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1. Show that a fluid with constitutive equation of the form 

0( , ) 2ij eq ij ij ijDσ π ρ q δ τ µ= − + +  

with 0
ijτ  a nonzero constant, violates the second law of thermodynamics. 

 
  
2. Suppose that the internal energy of a continuum is expressed as a function of density and entropy, as 

( , )sε ρ  .   Show that the dissipation inequality requires that 
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3. Consider an inviscid van der Waals fluid with specific heat capacity ( )vc θ  an arbitrary function of 
temperature (but independent of density), and pressure related to temperature and density by 
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(here a is just a constant) 
 
3.1 Show that the dissipation inequality (use problem 2, and the approach used in class to obtain 
constitutive equations for a fluid) requires that 
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3.2 Hence conclude that  
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3.3 Hence show that 
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3. The deformation of a viscoelastic material is modeled by representing the deformation gradient F of a 
material element as a sequence of an irreversible deformation pF , followed by a reversible (elastic) 
deformation eF , so that e p=F F F .  The Helmholtz free energy ( , )eψ θF  of the material is assumed to 

be a function of eF  and temperature θ  only. 
 
3.1 Show that the velocity gradient L can be decomposed into elastic and plastic parts as 
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3.2 Show that the dissipation inequality 
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 requires that the Cauchy stress is related to the free energy by 
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(where 0ρ  is the mass per unit reference volume) and that the plastic part of the velocity gradient must 
satisfy 

0p
ij ijLσ ≥  

 
3.3 Assume that eF  and pF  transform under a change of observer according to 

* *e e p p= =F QF F F .  Verify that the transformation is consistent with the transformation of 

deformation gradient F under an observer change, and determine expressions for * *,e pL L in terms of Q  
and T=Ω QQ . 
 
 
3.4 Consider a constitutive relation in which the plastic velocity gradient is given by 
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Show that if det( ) 1p =F  at time t=0, then det( ) 1p =F  for all t>0.   (Hint: consider p
kkL ) 

 
 
3.5 Show that the constitutive relation in 3.4 satisfies both frame indifference and the dissipation 
inequality (assume 0η > ). 
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