2. Review of Vectors and Matrices

 

 

VECTORS

 

1. Definition

 

For the purposes of this course, a vector is an object which has magnitude and direction.  Examples include forces, electric fields, and the normal to a surface.  A vector is often represented pictorially as an arrow and symbolically by an underlined letter a _ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaadaaqaaiaadg gaaaaaaa@366B@  or using bold type a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHHbaaaa@365F@ .  Its magnitude is denoted | a _ | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaabdaqaamaama aabaGaamyyaaaaaiaawEa7caGLiWoaaaa@398D@  or | a | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaabdaqaaiaahg gaaiaawEa7caGLiWoaaaa@3981@ .  There are two special cases of vectors: the unit vector n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHUbaaaa@366C@  has | n |=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaabdaqaaiaah6 gaaiaawEa7caGLiWoacqGH9aqpcaaIXaaaaa@3B4F@ ; and the null vector 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHWaaaaa@362E@  has | 0 |=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaabdaqaaiaahc daaiaawEa7caGLiWoacqGH9aqpcaaIWaaaaa@3B10@ .

 

2. Vector Operations

 

 Addition

 

Let a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHHbaaaa@365F@  and b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHIbaaaa@3660@  be vectors.  Then c=a+b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHJbGaeyypa0 JaaCyyaiabgUcaRiaahkgaaaa@3A1E@  is also a vector.  The vector c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHJbaaaa@3661@  may be shown diagramatically by placing arrows representing a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHHbaaaa@365F@  and b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHIbaaaa@3660@  head to tail, as shown in the figure.

 

 Multiplication

 

1.      Multiplication by a scalar. Let a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHHbaaaa@365F@  be a vector, and α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHXoqyaaa@3714@  a scalar.  Then b=αa MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHIbGaeyypa0 JaeqySdeMaaGPaVlaahggaaaa@3B7A@  is a vector.  The direction of b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHIbaaaa@3660@  is parallel to a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHHbaaaa@365F@  and its magnitude is given by | b |=α| a | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaabdaqaaiaahk gaaiaawEa7caGLiWoacqGH9aqpcqaHXoqydaabdaqaaiaahggaaiaa wEa7caGLiWoaaaa@4033@ .

Note that you can form a unit vector n which is parallel to a by setting n= a | a | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHUbGaeyypa0 ZaaSaaaeaacaWHHbaabaWaaqWaaeaacaWHHbaacaGLhWUaayjcSdaa aaaa@3C78@ .

2.      Dot Product (also called the scalar product). Let a and b be two vectors.  The dot product of a and b is a scalar denoted by α=ab MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHXoqycqGH9a qpcaWHHbGaeyyXICTaaCOyaaaa@3C39@ , and is defined by

ab=| a || b |cosθ(a,b) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHHbGaeyyXIC TaaCOyaiabg2da9maaemaabaGaaCyyaaGaay5bSlaawIa7amaaemaa baGaaCOyaaGaay5bSlaawIa7aiGacogacaGGVbGaai4CaiabeI7aXj aacIcacaWHHbGaaiilaiaahkgacaGGPaaaaa@4B1A@ ,

where θ(a,b) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH4oqCcaGGOa GaaCyyaiaacYcacaWHIbGaaiykaaaa@3B09@  is the angle subtended by a and b. Note that ab=ba MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHHbGaeyyXIC TaaCOyaiabg2da9iaahkgacqGHflY1caWHHbaaaa@3EB9@ , and aa= | a | 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHHbGaeyyXIC TaaCyyaiabg2da9maaemaabaGaaCyyaaGaay5bSlaawIa7amaaCaaa leqabaGaaGOmaaaaaaa@3F8E@ .  If | a |0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaabdaqaaiaahg gaaiaawEa7caGLiWoacqGHGjsUcaaIWaaaaa@3C02@  and | b |0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaabdaqaaiaahk gaaiaawEa7caGLiWoacqGHGjsUcaaIWaaaaa@3C03@  then ab=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHHbGaeyyXIC TaaCOyaiabg2da9iaaicdaaaa@3B54@  if and only if cosθ(a,b)=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGJbGaai4Bai aacohacqaH4oqCcaGGOaGaaCyyaiaacYcacaWHIbGaaiykaiabg2da 9iaaicdaaaa@3F9C@ ; i.e. a and b are perpendicular.

