzdaWgaaWcbaGaaGymaaqabaGccqGHsislcaWGKbGaeq yTdu2aaSbaaSqaaiaaiodaaeqaaaGcbaGaeq4Wdm3aaSbaaSqaaiaa igdaaeqaaOGaeyOeI0Iaeq4Wdm3aaSbaaSqaaiaaiodaaeqaaaaaki abg2da9maalaaabaGaamizaiabew7aLnaaBaaaleaacaaIYaaabeaa kiabgkHiTiaadsgacqaH1oqzdaWgaaWcbaGaaG4maaqabaaakeaacq aHdpWCdaWgaaWcbaGaaGOmaaqabaGccqGHsislcqaHdpWCdaWgaaWc baGaaG4maaqabaaaaaaa@5DD7@

It is straightforward to show that this observation is consistent with the predictions of the flow law formulas given in this section. To see this, suppose that the principal axes of stress are parallel to the { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaacUhacaWHLbWaaSbaaSqaaiaaigdaae qaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGSaGaaCyz amaaBaaaleaacaaIZaaabeaakiaac2haaaa@3968@  directions.  In this case the only nonzero components of deviatoric stress are

S 11 = σ 1 ( σ 1 + σ 2 + σ 3 )/3 S 22 = σ 2 ( σ 1 + σ 2 + σ 3 )/3 S 33 = σ 1 ( σ 1 + σ 2 + σ 3 )/3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofadaWgaaWcbaGaaGymaiaaigdaae qaaOGaeyypa0Jaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaeyOeI0Ia aiikaiabeo8aZnaaBaaaleaacaaIXaaabeaakiabgUcaRiabeo8aZn aaBaaaleaacaaIYaaabeaakiabgUcaRiabeo8aZnaaBaaaleaacaaI ZaaabeaakiaacMcacaGGVaGaaG4maiaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8Uaam4uamaaBaaaleaacaaIYaGa aGOmaaqabaGccqGH9aqpcqaHdpWCdaWgaaWcbaGaaGOmaaqabaGccq GHsislcaGGOaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIa eq4Wdm3aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaeq4Wdm3aaSbaaS qaaiaaiodaaeqaaOGaaiykaiaac+cacaaIZaGaaGPaVlaaykW7caaM c8UaaGPaVlaadofadaWgaaWcbaGaaG4maiaaiodaaeqaaOGaeyypa0 Jaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaeyOeI0Iaaiikaiabeo8a ZnaaBaaaleaacaaIXaaabeaakiabgUcaRiabeo8aZnaaBaaaleaaca aIYaaabeaakiabgUcaRiabeo8aZnaaBaaaleaacaaIZaaabeaakiaa cMcacaGGVaGaaG4maaaa@7E78@

 

 

The flow law

d ε ij p =d ε ¯ p f σ ij =d ε ¯ p 3 2 S ij Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgacqaH1oqzdaqhaaWcbaGaamyAai aadQgaaeaacaWGWbaaaOGaeyypa0Jaamizaiqbew7aLzaaraWaaWba aSqabeaacaWGWbaaaOWaaSaaaeaacqGHciITcaWGMbaabaGaeyOaIy Raeq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaaaaGccqGH9aqpcaWG KbGafqyTduMbaebadaahaaWcbeqaaiaadchaaaGcdaWcaaqaaiaaio daaeaacaaIYaaaamaalaaabaGaam4uamaaBaaaleaacaWGPbGaamOA aaqabaaakeaacaWGzbaaaaaa@4CB4@  

gives

d ε 1 p =d ε 11 p =d ε ¯ p 3 2 S 11 Y d ε 2 p =d ε 22 p =d ε ¯ p 3 2 S 22 Y d ε 3 p =d ε 33 p =d ε ¯ p 3 2 S 33 Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgacqaH1oqzdaqhaaWcbaGaaGymaa qaaiaadchaaaGccqGH9aqpcaWGKbGaeqyTdu2aa0baaSqaaiaaigda caaIXaaabaGaamiCaaaakiabg2da9iaadsgacuaH1oqzgaqeamaaCa aaleqabaGaamiCaaaakmaalaaabaGaaG4maaqaaiaaikdaaaWaaSaa aeaacaWGtbWaaSbaaSqaaiaaigdacaaIXaaabeaaaOqaaiaadMfaaa GaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caWGKbGaeqyTdu2aa0baaSqaaiaaikdaaeaacaWGWbaaaOGaeyypa0 Jaamizaiabew7aLnaaDaaaleaacaaIYaGaaGOmaaqaaiaadchaaaGc cqGH9aqpcaWGKbGafqyTduMbaebadaahaaWcbeqaaiaadchaaaGcda WcaaqaaiaaiodaaeaacaaIYaaaamaalaaabaGaam4uamaaBaaaleaa caaIYaGaaGOmaaqabaaakeaacaWGzbaaaiaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadsgacqaH1oqz daqhaaWcbaGaaG4maaqaaiaadchaaaGccqGH9aqpcaWGKbGaeqyTdu 2aa0baaSqaaiaaiodacaaIZaaabaGaamiCaaaakiabg2da9iaadsga cuaH1oqzgaqeamaaCaaaleqabaGaamiCaaaakmaalaaabaGaaG4maa qaaiaaikdaaaWaaSaaaeaacaWGtbWaaSbaaSqaaiaaiodacaaIZaaa beaaaOqaaiaadMfaaaaaaa@883E@

Thus, we see that

d ε 1 p d ε 2 p =d ε ¯ p 3 2 S 11 S 22 Y =d ε ¯ p 3 2 σ 1 σ 2 Y d ε 1 p d ε 3 p =d ε ¯ p 3 2 S 11 S 33 Y =d ε ¯ p 3 2 σ 1 σ 3 Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaGaamizaiabew7aLnaaDaaaleaaca aIXaaabaGaamiCaaaakiabgkHiTiaadsgacqaH1oqzdaqhaaWcbaGa aGOmaaqaaiaadchaaaGccqGH9aqpcaWGKbGafqyTduMbaebadaahaa WcbeqaaiaadchaaaGcdaWcaaqaaiaaiodaaeaacaaIYaaaamaalaaa baGaam4uamaaBaaaleaacaaIXaGaaGymaaqabaGccqGHsislcaWGtb WaaSbaaSqaaiaaikdacaaIYaaabeaaaOqaaiaadMfaaaGaeyypa0Ja aGPaVlaaykW7caWGKbGafqyTduMbaebadaahaaWcbeqaaiaadchaaa GcdaWcaaqaaiaaiodaaeaacaaIYaaaamaalaaabaGaeq4Wdm3aaSba aSqaaiaaigdaaeqaaOGaeyOeI0Iaeq4Wdm3aaSbaaSqaaiaaikdaae qaaaGcbaGaamywaaaaaeaacaWGKbGaeqyTdu2aa0baaSqaaiaaigda aeaacaWGWbaaaOGaeyOeI0Iaamizaiabew7aLnaaDaaaleaacaaIZa aabaGaamiCaaaakiabg2da9iaadsgacuaH1oqzgaqeamaaCaaaleqa baGaamiCaaaakmaalaaabaGaaG4maaqaaiaaikdaaaWaaSaaaeaaca WGtbWaaSbaaSqaaiaaigdacaaIXaaabeaakiabgkHiTiaadofadaWg aaWcbaGaaG4maiaaiodaaeqaaaGcbaGaamywaaaacqGH9aqpcaaMc8 UaaGPaVlaadsgacuaH1oqzgaqeamaaCaaaleqabaGaamiCaaaakmaa laaabaGaaG4maaqaaiaaikdaaaWaaSaaaeaacqaHdpWCdaWgaaWcba GaaGymaaqabaGccqGHsislcqaHdpWCdaWgaaWcbaGaaG4maaqabaaa keaacaWGzbaaaaaaaa@8035@

with similar expressions for other components.  Some trivial algebra then yields the Levy-Mises flow law.

 

 

Differentiating the yield criterion

 

Differentiating the yield criterion requires some sneaky index notation manipulations. Note that

f σ ij = 3 2 1 2 1 3 2 S kl S kl 2 S pq S pq σ ij = 3 2 1 3 2 S kl S kl S pq S pq σ ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaeyOaIyRaamOzaaqaaiabgk Gi2kabeo8aZnaaBaaaleaacaWGPbGaamOAaaqabaaaaOGaeyypa0Za aSaaaeaacaaIZaaabaGaaGOmaaaadaWcaaqaaiaaigdaaeaacaaIYa aaamaalaaabaGaaGymaaqaamaakaaabaWaaSaaaeaacaaIZaaabaGa aGOmaaaacaWGtbWaaSbaaSqaaiaadUgacaWGSbaabeaakiaadofada WgaaWcbaGaam4AaiaadYgaaeqaaaqabaaaaOGaaGOmaiaadofadaWg aaWcbaGaamiCaiaadghaaeqaaOWaaSaaaeaacqGHciITcaWGtbWaaS baaSqaaiaadchacaWGXbaabeaaaOqaaiabgkGi2kabeo8aZnaaBaaa leaacaWGPbGaamOAaaqabaaaaOGaaGPaVlabg2da9maalaaabaGaaG 4maaqaaiaaikdaaaWaaSaaaeaacaaIXaaabaWaaOaaaeaadaWcaaqa aiaaiodaaeaacaaIYaaaaiaadofadaWgaaWcbaGaam4AaiaadYgaae qaaOGaam4uamaaBaaaleaacaWGRbGaamiBaaqabaaabeaaaaGccaWG tbWaaSbaaSqaaiaadchacaWGXbaabeaakmaalaaabaGaeyOaIyRaam 4uamaaBaaaleaacaWGWbGaamyCaaqabaaakeaacqGHciITcqaHdpWC daWgaaWcbaGaamyAaiaadQgaaeqaaaaaaaa@6AB2@

