EN2210: Continuum Mechanics

Homework 3: Kinematics
Solutions

School of Engineering
Brown University

1. The infinitesimal strain field in a long cylinder containing a hole at its center is given by
831=—bX2 /r2 £32 =le/r2 I'=ﬂX12+X§
(@  Show that the strain field satisfies the equations of compatibility.

The following compatibility conditions are not trivially satisfied:
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We can check these:
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[2 POINTS]

(b)  Show that the strain field is consistent with a displacement field of the form uz =&, where

6=2btan"! Xo I % Note that although the strain field is compatible, the displacement field is

multiple valued —i.e. the displacements are not equal at 8 =2z and 6 =0, which supposedly

represent the same point in the solid. Of course, displacement fields like this do exist in solids —
they are caused by dislocations in a crystal.
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2. Calculate the displacement field that generates the following 3D infinitesimal strain field
gij = (1+ V)(kaké‘ij + 2Xin ) — (3—1/)5”
(it is easier to do this using the method of integrating strain components than the formal path integral)

We have that
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The three shear strain equations yield
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(this assumes a-priori that the unknown functions describe a rigid rotation)

Simplifying gives
Ui = (1+ V)(Xka)Xi - (3—V)Xi +aj+ Sijk @j Xk
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Alternatively if you don’t want to assume the unknown functions of integration are a rigid rotation:
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Continuing this argument yields the rigid motion as before....

3. A rubber band has initial length L. One end of the band is held fixed. For time t>0 the other end is
pulled at constant speed vy. Following the usual convention, let x denote position in the reference

configuration, and let y denote position in the deformed configuration. Assume one dimensional
deformation.
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3.1 Write down the position y of a material particle as a function of its initial position x and time t.
y= L+ Vot X
L

[1 POINT]
3.2 Hence, determine the velocity distribution as both a function of x and a function of y.
_dlx_vox __Voy
dtL L L+t
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3.3 Find the deformation gradient (you only need to state the one nonzero component)

E- L+V0t
L
[L POINT]
3.4 Find the velocity gradient
v__Vo
dy L+vpt
[1 POINT]

3.5 Suppose that a fly walks along the rubber band with speed w relative to the band. Calculate the
acceleration of the fly as a function of time and other relevant variables.
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3.6 Suppose that the fly is at x=y=0 at time t=0. Find how long it takes for the fly to walk to the other
end of the rubber band, in terms of L, vy and w. It is easiest to do this by calculating dx /dt for the fly.

y= F11X = (;—il = Fllx + Fll)'(
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Also as a check, we see that

y=Fx= (1+ V—Ot)W—LIog(1+ Vot /L)
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4. A single crystal deforms by shearing on a single active slip  Undeformed Deformed
system as illustrated in the figure. The crystal is loaded so that
the slip direction s and normal to the slip plane m maintaina ™M
constant direction during the deformation S
(@) Show that the deformation gradient can be expressed
in terms of the components of the slip direction s and

the normal to the slip plane m as F; =dj; +ysim;

m tany

where y denotes the shear, as illustrated in the figure.
(b) Suppose shearing proceeds at some rate y . At the instant when y =0, calculate (i) the velocity

gradient tensor; (ii) the stretch rate tensor and (iii) the spin tensor associated with the
deformation.

(c) Find an expression for the stretch rate and angular velocity of a material fiber parallel to a unit
vector n in the deformed solid, in terms of y,s,m .

(@) A material fiber dx in the undeformed crystal becomes dy =dx+ ysdx-m = (I +75® m) -dx
This gives the deformation gradient.

[1 POINT]
(b)
L=FF1=js®m
The velocity gradient is D =sym(L) = 7%(5 ®@m+m®s)
W = skew(L) = 7%(3 ®M-m®s)
[3 POINTS]

(c) We can write

d, dl_ .dn
aInzanJrIE#/S(m'n)'

= S nm-n)
:IZ—?:;}s(m-n)l—;}(s-n)(m-n)ln:7|(m'n)(5—(5'n)n)

We know that
dn dn

—=0oxn=>nxoxn=-(N-0)n=nx—
dt dt
= @ =y(m-n)(nxs)

where we have noted that the angular velocity must be orthogonal to n.
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5. Derive the identities relating accelerations to velocity gradient, stretch rate and vorticity

a; el li(v Vi )+ .
i dt 2 dy; kVk ijVj
ayj ot X=const Yk
For the first identity notethat
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[2 POINTS]

For the second, start with the first identity and recall that the vorticity vectpr is half the dual vector of W
SO

Vi
e
dt y 2 dy;
We can take the curl of this expression (recall that the curl of a gradient is zero)
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€ P o 0 N + € Eplm @1V,
ijk ayj 8y dt ijk & ayj kim @1Vm
0 0OVg
=€ijk = &y; d — | t(Gi6jm - 5|m5“)6yj @V
y
2 N +i(inj)—i(iji)
" oy dt| oy %j
Ow;| | Ow; v a“’J Vi
=—H AVt OV 0
dt y J ayJ ayJ ayJ
Ow; Np 0w oy
= — Vl___
dtly "oyj oy O

Recall that the divergence of a curl is zero, and note also Lo = (D + W)o =D , which gives the

required answer.
[5 POINTS]



6. Show that D=F T JE -1

.
E=%(FFT )= d'tz 1[dF F+FTd—FJ

dt dt
T dF’ LOF
D= sym(—F )_ 4 th

[2 POINTS]

7. Let n be a unit vector parallel to infinitesimal material fiber in a deforming solid. Show that

?j—?:Dn+Wn—(n-Dn)n

dy dn 1 dy dy dy
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Jdy-dy —dt | Jdy-dy dt (dy.dy)¥? dt
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=(D+W)n+(n-Dn)n
(since n-Wn =0 because W is skew)
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8. Derive the transport formula

_I¢ nydA = j( i

Use the procedure descrlbed in the notes:
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