3.      Cross Product (also called the vector product).  Let a and b be two vectors.  The cross product of a and b is a vector denoted by c=a×b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHJbGaeyypa0 JaaCyyaiabgEna0kaahkgaaaa@3B53@ The direction of c is perpendicular to a and b, and is chosen so that (a,b,c) form a right handed triad, Fig. 3.  The magnitude of c is given by

| c |=| a×b |=| a || b |sinθ(a,b) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaabdaqaaiaaho gaaiaawEa7caGLiWoacqGH9aqpdaabdaqaaiaahggacqGHxdaTcaWH IbaacaGLhWUaayjcSdGaeyypa0ZaaqWaaeaacaWHHbaacaGLhWUaay jcSdWaaqWaaeaacaWHIbaacaGLhWUaayjcSdGaci4CaiaacMgacaGG UbGaeqiUdeNaaiikaiaahggacaGGSaGaaCOyaiaacMcaaaa@5322@

Note that a×b=b×a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHHbGaey41aq RaaCOyaiabg2da9iabgkHiTiaahkgacqGHxdaTcaWHHbaaaa@3F40@  and a(a×b)=b(a×b)=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHHbGaeyyXIC TaaiikaiaahggacqGHxdaTcaWHIbGaaiykaiabg2da9iaahkgacqGH flY1caGGOaGaaCyyaiabgEna0kaahkgacaGGPaGaeyypa0JaaGimaa aa@492E@ .

 

 Some useful vector identities

a(b×c)=b(c×a)=c(a×b) a×(b×c)=(ac)b(ab)c (a×b)(c×d)=(ac)(bd)(bc)(ad) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaahggacq GHflY1caGGOaGaaCOyaiabgEna0kaahogacaGGPaGaeyypa0JaaCOy aiabgwSixlaacIcacaWHJbGaey41aqRaaCyyaiaacMcacqGH9aqpca WHJbGaeyyXICTaaiikaiaahggacqGHxdaTcaWHIbGaaiykaaqaaiaa hggacqGHxdaTcaGGOaGaaCOyaiabgEna0kaahogacaGGPaGaeyypa0 JaaiikaiaahggacqGHflY1caWHJbGaaiykaiaahkgacqGHsislcaGG OaGaaCyyaiabgwSixlaahkgacaGGPaGaaC4yaaqaaiaacIcacaWHHb Gaey41aqRaaCOyaiaacMcacqGHflY1caGGOaGaaC4yaiabgEna0kaa hsgacaGGPaGaeyypa0JaaiikaiaahggacqGHflY1caWHJbGaaiykai aacIcacaWHIbGaeyyXICTaaCizaiaacMcacqGHsislcaGGOaGaaCOy aiabgwSixlaahogacaGGPaGaaiikaiaahggacqGHflY1caWHKbGaai ykaaaaaa@8CB0@

 

3. Cartesian components of vectors

 

Let ( e 1 , e 2 , e 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaaCyzam aaBaaaleaacaaIXaaabeaakiaacYcacaWHLbWaaSbaaSqaaiaaikda aeqaaOGaaiilaiaahwgadaWgaaWcbaGaaG4maaqabaGccaGGPaaaaa@3DCE@  be three mutually perpendicular unit vectors which form a right handed triad, Fig. 4.  Then { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaahw gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaCyzamaaBaaaleaacaaI YaaabeaakiaacYcacaWHLbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7b GaayzFaaaaaa@3EA6@  are said to form and orthonormal basis. The vectors satisfy