Now, recall that

S ij = σ ij 1 3 σ kk δ ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofadaWgaaWcbaGaamyAaiaadQgaae qaaOGaeyypa0Jaeq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaakiab gkHiTmaalaaabaGaaGymaaqaaiaaiodaaaGaeq4Wdm3aaSbaaSqaai aadUgacaWGRbaabeaakiabes7aKnaaBaaaleaacaWGPbGaamOAaaqa baaaaa@422A@

and further that

σ ij σ kl = δ ik δ jl MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaeyOaIyRaeq4Wdm3aaSbaaS qaaiaadMgacaWGQbaabeaaaOqaaiabgkGi2kabeo8aZnaaBaaaleaa caWGRbGaamiBaaqabaaaaOGaeyypa0JaeqiTdq2aaSbaaSqaaiaadM gacaWGRbaabeaakiabes7aKnaaBaaaleaacaWGQbGaamiBaaqabaaa aa@4363@

Hence

S pq σ ij = δ ip δ jq 1 3 δ ik δ jk δ pq MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaeyOaIyRaam4uamaaBaaale aacaWGWbGaamyCaaqabaaakeaacqGHciITcqaHdpWCdaWgaaWcbaGa amyAaiaadQgaaeqaaaaakiabg2da9iabes7aKnaaBaaaleaacaWGPb GaamiCaaqabaGccqaH0oazdaWgaaWcbaGaamOAaiaadghaaeqaaOGa eyOeI0YaaSaaaeaacaaIXaaabaGaaG4maaaacqaH0oazdaWgaaWcba GaamyAaiaadUgaaeqaaOGaeqiTdq2aaSbaaSqaaiaadQgacaWGRbaa beaakiabes7aKnaaBaaaleaacaWGWbGaamyCaaqabaaaaa@503A@

and

S pq S pq σ ij = S pq ( δ ip δ jq 1 3 δ ik δ jk δ pq )= S ij S pp δ ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofadaWgaaWcbaGaamiCaiaadghaae qaaOWaaSaaaeaacqGHciITcaWGtbWaaSbaaSqaaiaadchacaWGXbaa beaaaOqaaiabgkGi2kabeo8aZnaaBaaaleaacaWGPbGaamOAaaqaba aaaOGaeyypa0Jaam4uamaaBaaaleaacaWGWbGaamyCaaqabaGcdaqa daqaaiabes7aKnaaBaaaleaacaWGPbGaamiCaaqabaGccqaH0oazda WgaaWcbaGaamOAaiaadghaaeqaaOGaeyOeI0YaaSaaaeaacaaIXaaa baGaaG4maaaacqaH0oazdaWgaaWcbaGaamyAaiaadUgaaeqaaOGaeq iTdq2aaSbaaSqaaiaadQgacaWGRbaabeaakiabes7aKnaaBaaaleaa caWGWbGaamyCaaqabaaakiaawIcacaGLPaaacqGH9aqpcaWGtbWaaS baaSqaaiaadMgacaWGQbaabeaakiabgkHiTiaadofadaWgaaWcbaGa amiCaiaadchaaeqaaOGaeqiTdq2aaSbaaSqaaiaadMgacaWGQbaabe aaaaa@6343@

However, observe that

S pp = σ pp 1 3 σ kk δ pp =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofadaWgaaWcbaGaamiCaiaadchaae qaaOGaeyypa0Jaeq4Wdm3aaSbaaSqaaiaadchacaWGWbaabeaakiab gkHiTmaalaaabaGaaGymaaqaaiaaiodaaaGaeq4Wdm3aaSbaaSqaai aadUgacaWGRbaabeaakiabes7aKnaaBaaaleaacaWGWbGaamiCaaqa baGccqGH9aqpcaaIWaaaaa@441B@

so that

S pq S pq σ ij = S ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofadaWgaaWcbaGaamiCaiaadghaae qaaOWaaSaaaeaacqGHciITcaWGtbWaaSbaaSqaaiaadchacaWGXbaa beaaaOqaaiabgkGi2kabeo8aZnaaBaaaleaacaWGPbGaamOAaaqaba aaaOGaeyypa0Jaam4uamaaBaaaleaacaWGPbGaamOAaaqabaaaaa@40F2@

and finally

f σ ij = 3 2 S ij 3 2 S kl S kl = 3 2 S ij Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaeyOaIyRaamOzaaqaaiabgk Gi2kabeo8aZnaaBaaaleaacaWGPbGaamOAaaqabaaaaOGaeyypa0Za aSaaaeaacaaIZaaabaGaaGOmaaaadaWcaaqaaiaadofadaWgaaWcba GaamyAaiaadQgaaeqaaaGcbaWaaOaaaeaadaWcaaqaaiaaiodaaeaa caaIYaaaaiaadofadaWgaaWcbaGaam4AaiaadYgaaeqaaOGaam4uam aaBaaaleaacaWGRbGaamiBaaqabaaabeaaaaGccqGH9aqpdaWcaaqa aiaaiodaaeaacaaIYaaaamaalaaabaGaam4uamaaBaaaleaacaWGPb GaamOAaaqabaaakeaacaWGzbaaaaaa@4B6D@

 

13.7 The Elastic unloading condition

 

There is one final issue to consider.  Experiments show that plastic flow is irreversible, and always dissipates energy.  If the increment in stress d σ ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabeo8aZnaaBaaaleaacaWGPb GaamOAaaqabaaaaa@3594@  is tangent to the yield surface, or brings the stress below yield, as shown in the picture then there is no plastic strain.

 

For an isotropically hardening solid, this unloading condition may be expressed as

S ij d σ ij <0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaWGPbGaamOAaa qabaGccaWGKbGaeq4Wdm3aa0baaSqaaiaadMgacaWGQbaabaaaaOGa eyipaWJaaGimaaaa@3A48@

For kinematic hardening,

( S ij α ij )d σ ij <0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaacaWGtbWaaSbaaSqaaiaadM gacaWGQbaabeaakiabgkHiTiabeg7aHnaaBaaaleaacaWGPbGaamOA aaqabaaakiaawIcacaGLPaaacaWGKbGaeq4Wdm3aa0baaSqaaiaadM gacaWGQbaabaaaaOGaeyipaWJaaGimaaaa@4070@

In both cases, the solid deforms elastically (no plastic strain) if the condition is satisfied.

 

 

 

13.8 Complete incremental stress-strain relations for a rate independent elastic-plastic solid

 

We conclude by summarizing the complete elastic-plastic stress strain relations for an isotropic  solid with Von-Mises yield surface. 

 

 

Isotropically hardening elastic-plastic solid

 

The solid is characterized by its elastic constants E,ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8YjY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyraiaacYcacqaH9oGBaaa@340F@  and by the yield stress Y( ε ¯ p ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadMfacaGGOaGafqyTduMbaebadaahaa WcbeqaaiaadchaaaGccaGGPaaaaa@359A@  as a function of accumulated plastic strain ε ¯ p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqbew7aLzaaraWaaWbaaSqabeaacaWGWb aaaaaa@3359@  and its slope h= dY d ε ¯ p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiAaiabg2da9maalaaabaGaamizai aadMfaaeaacaWGKbGafqyTduMbaebadaahaaWcbeqaaiaadchaaaaa aaaa@3873@  

 

In this case we have that

d ε ij =d ε ij e +d ε ij p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabew7aLnaaBaaaleaacaWGPb GaamOAaaqabaGccqGH9aqpcaWGKbGaeqyTdu2aa0baaSqaaiaadMga caWGQbaabaGaamyzaaaakiabgUcaRiaadsgacqaH1oqzdaqhaaWcba GaamyAaiaadQgaaeaacaWGWbaaaaaa@4277@

with

d ε ij e = 1+ν E ( d σ ij ν 1+ν d σ kk δ ij ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabew7aLnaaDaaaleaacaWGPb GaamOAaaqaaiaadwgaaaGccqGH9aqpdaWcaaqaaiaaigdacqGHRaWk cqaH9oGBaeaacaWGfbaaamaabmaabaGaamizaiabeo8aZnaaBaaale aacaWGPbGaamOAaaqabaGccqGHsisldaWcaaqaaiabe27aUbqaaiaa igdacqGHRaWkcqaH9oGBaaGaamizaiabeo8aZnaaBaaaleaacaWGRb Gaam4AaaqabaGccqaH0oazdaWgaaWcbaGaamyAaiaadQgaaeqaaaGc caGLOaGaayzkaaaaaa@505E@

