EN2210: Continuum Mechanics

Homework 4: Kinetics and Conservation Laws
Solutions

School of Engineering
Brown University

1. The figure shows the reference and deformed configurations for a solid. The out-of-plane dimensions
are unchanged. Points a and b are the positions of points A and B after deformation. Determine

be L/4

The Cauchy stress in the solid is om; ® m; . Determine:

1.1 The components of Cauchy stress in {e;,e,,e3}

. 1 1 1 1
We can write om; ® m, :Eo'(el +e,)® (e +e;) =50¢ ®e +50'(e1 ®e, +e, ®e1)+§ae2 ®e,

[2 POINTS]

1.2 The components of Nominal stress S in both {e;,e,,e3} and {m;,m,,m3}. What is the nominal
stress in the mixed basis S;;e; ®m ; ?

Recall that by definition S=JF ' -6

We can use the results from HW2:
e recal F=RU=VR=F !=U'RT =RTV~!
e recall V has components in m,,m,,m,
2 0
[O 1/ 4}

e R has components
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211
Riv-l_ L[ 12 o]_1f12 4
S J2-1 1] o 4| 2|-1/2 4
s_plg L L[1/2 4lfe 0]_ 1 [e/2 0
= 0=— [ —
221-1/2 4]0 0| 242|-0/2 0

We can write this as
o

S= m ®m; —m, ®m
4\/5(1 | —my 1)

Therefore

S follows as

1 1
:%[E(el +e2)®(e1 +ez)_5(_e1 +e2)®(el +e2)}

o 1
=———|e;®e; +e, Ve, +e, Ve +e,®e, +e,Xe;—e, Ve, —e; ®e, +e, e
4\/52[1 1 2 2 2 1 1 2 1 1 2 2 1 2 2 1]

:%[el ®e1 +e) ®e1]

In the mixed basis S = %el Om,
[6 POINTS]

1.3 The components of material stress in both {e;,e,,e;} and {m;,m,,ms}

By definition £=JF '6F 7 =JRT Vv leV IR

Note that in the {m;,m,,m3} basis

1/2 0 0f1/2 0 /4 0
JV_IGV_lzl 7 _1je Egm1®m1
210 4)J0 0 0 4] 20 0 0 8
Note also e; = R m; . Hence

Zzgel ®e1
8

It follows that
o

Z:%%(ml —m,)® (m,; —mz):E(ml Om;+m; ®m;—m; ®m, —m, ®m,)

[4 POINTS]



DEV:GDEV

. . 3 o .
2. Show that the von-Mises effective stress o, = 56 is invariant under a change of basis.

We have

PtV —6- trace(o)l /3

DEV:GDEV

¢ =6:6-2trace(c) / 3+ trace(c)’ / 3=06:6 —trace(s)’ /3

In index notation

aém) = \/ Qiou Ly CPpi0 pgQgj — Qi = O-ge)

[2 POINTS]

3. A rigid, cubic solid is immersed in a fluid with mass density p.

Recall that a stationary fluid exerts a compressive pressure of magnitude
pgh at depth A.

3.1 Write down expressions for the traction vector exerted by the fluid
on each face of the cube. You might find it convenient to take the
origin for your coordinate system at the center of the cube, and take
basis vectors {e;,e,,e3} perpendicular to the cube faces.

Let e3 be vertical, and origin at the center of the cube.
e Top face: t=—pgHe;
e Bottom face t= pg(H +2a)e;
e Side faces t=—pg(H +a—x3)e;, pg(H +a—x3)e;, — pg(H +a—x3)e,, pg(H +a—x3)e,

[2 POINTS]

3.2 Calculate the resultant force due to the tractions acting on the cube, and show that the vertical force is
equal and opposite to the weight of fluid displaced by the cube.

The integrals over the side faces are zero (the tractions on opposite faces are equal and opposite).

The resultant force of pressure on the top and bottom faces is
F= (—4,0gHa2 +4pg(H + Za)a2 )e3 = 8pga3e3
[2 POINTS]



3.3 Show that the result of problem 3.3 applies to any arbitrarily shaped solid immersed below the surface
of a fluid, i.e. prove that the resultant force acting on an immersed solid with volume V is

P. = pgV ;5 , where it is assumed that e; is vertical.

Let y3 denote the coordinate perpendicular to the water surface. The stress state is 0;; = —pgy36;; . The

resultant force is

0
Pi Z—IJJZanA = ng)/3l’lidA = J’pggyng ngVé‘l?)
y 4 :

V
[2 POINTS]

4. Derive the result used in reducing the global equation of angular momentum conservation to local form

d dav
— | yx pvdV = x po—dV
a’tiy P IJ;Y P T

d d d dv dv
—|yxpvdV =— x povdVy =| —(yx pgv)dVy = x pg—dVy =|yx p—dV
dtly P dtjy povdry fdt(y poVIdVy Iy P04V ly P

0 0 K}

[2 POINTS]