| e 1 |=| e 2 |=| e 3 |=1 e 1 × e 2 = e 3 , e 1 × e 3 = e 2 e 2 × e 3 = e 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaaemaabaGaaCyzamaaBaaaleaacaaIXa aabeaaaOGaay5bSlaawIa7aiabg2da9maaemaabaGaaCyzamaaBaaa leaacaaIYaaabeaaaOGaay5bSlaawIa7aiabg2da9maaemaabaGaaC yzamaaBaaaleaacaaIZaaabeaaaOGaay5bSlaawIa7aiabg2da9iaa igdacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaCyzamaaBaaaleaacaaIXaaabeaakiabgEna 0kaahwgadaWgaaWcbaGaaGOmaaqabaGccqGH9aqpcaWHLbWaaSbaaS qaaiaaiodaaeqaaOGaaiilaiaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaahwgadaWgaaWcbaGaaGymaaqabaGccqGHxdaTcaWHLb WaaSbaaSqaaiaaiodaaeqaaOGaeyypa0JaeyOeI0IaaCyzamaaBaaa leaacaaIYaaabeaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaC yzamaaBaaaleaacaaIYaaabeaakiabgEna0kaahwgadaWgaaWcbaGa aG4maaqabaGccqGH9aqpcaWHLbWaaSbaaSqaaiaaigdaaeqaaaaa@7F6B@

We may express any vector a as a suitable combination of the unit vectors e 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHLbWaaSbaaS qaaiaaigdaaeqaaaaa@374A@ , e 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHLbWaaSbaaS qaaiaaikdaaeqaaaaa@374B@  and e 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHLbWaaSbaaS qaaiaaiodaaeqaaaaa@374C@ .  For example, we may write

a= a 1 e 1 + a 2 e 2 + a 3 e 3 = i=1 3 a i e i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHHbGaeyypa0 JaamyyamaaBaaaleaacaaIXaaabeaakiaahwgadaWgaaWcbaGaaGym aaqabaGccqGHRaWkcaWGHbWaaSbaaSqaaiaaikdaaeqaaOGaaCyzam aaBaaaleaacaaIYaaabeaakiabgUcaRiaadggadaWgaaWcbaGaaG4m aaqabaGccaWHLbWaaSbaaSqaaiaaiodaaeqaaOGaeyypa0ZaaabCae aacaWGHbWaaSbaaSqaaiaadMgaaeqaaOGaaCyzamaaBaaaleaacaWG PbaabeaaaeaacaWGPbGaeyypa0JaaGymaaqaaiaaiodaa0GaeyyeIu oaaaa@4F0C@

where ( a 1 , a 2 , a 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaamyyam aaBaaaleaacaaIXaaabeaakiaacYcacaWGHbWaaSbaaSqaaiaaikda aeqaaOGaaiilaiaadggadaWgaaWcbaGaaG4maaqabaGccaGGPaaaaa@3DB6@  are scalars, called the components of a in the basis { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaahw gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaCyzamaaBaaaleaacaaI YaaabeaakiaacYcacaWHLbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7b GaayzFaaaaaa@3EA6@ .   The components of a have a simple physical interpretation.  For example, if we evaluate the dot product a e 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHHbGaeyyXIC TaaCyzamaaBaaaleaacaaIXaaabeaaaaa@3A7E@  we find that

a e 1 =( a 1 e 1 + a 2 e 2 + a 3 e 3 ) e 1 = a 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHHbGaeyyXIC TaaCyzamaaBaaaleaacaaIXaaabeaakiabg2da9iaacIcacaWGHbWa aSbaaSqaaiaaigdaaeqaaOGaaCyzamaaBaaaleaacaaIXaaabeaaki abgUcaRiaadggadaWgaaWcbaGaaGOmaaqabaGccaWHLbWaaSbaaSqa aiaaikdaaeqaaOGaey4kaSIaamyyamaaBaaaleaacaaIZaaabeaaki aahwgadaWgaaWcbaGaaG4maaqabaGccaGGPaGaeyyXICTaaCyzamaa BaaaleaacaaIXaaabeaakiabg2da9iaadggadaWgaaWcbaGaaGymaa qabaaaaa@50CF@

in view of the properties of the three vectors e 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHLbWaaSbaaS qaaiaaigdaaeqaaaaa@374A@ , e 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHLbWaaSbaaS qaaiaaikdaaeqaaaaa@374B@  and e 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHLbWaaSbaaS qaaiaaiodaaeqaaaaa@374C@ .  Recall that

a e 1 =| a || e 1 |cosθ(a, e 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHHbGaeyyXIC TaaCyzamaaBaaaleaacaaIXaaabeaakiabg2da9maaemaabaGaaCyy aaGaay5bSlaawIa7amaaemaabaGaaCyzamaaBaaaleaacaaIXaaabe aaaOGaay5bSlaawIa7aiGacogacaGGVbGaai4CaiabeI7aXjaacIca caWHHbGaaiilaiaahwgadaWgaaWcbaGaaGymaaqabaGccaGGPaaaaa@4DF6@