d ε ij p ={ 0 3 2 S ij S ij Y( ε ¯ p )<0 1 h 3 2 S kl d σ kl Y 3 2 S ij Y 3 2 S ij S ij Y( ε ¯ p )=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabew7aLnaaDaaaleaacaWGPb GaamOAaaqaaiaadchaaaGccqGH9aqpdaGabaqaauaabeqaceaaaeaa caaIWaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7daGc aaqaamaalaaabaGaaG4maaqaaiaaikdaaaGaam4uamaaBaaaleaaca WGPbGaamOAaaqabaGccaWGtbWaaSbaaSqaaiaadMgacaWGQbaabeaa aeqaaOGaeyOeI0IaamywaiaacIcacuaH1oqzgaqeamaaCaaaleqaba GaamiCaaaakiaacMcacqGH8aapcaaIWaaabaWaaSaaaeaacaaIXaaa baGaamiAaaaadaWcaaqaaiaaiodaaeaacaaIYaaaamaalaaabaWaaa WaaeaacaWGtbWaaSbaaSqaaiaadUgacaWGSbaabeaakiaadsgacqaH dpWCdaWgaaWcbaGaam4AaiaadYgaaeqaaaGccaGLPmIaayPkJaaaba GaamywaaaadaWcaaqaaiaaiodaaeaacaaIYaaaamaalaaabaGaam4u amaaBaaaleaacaWGPbGaamOAaaqabaaakeaacaWGzbaaaiaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7daGcaaqaamaalaaabaGaaG4maaqaaiaaikdaaaGaam4uamaaBa aaleaacaWGPbGaamOAaaqabaGccaWGtbWaaSbaaSqaaiaadMgacaWG QbaabeaaaeqaaOGaeyOeI0IaamywaiaacIcacuaH1oqzgaqeamaaCa aaleqabaGaamiCaaaakiaacMcacqGH9aqpcaaIWaaaaaGaay5Eaaaa aa@C2CF@

where x ={ xx0 0x0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8XjY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaaWaaeaacaWG4baacaGLPmIaayPkJa Gaeyypa0ZaaiqaaeaafaqabeGabaaabaGaamiEaiaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadIhacq GHLjYScaaIWaaabaGaaGimaiaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaadIhacqGHKjYOcaaIWaaaaa Gaay5Eaaaaaa@5A2D@

 

 

 

 

 

These may be combined to

d ε ij ={ 1+ν E ( d σ ij ν 1+ν d σ kk δ ij ) 3 2 S ij S ij Y( ε ¯ p )<0 1+ν E ( d σ ij ν 1+ν d σ kk δ ij )+ 1 h 3 2 S kl d σ kl Y 3 2 S ij Y 3 2 S ij S ij Y( ε ¯ p )=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabew7aLnaaDaaaleaacaWGPb GaamOAaaqaaaaakiabg2da9maaceaabaqbaeqabiqaaaqaamaalaaa baGaaGymaiabgUcaRiabe27aUbqaaiaadweaaaWaaeWaaeaacaWGKb Gaeq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaakiabgkHiTmaalaaa baGaeqyVd4gabaGaaGymaiabgUcaRiabe27aUbaacaWGKbGaeq4Wdm 3aaSbaaSqaaiaadUgacaWGRbaabeaakiabes7aKnaaBaaaleaacaWG PbGaamOAaaqabaaakiaawIcacaGLPaaacaaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7daGcaaqaamaalaaabaGaaG4maa qaaiaaikdaaaGaam4uamaaBaaaleaacaWGPbGaamOAaaqabaGccaWG tbWaaSbaaSqaaiaadMgacaWGQbaabeaaaeqaaOGaeyOeI0Iaamywai aacIcacuaH1oqzgaqeamaaCaaaleqabaGaamiCaaaakiaacMcacqGH 8aapcaaIWaaabaWaaSaaaeaacaaIXaGaey4kaSIaeqyVd4gabaGaam yraaaadaqadaqaaiaadsgacqaHdpWCdaWgaaWcbaGaamyAaiaadQga aeqaaOGaeyOeI0YaaSaaaeaacqaH9oGBaeaacaaIXaGaey4kaSIaeq yVd4gaaiaadsgacqaHdpWCdaWgaaWcbaGaam4AaiaadUgaaeqaaOGa eqiTdq2aaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaai abgUcaRmaalaaabaGaaGymaaqaaiaadIgaaaWaaSaaaeaacaaIZaaa baGaaGOmaaaadaWcaaqaamaaamaabaGaam4uamaaBaaaleaacaWGRb GaamiBaaqabaGccaWGKbGaeq4Wdm3aaSbaaSqaaiaadUgacaWGSbaa beaaaOGaayzkJiaawQYiaaqaaiaadMfaaaWaaSaaaeaacaaIZaaaba GaaGOmaaaadaWcaaqaaiaadofadaWgaaWcbaGaamyAaiaadQgaaeqa aaGcbaGaamywaaaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8+aaOaaaeaadaWcaaqaaiaaioda aeaacaaIYaaaaiaadofadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaam 4uamaaBaaaleaacaWGPbGaamOAaaqabaaabeaakiabgkHiTiaadMfa caGGOaGafqyTduMbaebadaahaaWcbeqaaiaadchaaaGccaGGPaGaey ypa0JaaGimaaaaaiaawUhaaaaa@F583@

It is sometimes necessary to invert these expressions.  A straightforward but tedious series of index notation manipulations shows that

d σ ij ={ E 1+ν { d ε ij + ν 12ν d ε kk δ ij } 3 2 S ij S ij Y( ε ¯ p )<0 E 1+ν { d ε ij + ν 12ν d ε kk δ ij 3E 3E+2(1+ν)h 3 2 S kl d ε kl Y 3 2 S ij Y } 3 2 S ij S ij Y( ε ¯ p )=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabeo8aZnaaBaaaleaacaWGPb GaamOAaaqabaGccqGH9aqpdaGabaqaauaabeqaceaaaeaadaWcaaqa aiaadweaaeaacaaIXaGaey4kaSIaeqyVd4gaamaacmaabaGaamizai abew7aLnaaBaaaleaacaWGPbGaamOAaaqabaGccqGHRaWkdaWcaaqa aiabe27aUbqaaiaaigdacqGHsislcaaIYaGaeqyVd4gaaiaadsgacq aH1oqzdaWgaaWcbaGaam4AaiaadUgaaeqaaOGaeqiTdq2aaSbaaSqa aiaadMgacaWGQbaabeaaaOGaay5Eaiaaw2haaiaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7daGcaaqaamaalaaabaGaaG4maaqaai aaikdaaaGaam4uamaaBaaaleaacaWGPbGaamOAaaqabaGccaWGtbWa aSbaaSqaaiaadMgacaWGQbaabeaaaeqaaOGaeyOeI0IaamywaiaacI cacuaH1oqzgaqeamaaCaaaleqabaGaamiCaaaakiaacMcacqGH8aap caaIWaaabaWaaSaaaeaacaWGfbaabaGaaGymaiabgUcaRiabe27aUb aadaGadaqaaiaadsgacqaH1oqzdaWgaaWcbaGaamyAaiaadQgaaeqa aOGaey4kaSYaaSaaaeaacqaH9oGBaeaacaaIXaGaeyOeI0IaaGOmai abe27aUbaacaWGKbGaeqyTdu2aaSbaaSqaaiaadUgacaWGRbaabeaa kiabes7aKnaaBaaaleaacaWGPbGaamOAaaqabaGccqGHsisldaWcaa qaaiaaiodacaWGfbaabaGaaG4maiaadweacqGHRaWkcaaIYaGaaiik aiaaigdacqGHRaWkcqaH9oGBcaGGPaGaamiAaaaadaWcaaqaaiaaio daaeaacaaIYaaaamaalaaabaWaaaWaaeaacaWGtbWaaSbaaSqaaiaa dUgacaWGSbaabeaakiaadsgacqaH1oqzdaWgaaWcbaGaam4AaiaadY gaaeqaaaGccaGLPmIaayPkJaaabaGaamywaaaadaWcaaqaaiaaioda aeaacaaIYaaaamaalaaabaGaam4uamaaBaaaleaacaWGPbGaamOAaa qabaaakeaacaWGzbaaaaGaay5Eaiaaw2haaiaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7daGcaaqaamaalaaabaGaaG4maa qaaiaaikdaaaGaam4uamaaBaaaleaacaWGPbGaamOAaaqabaGccaWG tbWaaSbaaSqaaiaadMgacaWGQbaabeaaaeqaaOGaeyOeI0Iaamywai aacIcacuaH1oqzgaqeamaaCaaaleqabaGaamiCaaaakiaacMcacqGH 9aqpcaaIWaaaaaGaay5EaaGaaGPaVdaa@2D43@

 

This constitutive law is the most commonly used model of inelastic deformation.  It has the following properties:

 It will correctly predict the conditions necessary to initiate yield under multiaxial loading

 It will correctly predict the plastic strain rate under an arbitrary multiaxial stress state

 It can model accurately any uniaxial stress MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa8hfGaaa@3723@ strain curve

 

It has the following limitations:

 It is valid only for modest plastic strains (<10%)

 It will not predict creep behavior or strain rate sensitivity

 It does not predict behavior under cyclic loading correctly

 It will not predict plastic strains accurately if the principal axes of stress rotate significantly (more than about 30 degrees) during inelastic deformation

 

Linear Kinematically hardening solid

 