5. The figure shows an idealization of a shear viscometer, in which
a fluid is confined between two coaxial rigid cylinders. The inner
cylinder is fixed; the outer rotates with a constant angular rate.
The stress distribution in the fluid is known to have the form
6=0,9(e, Qey+ey®e,), where o, is a function of r.
Assume that the stress state is in static equilibrium and neglect
body forces. By considering a virtual velocity field of the form
v =0vy(r)ey, use the principle of virtual work to show that the

equilibrium equation for the stress field reduces to
8(7,,9 + 20r0

=28 _
or r
The virtual work principle is
Ic:5D=It*~5V
V S
The velocity gradient is
o 9%
b= as '
Vo 0
or

and so

The virtual work equation therefore reduces to



b
Io'rg (% a ngjzm’dV =276vy(b)o,9(b) —2madvg(a)o,g(a)
a

Integrate the first term by parts

b b
oov, 0
[rone == b8vg(0)o, (b) ~ advp (@), (@) = [ —(r0,9) Svgdr
a a
Hence
b 10 o
—I(——(rarg)+ﬁj§v9rdr =0 Vv
\r or r
1 6 O-rﬁ aO'rg 20-}’6’
=——/|ro = + =0
ror ( ro ) r or r

[S POINTS]

6. A thick walled spherical shell is made from an incompressible linear viscous material, in which the
Cauchy stress is related to the stretch rate D by

oc=2uD+ pl
where p is a hydrostatic stress to be determined and g is a material
property (viscosity).

The solid is subjected to a radial gravitational body force

r—a
pb=—pBy-—Le,
b—a

6.1 Assume that the velocity field in the shell is radial v=v(r)e,. .
Calculate the velocity gradient and stretch rate.

ov v
L=Vv=ger ®er+;(e9 Qey+ey ®e¢)

D=L
[2 POINTS]
6.2 Show that the incompressibility condition implies that
ov 2
—+—v=0
or r

and hence find an expression for v(7) in terms of v(a)=a .

v(r) 2

.
ﬂ:—jzdrzlog(v/a) =log(a® /1) = W(r)=a5
v(a) v ar r

[2 POINTS]



,interms of , @ and i@ Be careful with

. . . dv
6.3 Hence, find an expression for the particle acceleration =
t X

this — it is not just the partial time derivative of v(r) .

_ov

el
< Ot

dt

ov ..a2 N 2ad*  2ad? . a? ..a2 N 2ad2( a3]

7

[2 POINTS]

6.4 Find an expression for the (total) rate of work done on the shell by gravity.

2
"8 g0 ar = —27rBOpda2(b —a)
b-a r2

Py =[b-vay =jZBOp
vV a

[2 POINTS]

6.5 Find an expression for the total kinetic energy of the shell, in terms of a
1 21 (L a2Y
T= I—p|v|2 dv = J-—p a=— | Axrldr = 27rpa3d2(1 —alb)
2 2 2
V a
[2 POINTS]

6.6 Calculate the time derivative of kinetic energy. Note that b is not constant.

‘fi—f =61pa’a’(1—a/b)+4npa’ia(l—a/b)+2xpa*a’h | b
2

You can eliminate 5 if you like because you know that b = v,.(b)= c'za—z
b

[2 POINTS]

6.7 Find the total internal stress power, in terms of a, u

b 2 2
P, = J.G :DdV = IZ,L{(?) + (zj }47rr2dr = 167r,uadz(1 -a /b3) (see mupad file)
V a

r r

[2 POINTS]



6.8 Use the principle of virtual work to show that the stress state must satisfy

do 1 r—b dv
—W+;(2Grr—099—0¢¢) PBy——, = P,

dr

Io:éDdV—Ib-&vdVJrIJ;p%&v:O

b b
ov 2 dv 2
= +—O' +0 4 24 b.ovadrrodr+ | p—ovadnr-dr=0
_[[ Ty (T09 ¢¢)) redr— J. rovarr=dr J.P o Ovamrdr
a a

Integrate the first term by parts and note the radial stress vanishes at r=a,r=>b

b d(r’c b b
—%5\1 + ?(099 + 0'¢¢)r2 4rdr — J.b,5v4ﬂr2dr + jp%&%ﬂrzdr =0
a a a
- + b, + dv Svanridr =0
= J. P (0'99 G¢¢) pP— r Varr-dr =

This must be satlsﬁed for all v giving the answer stated.

[2 POINTS]
6.9 Write down the boundary conditions for p(r) at r=a,b .
ov a?
0, =0=>p+2u—=p—-4pui—=0
5}’ ]/‘3
= p= 4;1z r=a
a
-3
p=4 ga_3 r=>b
abp
[2 POINTS]

6.10 Hence, show that a(?) satisfies the differential equation

d*a 5 b _dadua 24b% +ab ( ajz (b—a)(a® +2ab+3b%)
dt? 2 dt p 2 dt 2ab’
See mupad code for solution

[2 POINTS]



6.11 Verify the result of 6.11 using energy methods

The energy equation gives

dT
E'l‘Po. :PB

This equation gives the same result (see mupad file for details).

[2 POINTS]

6.12 Plot a(¢) with initial conditions a =1;6=5;a=0 for By =1 and u/p=0.1,0.2,0.4,1.0,2.0 (you
will need to solve the differential equation numerically, eg using Matlab or Mathematica).

See matlab file for solution
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