 

Then, noting that | e 1 |=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaabdaqaaiaahw gadaWgaaWcbaGaaGymaaqabaaakiaawEa7caGLiWoacqGH9aqpcaaI Xaaaaa@3C37@ , we have

a 1 =a e 1 =| a |cosθ(a, e 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaaigdaaeqaaOGaeyypa0JaaCyyaiabgwSixlaahwgadaWgaaWc baGaaGymaaqabaGccqGH9aqpdaabdaqaaiaahggaaiaawEa7caGLiW oaciGGJbGaai4BaiaacohacqaH4oqCcaGGOaGaaCyyaiaacYcacaWH LbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaaaa@4BD2@

 

Thus, a 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaaigdaaeqaaaaa@3742@  represents the projected length of the vector a  in the direction of e 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHLbWaaSbaaS qaaiaaigdaaeqaaaaa@374A@ , as illustrated in the figure.  Similarly, a 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaaikdaaeqaaaaa@3743@  and a 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaaiodaaeqaaaaa@3744@  may be shown to represent the projection of a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHHbaaaa@365F@  in the directions e 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHLbWaaSbaaS qaaiaaikdaaeqaaaaa@374B@  and e 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHLbWaaSbaaS qaaiaaiodaaeqaaaaa@374C@ , respectively.

 

The advantage of representing vectors in a Cartesian basis is that vector addition and multiplication can be expressed as simple operations on the components of the vectors.  For example, let a, b and c be vectors, with components ( a 1 , a 2 , a 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaamyyam aaBaaaleaacaaIXaaabeaakiaacYcacaWGHbWaaSbaaSqaaiaaikda aeqaaOGaaiilaiaadggadaWgaaWcbaGaaG4maaqabaGccaGGPaaaaa@3DB6@ , ( b 1 , b 2 , b 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaamOyam aaBaaaleaacaaIXaaabeaakiaacYcacaWGIbWaaSbaaSqaaiaaikda aeqaaOGaaiilaiaadkgadaWgaaWcbaGaaG4maaqabaGccaGGPaaaaa@3DB9@  and ( c 1 , c 2 , c 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaam4yam aaBaaaleaacaaIXaaabeaakiaacYcacaWGJbWaaSbaaSqaaiaaikda aeqaaOGaaiilaiaadogadaWgaaWcbaGaaG4maaqabaGccaGGPaaaaa@3DBC@ , respectively.  Then, it is straightforward to show that