The solid is characterized by its elastic constants E,ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8YjY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyraiaacYcacqaH9oGBaaa@340F@  and by the initial yield stress Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadMfaaaa@3156@  and the strain hardening rate c. Then,

d ε ij =d ε ij e +d ε ij p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabew7aLnaaBaaaleaacaWGPb GaamOAaaqabaGccqGH9aqpcaWGKbGaeqyTdu2aa0baaSqaaiaadMga caWGQbaabaGaamyzaaaakiabgUcaRiaadsgacqaH1oqzdaqhaaWcba GaamyAaiaadQgaaeaacaWGWbaaaaaa@4277@

with

d ε ij e = 1+ν E ( d σ ij ν 1+ν d σ kk δ ij ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabew7aLnaaDaaaleaacaWGPb GaamOAaaqaaiaadwgaaaGccqGH9aqpdaWcaaqaaiaaigdacqGHRaWk cqaH9oGBaeaacaWGfbaaamaabmaabaGaamizaiabeo8aZnaaBaaale aacaWGPbGaamOAaaqabaGccqGHsisldaWcaaqaaiabe27aUbqaaiaa igdacqGHRaWkcqaH9oGBaaGaamizaiabeo8aZnaaBaaaleaacaWGRb Gaam4AaaqabaGccqaH0oazdaWgaaWcbaGaamyAaiaadQgaaeqaaaGc caGLOaGaayzkaaaaaa@505E@

d ε ij p ={ 0 3 2 ( S ij α ij )( S ij α ij ) Y<0 1 c 3 2 ( S kl α kl )d σ kl Y 3 2 ( S ij α ij ) Y 3 2 ( S ij α ij )( S ij α ij ) Y=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabew7aLnaaDaaaleaacaWGPb GaamOAaaqaaiaadchaaaGccqGH9aqpdaGabaqaauaabeqaceaaaeaa caaIWaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7daGcaaqaamaalaaabaGaaG4maaqaaiaaik daaaWaaeWaaeaacaWGtbWaaSbaaSqaaiaadMgacaWGQbaabeaakiab gkHiTiabeg7aHnaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIcaca GLPaaadaqadaqaaiaadofadaWgaaWcbaGaamyAaiaadQgaaeqaaOGa eyOeI0IaeqySde2aaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkai aawMcaaaWcbeaakiabgkHiTiaadMfacqGH8aapcaaIWaaabaWaaSaa aeaacaaIXaaabaGaam4yaaaadaWcaaqaaiaaiodaaeaacaaIYaaaam aalaaabaWaaaWaaeaadaqadaqaaiaadofadaWgaaWcbaGaam4Aaiaa dYgaaeqaaOGaeyOeI0IaeqySde2aaSbaaSqaaiaadUgacaWGSbaabe aaaOGaayjkaiaawMcaaiaadsgacqaHdpWCdaWgaaWcbaGaam4Aaiaa dYgaaeqaaaGccaGLPmIaayPkJaaabaGaamywaaaadaWcaaqaaiaaio daaeaacaaIYaaaamaalaaabaWaaeWaaeaacaWGtbWaaSbaaSqaaiaa dMgacaWGQbaabeaakiabgkHiTiabeg7aHnaaBaaaleaacaWGPbGaam OAaaqabaaakiaawIcacaGLPaaaaeaacaWGzbaaaiaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7da GcaaqaamaalaaabaGaaG4maaqaaiaaikdaaaWaaeWaaeaacaWGtbWa aSbaaSqaaiaadMgacaWGQbaabeaakiabgkHiTiabeg7aHnaaBaaale aacaWGPbGaamOAaaqabaaakiaawIcacaGLPaaadaqadaqaaiaadofa daWgaaWcbaGaamyAaiaadQgaaeqaaOGaeyOeI0IaeqySde2aaSbaaS qaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaaWcbeaakiabgkHi TiaadMfacqGH9aqpcaaIWaaaaaGaay5Eaaaaaa@16EC@

where x ={ xx0 0x0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8XjY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaaWaaeaacaWG4baacaGLPmIaayPkJa Gaeyypa0ZaaiqaaeaafaqabeGabaaabaGaamiEaiaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadIhacq GHLjYScaaIWaaabaGaaGimaiaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaadIhacqGHKjYOcaaIWaaaaa Gaay5Eaaaaaa@5A2D@

Finally, the evolution equation for α ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeg7aHnaaBaaaleaacaWGPbGaamOAaa qabaaaaa@3410@  is

d α ij = 3 2 cd ε ij p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabeg7aHnaaBaaaleaacaWGPb GaamOAaaqabaGccqGH9aqpdaWcaaqaaiaaiodaaeaacaaIYaaaaiaa dogacaWGKbGaeqyTdu2aa0baaSqaaiaadMgacaWGQbaabaGaamiCaa aaaaa@3E70@

 

This constitutive equation is used primarily to model cyclic plastic deformation, or plastic flow under nonproportional loading (where principal axes of stress rotate significantly during plastic flow). It has the following limitations:

 It is valid only for modest plastic strains (<10%)

 It will not predict creep behavior or strain rate sensitivity

 It does not predict the shape of the stress-strain curve accurately

 

 

13.9 Typical values for yield stress of polycrystalline metals

 

Unlike elastic constants, the plastic properties of metals are highly variable, and are also very sensitive to alloying composition and microstructure (which can be influenced by heat treatment and mechanical working).  Consequently, it is impossible to give accurate values for yield stresses or hardening rates for materials.  The table below (again, taken from `Engineering Materials,’ by M.F. Ashby and D.R.H. Jones, Pergamon Press) lists rough values for yield stresses of common materials MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  these may provide a useful guide in preliminary calculations.  If you need accurate data you will have to measure the properties of the materials you plan to use yourself.

Material

Yield Stress

σ Y /MN m 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadMfaaeqaaOGaaGPaVlaaykW7caaMc8Uaai4laiaaykW7 caaMc8UaaGPaVlaad2eacaWGobGaamyBamaaCaaaleqabaGaeyOeI0 IaaGOmaaaaaaa@4730@

Material

Yield Stress

σ Y /MN m 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadMfaaeqaaOGaaGPaVlaaykW7caaMc8Uaai4laiaaykW7 caaMc8UaaGPaVlaad2eacaWGobGaamyBamaaCaaaleqabaGaeyOeI0 IaaGOmaaaaaaa@4730@

Tungsten Carbide

6000

Mild steel

220

Silicon Carbide

10 000

Copper

60

Tungsten

2000

Titanium

180 - 1320

Alumina

5000

Silica glass

7200

Titanium Carbide

4000

Aluminum & alloys

40-200

Silicon Nitride

8000

Polyimides

52 - 90

Nickel

70

Nylon

49 - 87

Iron

50

PMMA

60 - 110

Low alloy steels

500-1980

Polycarbonate

55

Stainless steel

286-500

PVC

45-48

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

13.10 Thin walled tube under combined tension and torsion

 

It is usually difficult to solve boundary value problems for plastically deforming solids, because the stress-strain law is nonlinear, and history dependent.   Finite element calculations can handle both without difficulty.   But it is helpful to solve a few example problems for solids with simple geometries and loading to illustrate how the stress-strain laws work.

 

The figure shows a thin walled tube with cross-sectional area A=2πat MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadgeacqGH9aqpcaaIYaGaeqiWdaNaam yyaiaadshaaaa@368C@  .   It is made from an elastic-plastic solid with elastic constants E,ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadweacaGGSaGaeqyVd4gaaa@339A@  , yield stress Y and hardening slope dY/d ε ¯ p =h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgacaWGzbGaai4laiaadsgacuaH1o qzgaqeamaaCaaaleqabaGaamiCaaaakiabg2da9iaadIgaaaa@38A9@  .   It is loaded by axial force P and torque Q.   Calculate the plastic strain rate in the tube.

 

1.      The stress in the tube is σ zz =P/A σ rθ = σ θr =Q/(aA) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaWG6bGaamOEaa qabaGccqGH9aqpcaWGqbGaai4laiaadgeacaaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqaHdpWCdaWgaa WcbaGaamOCaiabeI7aXbqabaGccqGH9aqpcqaHdpWCdaWgaaWcbaGa eqiUdeNaamOCaaqabaGccqGH9aqpcaWGrbGaai4laiaacIcacaWGHb GaamyqaiaacMcaaaa@557C@  ; all other components zero.

2.      The hydrostatic stress is σ kk /3=P/(3A) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaWGRbGaam4Aaa qabaGccaGGVaGaaG4maiabg2da9iaadcfacaGGVaGaaiikaiaaioda caWGbbGaaiykaaaa@3B1B@  

3.      The deviatoric stresses follow as S zz =2P/(3A) S rr = S θθ =P/(3A) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofadaWgaaWcbaGaamOEaiaadQhaae qaaOGaeyypa0JaaGOmaiaadcfacaGGVaGaaiikaiaaiodacaWGbbGa aiykaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadofada WgaaWcbaGaamOCaiaadkhaaeqaaOGaeyypa0Jaam4uamaaBaaaleaa cqaH4oqCcqaH4oqCaeqaaOGaeyypa0JaeyOeI0Iaamiuaiaac+caca GGOaGaaG4maiaadgeacaGGPaaaaa@51AF@   S rθ = S θr =Q/(aA) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofadaWgaaWcbaGaamOCaiabeI7aXb qabaGccqGH9aqpcaWGtbWaaSbaaSqaaiabeI7aXjaadkhaaeqaaOGa eyypa0Jaamyuaiaac+cacaGGOaGaamyyaiaadgeacaGGPaaaaa@3E78@

