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1.  Starting with the local version of the first law of thermodynamics 
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and using the mass conservation equation 

 

derive the statement of the first law of thermodynamics for a control volume 
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Start with the local version of the first law and integrate over a fixed spatial volume 

i
ij ij

iconst

q
D q

t y


 




  

 x

 

Note that  
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recalling mass conservation 
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we see that 
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Next 
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Then 
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Use the momentum balance equation 
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which gives 
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Next, observe that 
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from mass conservation. Substituting back, we have that 
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Integrating this result over a fixed spatial volume, and then applying the divergence theorem yields the 

result stated. 
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2. Idealize the air above the earth’s surface as an ideal gas, with temperature distribution 0 3y    , 

where 3y  is the height above the earth’s surface, 0  is the temperature at the earth’s surface, and   is a 

constant.    

 

(a) Assuming the air is at rest, write down the simplified versions of the momentum balance equation 
and the constitutive equations for the air 

 

Assuming the 3y  direction is vertical, the linear momentum balance equation reduces to 
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The constitutive equations are 
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(b) Compute the pressure and density distributions as a function of height above the surface, in terms 

of the pressure 0p  at the earth’s surface.    What happens in the limit 0  ? 

 

Substituting for the density, the pressure equation reduces to 
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The density follows as  
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The 0   limit is not obvious by looking at this formula but it can easily be computed by 

solving the differential equation again, giving 
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3. Show that the energy equation for a compressible, inviscid fluid flow can be expressed in the form 
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where /h p    is the specific enthalpy, and p is the pressure. 

 

 

The energy equation is  
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The stress is ijp  and so 
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Where we have used mass conservation.  Therefore 
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4. The incompressible Navier-Stokes equations are sometimes re-written in so-called ‘Impetus-Gage’ 

form.  This is done by introducing an arbitrary scalar field  (called the ‘gage’ and then defining a vector 

field m (called the ‘impetus’) as 
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With these definitions, show that the governing equations for m (mass conservation and the 
incompressible Navier-Stokes equation) can be expressed as 
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where : /i ib y     is the body force potential (The point of doing this is that since   is arbitrary, it 

can be chosen to satisfy any auxiliary equation that simplifies the governing equations for a particular 
example.   For example, one could choose  
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which reduces the governing equation for m to a very simple form – especially for ideal fluids) 

The incompressible Navier-Stokes equation is 
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We have that 
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Substituting into the Navier-Stokes eq gives 
2
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5. The figure shows a pressurized soda can on a cart.  The internal 

pressure above the fluid is p . A hole with cross-sectional area A is 
punched in the side of the can.  Calculate the instantaneous 

acceleration of the cart, in terms of the pressure p, the surrounding 

atmospheric pressure ap , and the combined mass m of the cart, can 

and fluid.  Gravity can be neglected.  You can assume that the cart is 
at rest if you wish, but the instantaneous acceleration is actually 

independent of the velocity. 

 

 

 

Consider the control volume shown in the figure.  Linear 
momentum balance gives 
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Applying Bernoulli along the streamline shown in red gives 
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6. The flow surrounding a rigid sphere (with radius a) that is at the 

origin at time t=0 and moves steadily without rotation with velocity 

iV  can be computed from the following potential 
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a. Calculate the velocity field 
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b. Verify that the velocity field satisfies the correct boundary conditions on the surface of the 

sphere. 

 

The boundary condition is 
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c. Calculate the pressure distribution (neglect gravity) 

 
Using the Bernoulli equation: 
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d. Hence, compute an expression for the distribution of traction acting on the surface of the 

sphere. 
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e. Determine the drag force acting on the sphere. 

 

The drag is zero by symmetry.   This is not surprising – in an ideal fluid there is no 
dissipation.   The solution is not very realistic, however, because it assumes that the flow does 

not separate from the surface of the sphere…. 
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7. Consider a solid object (e.g. the sphere in the preceding problem) that moves through an ideal fluid 

with velocity ( )iV t  (not necessarily constant).    The motion of the solid induces some velocity field iv  in 

the fluid, which can be calculated from a flow potential   in the usual way.   Show that the total kinetic 

energy of the fluid can be computed from 
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where   is the flow potential, S is the surface of the solid object, and in  is the outward normal to the 

solid surface.   You will need to use the governing equation for the flow potential and the divergence 

theorem…  You will also need to assume something about the behavior of the velocity field at infinity. 
 

The kinetic energy is 
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Substituting for the velocity in terms of the flow potential 
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where R  denotes some boundary very far away from the solid, and im  is the outward normal to the 

fluid surface..  As long as the flow potential decays faster than 1/R at infinity, the contribution from the 

second integral must vanish. In addition,  i im n   This proves the statement. 

Hence, calculate the KE of the fluid surrounding a sphere moving with instantaneous velocity ( )iV t .  Find 

an expression for the acceleration of a sphere with density s  immersed in an ideal fluid (the buoyancy 

force can be treated without derivations….) 
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For the sphere,  
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This is the same integral that came up in HW3.   It is nonzero only if i k , and for this case the integral 

must be the same regardless of whether 1,2,i k  or 3.   We can just look up the solution…  4 / 3ij   

We thus get 
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Where W is the weight of fluid displaced by the sphere.    

[2 POINTS] 

 

The buoyancy force on the sphere is BF mg W   and the rate of work done by this force must equal the 

rate of change of potential energy of the system, which is  
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