EN2210: Continuum Mechanics

N Homework 6: Constitutive Equations, Fluid Mechanics
' Solutions

School of Engineering
Brown University

1. Show that a fluid with constitutive equation of the form

Ojj =—Teq(p,0)0; +z' +2uDy;

with T,-JO- a nonzero constant, violates the second law of thermodynamics.

The second law requires
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For all processes. We can consider a process with constant density and temperature, which gives
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But Dy, =0 for a constant density process. We can choose Dj; = —/1(71 Tkk :/3)(A>0) (we need to
make D volume preserving) in which case
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If T T Tkann /3> 0 this is negative for any A <— 5 f r Tkann /3 <0 itis negative for any
u

A>1/2u . Hence there is always some D for which the second law is violated.
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2. Suppose that the internal energy of a continuum is expressed as a function of density and entropy, as
£(p,s) . Show that the dissipation inequality requires that
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The standard dissipation in equality is
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Substituting 7 = & —fs gives the required result.
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3. Consider an inviscid van der Waals fluid with specific heat capacity c,,(6) an arbitrary function of
temperature (but independent of density), and pressure related to temperature and density by
ﬁeq _ P RO —a 2
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3.1 Show that the dissipation inequality (use problem 2) requires that
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For this case the dissipation inequality reduces to
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This must hold for all s, which implies that
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This now shows that
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And hence
de . 1 d dp ds
dt dz dt
[3 Points]
3.2 Hence conclude that
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for all p,0

Substitute for ﬁeq
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Rearranging this result gives the required expression.
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3.3 Hence show that
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Let [R log | ’I; + s] = ¢, then the preceding problem shows that
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This must hold for all 8, p so

Integrating this expression gives
J.—de + const

which gives the first result.

For the second one note that
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4. The deformation of a viscoelastic material is modeled by representing the deformation gradient F of a
material element as a sequence of an irreversible deformation F? | followed by a reversible (elastic)
deformation F¢, so that F=F°F?. The Helmholtz free energy y(F¢,0) of the material is assumed to

be a function of F¢ and temperature € only.

4.1 Show that the velocity gradient L can be decomposed into elastic and plastic parts as

e
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We have that L = gF_l = @Fﬁ “IF¢"! | and expanding the time derivative using the
t t

product rule and simplifying gives the required solution.
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4.2 Show that the dissipation inequality
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requires that the Cauchy stress is related to the free energy by
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(where p, is the mass per unit reference volume) and that the plastic part of the velocity gradient must
satisfy
oy L >0

Noting that 0;;D;; = 0;;L;; from the symmetry of the Cauchy stress, and taking the time derivative of the

free energy gives
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This must hold for all Fye,FUp , which shows that
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and o; Ll’J’ >0 follows directly
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43 Assume that F® and F? transform under a change of observer according to

=QF° FP" =F”. Verify that the transformation is consistent with the transformation of

deformation gradient F under an observer change, and determine expressions for Le*,Lp " in terms of Q
and Q= QQT .

The deformation gradient should transform as F = QF . For the transformations given we have



F' =F“F?" =QF°F” =QF
We also have that 1S = FE'F! (QFe + QFe)Fe Q7 =0+QLQ” 17 =QrrQ”
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4.4 Consider a constitutive relation in which the plastic velocity gradient is given by
1
Lg- =77(0 30kk5 j
Show that if det(F”)=1 at time #=0, then det(F”)=1 for all #>0. (Hint: consider L% )

In the usual way,
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Finally the constitutive equation shows that L, =0.
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4.5 Show that the constitutive relation in 3.4 satisfies both frame indifference and the dissipation
inequality (assume 7>0).
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Note that o;;j; =noy; (O'ij ~ Ok j ( % ~3 Ok Oy )( o — O'kk j This is a perfect square.

The constitutive equation satisfies
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