4.      The Von-Mises effective stress is therefore

σ e = 3 2 S ij S ij = 3 2 [ ( 2P 3A ) 2 +2 ( P 3A ) 2 +2 ( Q aA ) 2 ] = 1 A P 2 +3 (Q/a) 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaWGLbaabeaaki abg2da9maakaaabaWaaSaaaeaacaaIZaaabaGaaGOmaaaacaWGtbWa aSbaaSqaaiaadMgacaWGQbaabeaakiaadofadaWgaaWcbaGaamyAai aadQgaaeqaaaqabaGccqGH9aqpdaGcaaqaamaalaaabaGaaG4maaqa aiaaikdaaaWaamWaaeaadaqadaqaamaalaaabaGaaGOmaiaadcfaae aacaaIZaGaamyqaaaaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikda aaGccqGHRaWkcaaIYaWaaeWaaeaadaWcaaqaaiaadcfaaeaacaaIZa GaamyqaaaaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqGH RaWkcaaIYaWaaeWaaeaadaWcaaqaaiaadgfaaeaacaWGHbGaamyqaa aaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaakiaawUfacaGL DbaaaSqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaWGbbaaamaaka aabaGaamiuamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaiodacaGG OaGaamyuaiaac+cacaWGHbGaaiykamaaCaaaleqabaGaaGOmaaaaae qaaaaa@5DF3@

5.      We can use the sress-strain rate formulas to calculate the strain rate

 

d ε ij dt ={ 1+ν E ( d σ ij dt ν 1+ν d σ kk dt δ ij ) σ e Y( ε ¯ p )<0 1+ν E ( d σ ij dt ν 1+ν d σ kk dt δ ij )+ 1 h 3 2 S kl d σ kl dt σ e 3 2 S ij σ e σ e Y( ε ¯ p )=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaeqyTdu2aa0baaS qaaiaadMgacaWGQbaabaaaaaGcbaGaamizaiaadshaaaGaeyypa0Za aiqaaeaafaqabeGabaaabaWaaSaaaeaacaaIXaGaey4kaSIaeqyVd4 gabaGaamyraaaadaqadaqaamaalaaabaGaamizaiabeo8aZnaaBaaa leaacaWGPbGaamOAaaqabaaakeaacaWGKbGaamiDaaaacqGHsislda Wcaaqaaiabe27aUbqaaiaaigdacqGHRaWkcqaH9oGBaaWaaSaaaeaa caWGKbGaeq4Wdm3aaSbaaSqaaiaadUgacaWGRbaabeaaaOqaaiaads gacaWG0baaaiabes7aKnaaBaaaleaacaWGPbGaamOAaaqabaaakiaa wIcacaGLPaaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7cqaHdpWCdaWgaaWcbaGaamyzaaqabaGccqGHsislcaWGzb Gaaiikaiqbew7aLzaaraWaaWbaaSqabeaacaWGWbaaaOGaaiykaiab gYda8iaaicdaaeaadaWcaaqaaiaaigdacqGHRaWkcqaH9oGBaeaaca WGfbaaamaabmaabaWaaSaaaeaacaWGKbGaeq4Wdm3aaSbaaSqaaiaa dMgacaWGQbaabeaaaOqaaiaadsgacaWG0baaaiabgkHiTmaalaaaba GaeqyVd4gabaGaaGymaiabgUcaRiabe27aUbaadaWcaaqaaiaadsga cqaHdpWCdaWgaaWcbaGaam4AaiaadUgaaeqaaaGcbaGaamizaiaads haaaGaeqiTdq2aaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaa wMcaaiabgUcaRmaalaaabaGaaGymaaqaaiaadIgaaaWaaSaaaeaaca aIZaaabaGaaGOmaaaadaWcaaqaamaaamaabaGaam4uamaaBaaaleaa caWGRbGaamiBaaqabaGcdaWcaaqaaiaadsgacqaHdpWCdaWgaaWcba Gaam4AaiaadYgaaeqaaaGcbaGaamizaiaadshaaaaacaGLPmIaayPk JaaabaGaeq4Wdm3aaSbaaSqaaiaadwgaaeqaaaaakmaalaaabaGaaG 4maaqaaiaaikdaaaWaaSaaaeaacaWGtbWaaSbaaSqaaiaadMgacaWG QbaabeaaaOqaaiabeo8aZnaaBaaaleaacaWGLbaabeaaaaGccaaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8Uaeq4Wdm3aaSbaaSqaaiaadwgaaeqaaOGaeyOeI0Iaamywai aacIcacuaH1oqzgaqeamaaCaaaleqabaGaamiCaaaakiaacMcacqGH 9aqpcaaIWaaaaaGaay5Eaaaaaa@FC21@

 

The quantity

S kl d σ kl dt = 2P 3 A 2 dP dt +2 Q (aA) 2 dQ dt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaaamaabaGaam4uamaaBaaaleaacaWGRb GaamiBaaqabaGcdaWcaaqaaiaadsgacqaHdpWCdaWgaaWcbaGaam4A aiaadYgaaeqaaaGcbaGaamizaiaadshaaaaacaGLPmIaayPkJaGaey ypa0ZaaaWaaeaadaWcaaqaaiaaikdacaWGqbaabaGaaG4maiaadgea daahaaWcbeqaaiaaikdaaaaaaOWaaSaaaeaacaWGKbGaamiuaaqaai aadsgacaWG0baaaiabgUcaRiaaikdadaWcaaqaaiaadgfaaeaacaGG OaGaamyyaiaadgeacaGGPaWaaWbaaSqabeaacaaIYaaaaaaakmaala aabaGaamizaiaadgfaaeaacaWGKbGaamiDaaaaaiaawMYicaGLQmca aaa@50A6@

 

d ε zz dt ={ 1 EA dP dt σ e Y( ε ¯ p )<0 1 EA dP dt + P Ah P dP dt +3 Q (a) 2 dQ dt [ P 2 +3 (Q/a) 2 ] σ e Y( ε ¯ p )=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaeqyTdu2aa0baaS qaaiaadQhacaWG6baabaaaaaGcbaGaamizaiaadshaaaGaeyypa0Za aiqaaeaafaqabeGabaaabaWaaSaaaeaacaaIXaaabaGaamyraiaadg eaaaWaaSaaaeaacaWGKbGaamiuaaqaaiaadsgacaWG0baaaiaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeq4Wdm3aaSbaaSqaai aadwgaaeqaaOGaeyOeI0IaamywaiaacIcacuaH1oqzgaqeamaaCaaa leqabaGaamiCaaaakiaacMcacqGH8aapcaaIWaaabaWaaSaaaeaaca aIXaaabaGaamyraiaadgeaaaWaaSaaaeaacaWGKbGaamiuaaqaaiaa dsgacaWG0baaaiabgUcaRmaalaaabaGaamiuaaqaaiaadgeacaWGOb aaamaalaaabaWaaaWaaeaacaWGqbWaaSaaaeaacaWGKbGaamiuaaqa aiaadsgacaWG0baaaiabgUcaRiaaiodadaWcaaqaaiaadgfaaeaaca GGOaGaamyyaiaacMcadaahaaWcbeqaaiaaikdaaaaaaOWaaSaaaeaa caWGKbGaamyuaaqaaiaadsgacaWG0baaaaGaayzkJiaawQYiaaqaam aadmaabaGaamiuamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaioda caGGOaGaamyuaiaac+cacaWGHbGaaiykamaaCaaaleqabaGaaGOmaa aaaOGaay5waiaaw2faaaaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeq4Wdm3aaSbaaSqaai aadwgaaeqaaOGaeyOeI0IaamywaiaacIcacuaH1oqzgaqeamaaCaaa leqabaGaamiCaaaakiaacMcacqGH9aqpcaaIWaaaaaGaay5Eaaaaaa@F581@

d ε rr dt = d ε θθ dt ={ ν EA dP dt σ e Y( ε ¯ p )<0 ν EA dP dt P 2Ah P dP dt +3 Q (a) 2 dQ dt [ P 2 +3 (Q/a) 2 ] σ e Y( ε ¯ p )=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaeqyTdu2aa0baaS qaaiaadkhacaWGYbaabaaaaaGcbaGaamizaiaadshaaaGaeyypa0Za aSaaaeaacaWGKbGaeqyTdu2aa0baaSqaaiabeI7aXjabeI7aXbqaaa aaaOqaaiaadsgacaWG0baaaiabg2da9maaceaabaqbaeqabiqaaaqa amaalaaabaGaeyOeI0IaeqyVd4gabaGaamyraiaadgeaaaWaaSaaae aacaWGKbGaamiuaaqaaiaadsgacaWG0baaaiaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8Uaeq4Wdm3aaSbaaSqaaiaadwgaaeqaaO GaeyOeI0IaamywaiaacIcacuaH1oqzgaqeamaaCaaaleqabaGaamiC aaaakiaacMcacqGH8aapcaaIWaaabaWaaSaaaeaacqGHsislcqaH9o GBaeaacaWGfbGaamyqaaaadaWcaaqaaiaadsgacaWGqbaabaGaamiz aiaadshaaaGaeyOeI0YaaSaaaeaacaWGqbaabaGaaGOmaiaadgeaca WGObaaamaalaaabaWaaaWaaeaacaWGqbWaaSaaaeaacaWGKbGaamiu aaqaaiaadsgacaWG0baaaiabgUcaRiaaiodadaWcaaqaaiaadgfaae aacaGGOaGaamyyaiaacMcadaahaaWcbeqaaiaaikdaaaaaaOWaaSaa aeaacaWGKbGaamyuaaqaaiaadsgacaWG0baaaaGaayzkJiaawQYiaa qaamaadmaabaGaamiuamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaa iodacaGGOaGaamyuaiaac+cacaWGHbGaaiykamaaCaaaleqabaGaaG OmaaaaaOGaay5waiaaw2faaaaacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeq4Wdm3aaSbaaS qaaiaadwgaaeqaaOGaeyOeI0IaamywaiaacIcacuaH1oqzgaqeamaa CaaaleqabaGaamiCaaaakiaacMcacqGH9aqpcaaIWaaaaaGaay5Eaa aaaa@0337@

