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1.  Experiments show that rubber-like materials have specific internal energy ( )  and heat capacity ( )c   

that are both essentially independent of strain C 

 

(a) Show that the heat capacity of an elastic material (regardless of the form of  ) is related to the 

specific entropy by 

s
c 







 

 

(b) Hence, show that the entropy for rubber-like materials must have the separable form 

( , ) ( ) ( )s g h  C C  

 

 

(c) As a specific example, consider an incompressible, isotropic material of this kind, for which g is only 

a function of 1 kkI B  with 2/3/ij ijB B J    Show that Cauchy stress in such a material is given by 
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(d) Consider the simple shear deformation shown in the 

figure.   Show that the shear stress in the solid is related to the 

shear strain tan   by 
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(The generalized shear modulus must satisfy 0  ) 

 

 

(e) Show that the uniaxial Cauchy stress-strain response of the material is given by  
2

11 ( 1/ )      

(the solid is loaded in uniaxial tension parallel to 1e , and /l L   is the principal stretch parallel to the 

loading axis, with l the deformed and L the underformed length of the bar, respectively) 

 

(f) Suppose that a bar of this rubber-like solid is loaded in uniaxial tension at a constant stress.  How does 

the length of the bar change when its temperature is increased?    
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(g) Suppose that the bar is stretched quasi-statically at constant temperature, with normalized extension 

rate 
1 dl

L dt
   (neglect body forces).  Show that the heat flow per unit volume into the bar is  
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(i.e. when stretched, the bar gives off heat) 

 

 

 

2. Derive the stress-strain relations for an 

incompressible, Neo-Hookean material 

subjected to 

(a) Uniaxial tension 

(b) Equibiaxial tension 

(c) Pure shear 

Derive expressions for the Cauchy stress, 

the Nominal stress, and the Material stress 

tensors (the solutions for nominal stress are 

listed in the notes).  You should use the 

following procedure: (i) assume that the 

specimen experiences the length changes 

listed in the table in the notes ; (ii) use the stress-stretch relations to compute the Cauchy stress, 

leaving the hydrostatic part of the stress p as an unknown; (iii) Determine the hydrostatic stress from 

the boundary conditions (e.g. for uniaxial tensile parallel to 1e  you know 22 33 0   ; for 

equibiaxial tension or pure shear in the 1 2,e e  plane you know that 33 0  ) 

 

 

3. In a model experiment intended to duplicate the propulsion mechanism 

of the lysteria bacterium, a spherical bead with radius a is coated with an  

enzyme known as an “Arp2/3 activator.”  When suspended in a solution 

of actin, the enzyme causes the actin to polymerize at the surface of the 

bead. The polymerization reaction causes a spherical gel of a dense actin 

network to form around the bead.    New gel is continuously formed at 

the bead/gel interface, forcing the rest of the gel to expand radially 

around the bead. The actin gel is a long-chain polymer and consequently 

can be idealized as a rubber-like incompressible neo-Hookean material. 

Experiments show that after reaching a critical radius the actin gel loses 

spherical symmetry and occasionally will fracture.  Stresses in the actin 

network are believed to drive both processes.   In this problem you will calculate the stress state in the 

growing, spherical, actin gel. 

(a) Note that this is an unusual boundary value problem in solid mechanics, because a compatible 

reference configuration cannot be identified for the solid.  Nevertheless, it is possible to write down a 

deformation gradient field that characterizes the change in shape of infinitesimal volume elements in 

the gel.     To this end: (i) write down the length of a circumferential line at the surface of the bead; 

(ii) write down the length of a circumferential line at radius r in the gel; (iii) use these results, 

together with the incompressibility condition, to write down the deformation gradient characterizing 

the shape change of a material element that has been displaced from r=a to a general position r.  

Assume that the bead is rigid, and that the deformation is spherically symmetric. 
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(b) Suppose that new actin polymer is generated at volumetric rate V .  Use the incompressibility 

condition to write down the velocity field in the actin gel in terms of V , a and r (think about the 

volume of material crossing a radial line per unit time) 

 

(c) Calculate the velocity gradient v  in the gel (i) by direct differentiation of (b) and (ii) by using 

the results of (a).  Show that the results are consistent. 

 

(d) Calculate the components of the left Cauchy-Green deformation tensor field and hence write down an 

expression for the Cauchy stress field in the solid, in terms of an indeterminate hydrostatic pressure. 

 

(e) Use the equilibrium equations and boundary condition to calculate the full Cauchy stress distribution 

in the bead.  Assume that the outer surface of the gel (at r=b) is traction free. 

 

 

4. A compressible, neo-Hookean solid has a stress-right C-G strain relation given by 
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Suppose that a solid consisting of such a material is first subjected to a deformation characterized by 
0 0

0,ij ijF J B , inducing a stress 0
ij .   This deformation maps a material particle at position iX  in the 

reference configuration to position iy  in the deformed solid.   The solid is then subjected to a further 

small deformation that induces an additional displacement distribution iu  in the material.   Let 
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denote the increment of infinitesimal strain associated with this displacement, and expand the stress as a 

Taylor series in strain as 
0 2( )ij ij ijkl kl klC         

Show that the tangent modulus for this deformation is 
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(Hint: note, eg, that the Jacobian after the incremental deformation can be approximated as 
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5. A solid, spherical nuclear fuel pellet with outer radius a  is subjected to a uniform internal distribution 

of heat due to a nuclear reaction. The heating induces a steady-state temperature field 
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where 0T  and aT  are the temperatures at the center and outer surface of the pellet, respectively.  Assume 

that the pellet can be idealized as a linear elastic solid with Young’s modulus E , Poisson’s ratio   and 

thermal expansion coefficient  .  Calculate the distribution of stress in the pellet. 

 