d ε zθ dt = d ε θz dt ={ 1+ν EAa dQ dt σ e Y( ε ¯ p )<0 1+ν EAa dQ dt + 3Q 2Aah P dP dt +3 Q (a) 2 dQ dt [ P 2 +3 (Q/a) 2 ] σ e Y( ε ¯ p )=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaeqyTdu2aa0baaS qaaiaadQhacqaH4oqCaeaaaaaakeaacaWGKbGaamiDaaaacqGH9aqp daWcaaqaaiaadsgacqaH1oqzdaqhaaWcbaGaeqiUdeNaamOEaaqaaa aaaOqaaiaadsgacaWG0baaaiabg2da9maaceaabaqbaeqabiqaaaqa amaalaaabaGaaGymaiabgUcaRiabe27aUbqaaiaadweacaWGbbGaam yyaaaadaWcaaqaaiaadsgacaWGrbaabaGaamizaiaadshaaaGaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqaHdpWCdaWgaaWcba GaamyzaaqabaGccqGHsislcaWGzbGaaiikaiqbew7aLzaaraWaaWba aSqabeaacaWGWbaaaOGaaiykaiabgYda8iaaicdaaeaadaWcaaqaai aaigdacqGHRaWkcqaH9oGBaeaacaWGfbGaamyqaiaadggaaaWaaSaa aeaacaWGKbGaamyuaaqaaiaadsgacaWG0baaaiabgUcaRmaalaaaba GaaG4maiaadgfaaeaacaaIYaGaamyqaiaadggacaWGObaaamaalaaa baWaaaWaaeaacaWGqbWaaSaaaeaacaWGKbGaamiuaaqaaiaadsgaca WG0baaaiabgUcaRiaaiodadaWcaaqaaiaadgfaaeaacaGGOaGaamyy aiaacMcadaahaaWcbeqaaiaaikdaaaaaaOWaaSaaaeaacaWGKbGaam yuaaqaaiaadsgacaWG0baaaaGaayzkJiaawQYiaaqaamaadmaabaGa amiuamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaiodacaGGOaGaam yuaiaac+cacaWGHbGaaiykamaaCaaaleqabaGaaGOmaaaaaOGaay5w aiaaw2faaaaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8Uaeq4Wdm3aaSbaaSqaaiaadwgaaeqa aOGaeyOeI0IaamywaiaacIcacuaH1oqzgaqeamaaCaaaleqabaGaam iCaaaakiaacMcacqGH9aqpcaaIWaaaaaGaay5Eaaaaaa@080E@

 

 

There are some surprising features of these results.   For example, notice that if the tube is first deformed by a force P, and is then twisted (so that dP/dt=0dQ/dt>0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgacaWGqbGaai4laiaadsgacaWG0b Gaeyypa0JaaGimaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaadsgacaWGrbGaai4laiaadsgacaWG0b GaeyOpa4JaaGimaaaa@4A74@  ) the tube will experience an axial plastic stretch before it starts to twist.  This is because the direction of the plastic strain rate is parallel to the deviatoric stress, not the stress rate.     

 

 

 

13.11 Elastic-perfectly plastic hollow sphere subjected to monotonically increasing internal pressure

 

Assume that

 The sphere is stress free before it is loaded

 No body forces act on the sphere

 The sphere has uniform temperature

 The inner surface r=a is subjected to (monotonically increasing) pressure p a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGWbWaaSbaaSqaaiaadggaaeqaaa aa@34CD@

 The outer surface r=b is traction free

 Strains are infinitesimal

 

Solution:

 

(i) Preliminaries:

 The sphere first reaches yield (at r=a) at an internal pressure p a /Y=2(1 a 3 / b 3 )/3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGWbWaaSbaaSqaaiaadggaaeqaaO Gaai4laiaadMfacqGH9aqpcaaIYaGaaiikaiaaigdacqGHsislcaWG HbWaaWbaaSqabeaacaaIZaaaaOGaai4laiaadkgadaahaaWcbeqaai aaiodaaaGccaGGPaGaai4laiaaiodaaaa@4103@

 For pressures in the range 2(1 a 3 / b 3 )/3< p a /Y<2log(b/a) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaaIYaGaaiikaiaaigdacqGHsislca WGHbWaaWbaaSqabeaacaaIZaaaaOGaai4laiaadkgadaahaaWcbeqa aiaaiodaaaGccaGGPaGaai4laiaaiodacqGH8aapcaWGWbWaaSbaaS qaaiaadggaaeqaaOGaai4laiaadMfacqGH8aapcaaIYaGaciiBaiaa c+gacaGGNbGaaiikaiaadkgacaGGVaGaamyyaiaacMcaaaa@496A@  the region between r=a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8sk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGYbGaeyypa0Jaamyyaaaa@35B9@  and r=c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8sk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGYbGaeyypa0Jaam4yaaaa@35BB@  deforms plastically; while the region between c<r<b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGJbGaeyipaWJaamOCaiabgYda8i aadkgaaaa@3794@  remains elastic, where c satisfies the equation p a /Y=2log(c/a)+ 2 3 (1 c 3 / b 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGWbWaaSbaaSqaaiaadggaaeqaaO Gaai4laiaadMfacqGH9aqpcaaIYaGaciiBaiaac+gacaGGNbGaaiik aiaadogacaGGVaGaamyyaiaacMcacqGHRaWkdaWcaaqaaiaaikdaae aacaaIZaaaaiaacIcacaaIXaGaeyOeI0Iaam4yamaaCaaaleqabaGa aG4maaaakiaac+cacaWGIbWaaWbaaSqabeaacaaIZaaaaOGaaiykaa aa@48AA@

 At a pressure p a /Y=2log(b/a) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGWbWaaSbaaSqaaiaadggaaeqaaO Gaai4laiaadMfacqGH9aqpcaaIYaGaciiBaiaac+gacaGGNbGaaiik aiaadkgacaGGVaGaamyyaiaacMcaaaa@3ED3@  the entire cylinder is plastic.  At this point the sphere collapses MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  the displacements become infinitely large.

 

(ii) Solution in the plastic region a<r<c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8sk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGHbGaeyipaWJaamOCaiabgYda8i aadogaaaa@37A3@

u= ( 12ν ) E r{ 2Ylog(r/a) p a } e r + Y( 1ν ) c 3 E r 2 e r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahwhacqGH9aqpdaWcaaqaamaabmaaba GaaGymaiabgkHiTiaaikdacqaH9oGBaiaawIcacaGLPaaaaeaacaWG fbaaaiaadkhadaGadaqaaiaaikdacaWGzbGaciiBaiaac+gacaGGNb GaaiikaiaadkhacaGGVaGaamyyaiaacMcacqGHsislcaWGWbWaaSba aSqaaiaadggaaeqaaaGccaGL7bGaayzFaaGaaCyzamaaBaaaleaaca WGYbaabeaakiabgUcaRmaalaaabaGaamywamaabmaabaGaaGymaiab gkHiTiabe27aUbGaayjkaiaawMcaaiaadogadaahaaWcbeqaaiaaio daaaaakeaacaWGfbGaamOCamaaCaaaleqabaGaaGOmaaaaaaGccaWH LbWaaSbaaSqaaiaadkhaaeqaaaaa@56D9@

σ rr =2Ylog(r/a) p a σ θθ = σ ϕϕ =2Ylog(r/a) p a +Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaWGYbGaamOCaa qabaGccqGH9aqpcaaIYaGaamywaiGacYgacaGGVbGaai4zaiaacIca caWGYbGaai4laiaadggacaGGPaGaeyOeI0IaamiCamaaBaaaleaaca WGHbaabeaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7cqaHdpWCdaWgaaWcbaGaeqiUdeNaeq iUdehabeaakiabg2da9iabeo8aZnaaBaaaleaacqaHvpGzcqaHvpGz aeqaaOGaeyypa0JaaGOmaiaadMfaciGGSbGaai4BaiaacEgacaGGOa GaamOCaiaac+cacaWGHbGaaiykaiabgkHiTiaadchadaWgaaWcbaGa amyyaaqabaGccqGHRaWkcaWGzbaaaa@6A1F@     

(iii) Solution in the elastic region c<r<b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8sk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGJbGaeyipaWJaamOCaiabgYda8i aadkgaaaa@37A4@

u= Y c 3 3E b 3 r 2 { 2( 12ν ) r 3 +( 1+ν ) b 3 } e r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWH1bGaeyypa0ZaaSaaaeaacaWGzb Gaam4yamaaCaaaleqabaGaaG4maaaaaOqaaiaaiodacaWGfbGaamOy amaaCaaaleqabaGaaG4maaaakiaadkhadaahaaWcbeqaaiaaikdaaa aaaOWaaiWaaeaacaaIYaWaaeWaaeaacaaIXaGaeyOeI0IaaGOmaiab e27aUbGaayjkaiaawMcaaiaadkhadaahaaWcbeqaaiaaiodaaaGccq GHRaWkdaqadaqaaiaaigdacqGHRaWkcqaH9oGBaiaawIcacaGLPaaa caWGIbWaaWbaaSqabeaacaaIZaaaaaGccaGL7bGaayzFaaGaaCyzam aaBaaaleaacaWGYbaabeaaaaa@5109@

σ rr = 2Y c 3 3 b 3 ( 1 b 3 r 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaamOCaiaadk haaeqaaOGaeyypa0ZaaSaaaeaacaaIYaGaamywaiaadogadaahaaWc beqaaiaaiodaaaaakeaacaaIZaGaamOyamaaCaaaleqabaGaaG4maa aaaaGcdaqadaqaaiaaigdacqGHsisldaWcaaqaaiaadkgadaahaaWc beqaaiaaiodaaaaakeaacaWGYbWaaWbaaSqabeaacaaIZaaaaaaaaO GaayjkaiaawMcaaaaa@44D8@            σ θθ = σ ϕϕ = 2Y c 3 3 b 3 ( 1+ b 3 2 r 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaeqiUdeNaeq iUdehabeaakiabg2da9iabeo8aZnaaBaaaleaacqaHvpGzcqaHvpGz aeqaaOGaeyypa0ZaaSaaaeaacaaIYaGaamywaiaadogadaahaaWcbe qaaiaaiodaaaaakeaacaaIZaGaamOyamaaCaaaleqabaGaaG4maaaa aaGcdaqadaqaaiaaigdacqGHRaWkdaWcaaqaaiaadkgadaahaaWcbe qaaiaaiodaaaaakeaacaaIYaGaamOCamaaCaaaleqabaGaaG4maaaa aaaakiaawIcacaGLPaaaaaa@4D96@

These results are plotted in the figures below.

 

  

(a)                                                   (b)                                              (c)

(a) Stress and (b) displacement distributions for a pressurized elastic-perfectly plastic spherical shell; and (c) Displacement at r=a as a function of pressure. Displacements are shown for ν=0.3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8sk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH9oGBcqGH9aqpcaaIWaGaaiOlai aaiodaaaa@37BD@

 

 

 

 

Derivation: By substituting the stresses for the elastic solution given in 4.1.4 into the Von-Mises yield criterion, we see that a pressurized elastic sphere first reaches yield at r=a. If the pressure is increased beyond yield we anticipate that a region a<r<c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadggacqGH8aapcaWGYbGaeyipaWJaam 4yaaaa@3545@  will deform plastically, while a region c<r<b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadogacqGH8aapcaWGYbGaeyipaWJaam Oyaaaa@3546@  remains elastic. We must find separate solutions in the plastic and elastic regimes.

 

In the plastic regime a<r<c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadggacqGH8aapcaWGYbGaeyipaWJaam 4yaaaa@3545@

(i) We anticipate that σ rr <0 σ θθ = σ ϕϕ >0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaWGYbGaamOCaa qabaGccqGH8aapcaaIWaGaaGPaVlaaykW7caaMc8Uaeq4Wdm3aaSba aSqaaiabeI7aXjabeI7aXbqabaGccqGH9aqpcqaHdpWCdaWgaaWcba Gaeqy1dyMaeqy1dygabeaakiabg6da+iaaicdaaaa@4874@ . The yield criterion then gives σ θθ σ rr =Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacqaH4oqCcqaH4o qCaeqaaOGaeyOeI0Iaeq4Wdm3aaSbaaSqaaiaadkhacaWGYbaabeaa kiabg2da9iaadMfaaaa@3C95@ .

(ii) Substituting this result into the equilibrium equation given in Sect 4.2.2 shows that

d σ rr dr + 1 r ( 2 σ rr σ θθ σ ϕϕ )=0 d σ rr dr 2 Y r =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWcaaqaaiaadsgacqaHdpWCdaWgaa WcbaGaamOCaiaadkhaaeqaaaGcbaGaamizaiaadkhaaaGaey4kaSYa aSaaaeaacaaIXaaabaGaamOCaaaadaqadaqaaiaaikdacqaHdpWCda WgaaWcbaGaamOCaiaadkhaaeqaaOGaeyOeI0Iaeq4Wdm3aaSbaaSqa aiabeI7aXjabeI7aXbqabaGccqGHsislcqaHdpWCdaWgaaWcbaGaeq y1dyMaeqy1dygabeaaaOGaayjkaiaawMcaaiaaykW7cqGH9aqpcaaI WaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7cqGHshI3caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8+aaSaaaeaacaWGKbGaeq4Wdm3aaSbaaS qaaiaadkhacaWGYbaabeaaaOqaaiaadsgacaWGYbaaaiabgkHiTiaa ikdadaWcaaqaaiaadMfaaeaacaWGYbaaaiabg2da9iaaicdaaaa@7C99@

(iii) Integrating, and using the boundary condition σ rr = p a r=a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaWGYbGaamOCaa qabaGccqGH9aqpcqGHsislcaWGWbWaaSbaaSqaaiaadggaaeqaaOGa aGPaVlaaykW7caWGYbGaeyypa0Jaamyyaaaa@3E5C@  together with the yield condition (i) gives

  σ rr =2Ylog(r/a) p a σ θθ = σ ϕϕ =2Ylog(r/a) p a +Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaWGYbGaamOCaa qabaGccqGH9aqpcaaIYaGaamywaiGacYgacaGGVbGaai4zaiaacIca caWGYbGaai4laiaadggacaGGPaGaeyOeI0IaamiCamaaBaaaleaaca WGHbaabeaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7cqaHdpWCdaWgaaWcbaGaeqiUdeNaeq iUdehabeaakiabg2da9iabeo8aZnaaBaaaleaacqaHvpGzcqaHvpGz aeqaaOGaeyypa0JaaGOmaiaadMfaciGGSbGaai4BaiaacEgacaGGOa GaamOCaiaac+cacaWGHbGaaiykaiabgkHiTiaadchadaWgaaWcbaGa amyyaaqabaGccqGHRaWkcaWGzbaaaa@6A1F@

(iv) Since the pressure is monotonically increasing, the incremental stress-strain relations for the elastic-plastic region given in 4.2.2 can be integrated. The elastic strains follow as

ε rr e =( σ rr 2ν σ θθ )/E ε ϕϕ e = ε θθ e =( (1ν) σ θθ ν σ rr )/E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabew7aLnaaDaaaleaacaWGYbGaamOCaa qaaiaadwgaaaGccqGH9aqpdaqadaqaaiabeo8aZnaaBaaaleaacaWG YbGaamOCaaqabaGccqGHsislcaaIYaGaeqyVd4Maeq4Wdm3aaSbaaS qaaiabeI7aXjabeI7aXbqabaaakiaawIcacaGLPaaacaGGVaGaamyr aiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeqyTdu2aa0baaSqaai abew9aMjabew9aMbqaaiaadwgaaaGccqGH9aqpcaaMc8UaeqyTdu2a a0baaSqaaiabeI7aXjabeI7aXbqaaiaadwgaaaGccqGH9aqpdaqada qaaiaacIcacaaIXaGaeyOeI0IaeqyVd4Maaiykaiabeo8aZnaaBaaa leaacqaH4oqCcqaH4oqCaeqaaOGaeyOeI0IaeqyVd4Maeq4Wdm3aaS baaSqaaiaadkhacaWGYbaabeaaaOGaayjkaiaawMcaaiaac+cacaWG fbaaaa@7161@

(v) The plastic strains satisfy ε rr p +2 ε θθ p =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabew7aLnaaDaaaleaacaWGYbGaamOCaa qaaiaadchaaaGccqGHRaWkcaaIYaGaeqyTdu2aa0baaSqaaiabeI7a XjabeI7aXbqaaiaadchaaaGccqGH9aqpcaaIWaaaaa@3EC6@ .  Consequently, using the strain partition formula, the results of (iv), and the strain-displacement relation shows that

ε rr +2 ε θθ = ε rr e +2 ε θθ e = (12ν) E ( σ rr +2 σ θθ ) du dr + 2u r = 1 r 2 d dr ( r 2 u )= (12ν) E ( 6Ylog(r/a)3 p a +2Y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaGaeqyTdu2aaSbaaSqaaiaadkhaca WGYbaabeaakiabgUcaRiaaikdacqaH1oqzdaWgaaWcbaGaeqiUdeNa eqiUdehabeaakiabg2da9iabew7aLnaaDaaaleaacaWGYbGaamOCaa qaaiaadwgaaaGccqGHRaWkcaaIYaGaeqyTdu2aa0baaSqaaiabeI7a XjabeI7aXbqaaiaadwgaaaGccqGH9aqpdaWcaaqaaiaacIcacaaIXa GaeyOeI0IaaGOmaiabe27aUjaacMcaaeaacaWGfbaaamaabmaabaGa eq4Wdm3aaSbaaSqaaiaadkhacaWGYbaabeaakiabgUcaRiaaikdacq aHdpWCdaWgaaWcbaGaeqiUdeNaeqiUdehabeaaaOGaayjkaiaawMca aiaaykW7aeaacaaMc8UaeyO0H49aaSaaaeaacaWGKbGaamyDaaqaai aadsgacaWGYbaaaiabgUcaRmaalaaabaGaaGOmaiaadwhaaeaacaWG Ybaaaiabg2da9maalaaabaGaaGymaaqaaiaadkhadaahaaWcbeqaai aaikdaaaaaaOWaaSaaaeaacaWGKbaabaGaamizaiaadkhaaaWaaeWa aeaacaWGYbWaaWbaaSqabeaacaaIYaaaaOGaamyDaaGaayjkaiaawM caaiabg2da9maalaaabaGaaiikaiaaigdacqGHsislcaaIYaGaeqyV d4MaaiykaaqaaiaadweaaaWaaeWaaeaacaaI2aGaamywaiGacYgaca GGVbGaai4zaiaacIcacaWGYbGaai4laiaadggacaGGPaGaeyOeI0Ia aG4maiaadchadaWgaaWcbaGaamyyaaqabaGccqGHRaWkcaaIYaGaam ywaaGaayjkaiaawMcaaaaaaa@8BC9@

(vi) Integrating gives

u= ( 12ν ) E r{ 2Ylog(r/a) p a }+C/ r 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwhacqGH9aqpdaWcaaqaamaabmaaba GaaGymaiabgkHiTiaaikdacqaH9oGBaiaawIcacaGLPaaaaeaacaWG fbaaaiaadkhadaGadaqaaiaaikdacaWGzbGaciiBaiaac+gacaGGNb GaaiikaiaadkhacaGGVaGaamyyaiaacMcacqGHsislcaWGWbWaaSba aSqaaiaadggaaeqaaaGccaGL7bGaayzFaaGaey4kaSIaam4qaiaac+ cacaWGYbWaaWbaaSqabeaacaaIYaaaaaaa@4B9D@

where C is a constant of integration

(vii) The constant of integration can be found by noting that the radial displacements in the elastic and plastic regimes must be equal at r=c.  Using the expression for the elastic displacement field below and solving for C gives

C= 3 2 ( 1ν ) c 3 b 3 E( b 3 c 3 ) { p a 2Ylog(c/a) } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGdbGaeyypa0ZaaSaaaeaacaaIZa aabaGaaGOmaaaadaWcaaqaamaabmaabaGaaGymaiabgkHiTiabe27a UbGaayjkaiaawMcaaiaadogadaahaaWcbeqaaiaaiodaaaGccaWGIb WaaWbaaSqabeaacaaIZaaaaaGcbaGaamyraiaacIcacaWGIbWaaWba aSqabeaacaaIZaaaaOGaeyOeI0Iaam4yamaaCaaaleqabaGaaG4maa aakiaacMcaaaWaaiWaaeaacaWGWbWaaSbaaSqaaiaadggaaeqaaOGa eyOeI0IaaGOmaiaadMfaciGGSbGaai4BaiaacEgacaGGOaGaam4yai aac+cacaWGHbGaaiykaaGaay5Eaiaaw2haaaaa@5307@

This result can be simplified by noting that p a 2Ylog(c/a)=2Y(1 c 3 / b 3 )/3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGWbWaaSbaaSqaaiaadggaaeqaaO GaeyOeI0IaaGOmaiaadMfaciGGSbGaai4BaiaacEgacaGGOaGaam4y aiaac+cacaWGHbGaaiykaiabg2da9iaaikdacaWGzbGaaiikaiaaig dacqGHsislcaWGJbWaaWbaaSqabeaacaaIZaaaaOGaai4laiaadkga daahaaWcbeqaaiaaiodaaaGccaGGPaGaai4laiaaiodaaaa@4983@  from the expression for the location of the elastic-plastic boundary given below.

 

 

 

In the elastic regime

The solution can be found directly from the solution to the internally pressurized elastic sphere given in Sect 4.1.4.  From step (iii) in the solution for the plastic regime we see that the radial pressure at r=c is p c = σ rr = p a 2Ylog(c/a) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadchadaWgaaWcbaGaam4yaaqabaGccq GH9aqpcqGHsislcqaHdpWCdaWgaaWcbaGaamOCaiaadkhaaeqaaOGa eyypa0JaamiCamaaBaaaleaacaWGHbaabeaakiabgkHiTiaaikdaca WGzbGaciiBaiaac+gacaGGNbGaaiikaiaadogacaGGVaGaamyyaiaa cMcaaaa@449D@ . We can simplify the solution by noting p a 2Ylog(c/a)=2Y(1 c 3 / b 3 )/3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGWbWaaSbaaSqaaiaadggaaeqaaO GaeyOeI0IaaGOmaiaadMfaciGGSbGaai4BaiaacEgacaGGOaGaam4y aiaac+cacaWGHbGaaiykaiabg2da9iaaikdacaWGzbGaaiikaiaaig dacqGHsislcaWGJbWaaWbaaSqabeaacaaIZaaaaOGaai4laiaadkga daahaaWcbeqaaiaaiodaaaGccaGGPaGaai4laiaaiodaaaa@4983@  from the expression for the location of the elastic-plastic boundary.   Substituting into the expressions for stress and displacement shows that

σ rr = p c c 3 ( b 3 c 3 ) ( 1 b 3 r 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaamOCaiaadk haaeqaaOGaeyypa0ZaaSaaaeaacaWGWbWaaSbaaSqaaiaadogaaeqa aOGaam4yamaaCaaaleqabaGaaG4maaaaaOqaamaabmaabaGaamOyam aaCaaaleqabaGaaG4maaaakiabgkHiTiaadogadaahaaWcbeqaaiaa iodaaaaakiaawIcacaGLPaaaaaWaaeWaaeaacaaIXaGaeyOeI0YaaS aaaeaacaWGIbWaaWbaaSqabeaacaaIZaaaaaGcbaGaamOCamaaCaaa leqabaGaaG4maaaaaaaakiaawIcacaGLPaaaaaa@48E6@            σ θθ = σ ϕϕ = p c c 3 ( b 3 c 3 ) ( 1+ b 3 2 r 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaeqiUdeNaeq iUdehabeaakiabg2da9iabeo8aZnaaBaaaleaacqaHvpGzcqaHvpGz aeqaaOGaeyypa0ZaaSaaaeaacaWGWbWaaSbaaSqaaiaadogaaeqaaO Gaam4yamaaCaaaleqabaGaaG4maaaaaOqaamaabmaabaGaamOyamaa CaaaleqabaGaaG4maaaakiabgkHiTiaadogadaahaaWcbeqaaiaaio daaaaakiaawIcacaGLPaaaaaWaaeWaaeaacaaIXaGaey4kaSYaaSaa aeaacaWGIbWaaWbaaSqabeaacaaIZaaaaaGcbaGaaGOmaiaadkhada ahaaWcbeqaaiaaiodaaaaaaaGccaGLOaGaayzkaaaaaa@51A4@

u= p c c 3 2E( b 3 c 3 ) r 2 { 2( 12ν ) r 3 +( 1+ν ) b 3 } e r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWH1bGaeyypa0ZaaSaaaeaacaWGWb WaaSbaaSqaaiaadogaaeqaaOGaam4yamaaCaaaleqabaGaaG4maaaa aOqaaiaaikdacaWGfbWaaeWaaeaacaWGIbWaaWbaaSqabeaacaaIZa aaaOGaeyOeI0Iaam4yamaaCaaaleqabaGaaG4maaaaaOGaayjkaiaa wMcaaiaadkhadaahaaWcbeqaaiaaikdaaaaaaOWaaiWaaeaacaaIYa WaaeWaaeaacaaIXaGaeyOeI0IaaGOmaiabe27aUbGaayjkaiaawMca aiaadkhadaahaaWcbeqaaiaaiodaaaGccqGHRaWkdaqadaqaaiaaig dacqGHRaWkcqaH9oGBaiaawIcacaGLPaaacaWGIbWaaWbaaSqabeaa caaIZaaaaaGccaGL7bGaayzFaaGaaCyzamaaBaaaleaacaWGYbaabe aaaaa@568F@

 

 

 

Location of the elastic-plastic boundary

Finally, the elastic-platsic boundary is located by the condition that the stress in the elastic region must just reach yield at r=c (so there is a smooth transition into the plastic region).  The yield condition is σ θθ σ rr =Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacqaH4oqCcqaH4o qCaeqaaOGaeyOeI0Iaeq4Wdm3aaSbaaSqaaiaadkhacaWGYbaabeaa kiabg2da9iaadMfaaaa@3C95@ , so substituting the expressions for stress in the elastic region and simplifying yields

σ θθ σ rr = 3( p a 2Ylog(c/a) ) b 3 2( b 3 c 3 ) =Y p a Y =2log(c/a)+ 2 3 (1 c 3 / b 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaeqiUdeNaeq iUdehabeaakiabgkHiTiabeo8aZnaaBaaaleaacaWGYbGaamOCaaqa baGccqGH9aqpdaWcaaqaaiaaiodadaqadaqaaiaadchadaWgaaWcba GaamyyaaqabaGccqGHsislcaaIYaGaamywaiGacYgacaGGVbGaai4z aiaacIcacaWGJbGaai4laiaadggacaGGPaaacaGLOaGaayzkaaGaam OyamaaCaaaleqabaGaaG4maaaaaOqaaiaaikdadaqadaqaaiaadkga daahaaWcbeqaaiaaiodaaaGccqGHsislcaWGJbWaaWbaaSqabeaaca aIZaaaaaGccaGLOaGaayzkaaaaaiabg2da9iaadMfacaaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 Uaeyi1HSTaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7daWcaaqaaiaadchadaWgaaWcbaGaamyyaaqabaaakeaaca WGzbaaaiabg2da9iaaikdaciGGSbGaai4BaiaacEgacaGGOaGaam4y aiaac+cacaWGHbGaaiykaiabgUcaRmaalaaabaGaaGOmaaqaaiaaio daaaGaaiikaiaaigdacqGHsislcaWGJbWaaWbaaSqabeaacaaIZaaa aOGaai4laiaadkgadaahaaWcbeqaaiaaiodaaaGccaGGPaaaaa@89A8@

If p a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8sk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGWbWaaSbaaSqaaiaadggaaeqaaa aa@34DD@ , Y, a and b are specified this equation can be solved (numerically) for c.  For graphing purposes it is preferable to choose c and then calculate the corresponding value of p a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8sk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGWbWaaSbaaSqaaiaadggaaeqaaa aa@34DD@