c=a+b c 1 = a 1 + b 1 ; c 2 = a 2 + b 2 ; c 3 = a 3 + b 3 ab= i=1 3 a i b i c=a×b c 1 = a 2 b 3 a 3 b 2 ; c 2 = a 3 b 1 a 1 b 3 ; c 3 = a 1 b 2 a 2 b 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaaceqaaiaahogacq GH9aqpcaWHHbGaey4kaSIaaCOyaiaaykW7caaMc8UaaGPaVlaaykW7 cqGHuhY2caaMc8UaaGPaVlaaykW7caaMc8Uaam4yamaaBaaaleaaca aIXaaabeaakiabg2da9iaadggadaWgaaWcbaGaaGymaaqabaGccqGH RaWkcaWGIbWaaSbaaSqaaiaaigdaaeqaaOGaai4oaiaaykW7caaMc8 UaaGPaVlaaykW7caWGJbWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0Ja amyyamaaBaaaleaacaaIYaaabeaakiabgUcaRiaadkgadaWgaaWcba GaaGOmaaqabaGccaGG7aGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caWGJbWaaSbaaSqaaiaaiodaaeqaaOGaeyypa0JaamyyamaaBaaale aacaaIZaaabeaakiabgUcaRiaadkgadaWgaaWcbaGaaG4maaqabaaa keaacaWHHbGaeyyXICTaaCOyaiabg2da9maaqahabaGaamyyamaaBa aaleaacaWGPbaabeaakiaadkgadaWgaaWcbaGaamyAaaqabaaabaGa amyAaiabg2da9iaaigdaaeaacaaIZaaaniabggHiLdaakeaacaWHJb Gaeyypa0JaaCyyaiabgEna0kaahkgacaaMc8UaaGPaVlaaykW7caaM c8Uaeyi1HSTaaGPaVlaaykW7caaMc8UaaGPaVlaadogadaWgaaWcba GaaGymaaqabaGccqGH9aqpcaWGHbWaaSbaaSqaaiaaikdaaeqaaOGa amOyamaaBaaaleaacaaIZaaabeaakiabgkHiTiaadggadaWgaaWcba GaaG4maaqabaGccaWGIbWaaSbaaSqaaiaaikdaaeqaaOGaai4oaiaa ykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam4yamaaBaaaleaacaaIYa aabeaakiabg2da9iaadggadaWgaaWcbaGaaG4maaqabaGccaWGIbWa aSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaamyyamaaBaaaleaacaaIXa aabeaakiaadkgadaWgaaWcbaGaaG4maaqabaGccaGG7aGaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caWGJbWaaSbaaSqaaiaaiodaaeqaaO Gaeyypa0JaamyyamaaBaaaleaacaaIXaaabeaakiaadkgadaWgaaWc baGaaGOmaaqabaGccqGHsislcaWGHbWaaSbaaSqaaiaaikdaaeqaaO GaamOyamaaBaaaleaacaaIXaaabeaaaaaa@C473@

 

 

4. Change of basis

 

Let a be a vector, and let { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaahw gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaCyzamaaBaaaleaacaaI YaaabeaakiaacYcacaWHLbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7b GaayzFaaaaaa@3EA6@  be a Cartesian basis.  Suppose that the components of a in the basis { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaahw gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaCyzamaaBaaaleaacaaI YaaabeaakiaacYcacaWHLbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7b GaayzFaaaaaa@3EA6@  are known to be ( a 1 , a 2 , a 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaamyyam aaBaaaleaacaaIXaaabeaakiaacYcacaWGHbWaaSbaaSqaaiaaikda aeqaaOGaaiilaiaadggadaWgaaWcbaGaaG4maaqabaGccaGGPaaaaa@3DB6@ .  Now, suppose that we wish to compute the components of a in a second Cartesian basis, { m 1 , m 2 , m 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaah2 gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaCyBamaaBaaaleaacaaI YaaabeaakiaacYcacaWHTbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7b GaayzFaaaaaa@3EBE@ .  This means we wish to find components ( α 1 , α 2 , α 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaeqySde 2aaSbaaSqaaiaaigdaaeqaaOGaaiilaiabeg7aHnaaBaaaleaacaaI YaaabeaakiaacYcacqaHXoqydaWgaaWcbaGaaG4maaqabaGccaGGPa aaaa@3FE1@ , such that

a= α 1 m 1 + α 2 m 2 + α 3 m 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHHbGaeyypa0 JaeqySde2aaSbaaSqaaiaaigdaaeqaaOGaaCyBamaaBaaaleaacaaI XaaabeaakiabgUcaRiabeg7aHnaaBaaaleaacaaIYaaabeaakiaah2 gadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcqaHXoqydaWgaaWcbaGa aG4maaqabaGccaWHTbWaaSbaaSqaaiaaiodaaeqaaaaa@468A@

To do so, note that

α 1 =a m 1 = a 1 e 1 m 1 + a 2 e 2 m 1 + a 3 e 3 m 1 α 2 =a m 2 = a 1 e 1 m 2 + a 2 e 2 m 2 + a 3 e 3 m 2 α 3 =a m 3 = a 1 e 1 m 3 + a 2 e 2 m 3 + a 3 e 3 m 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiabeg7aHn aaBaaaleaacaaIXaaabeaakiabg2da9iaahggacqGHflY1caWHTbWa aSbaaSqaaiaaigdaaeqaaOGaeyypa0JaamyyamaaBaaaleaacaaIXa aabeaakiaahwgadaWgaaWcbaGaaGymaaqabaGccqGHflY1caWHTbWa aSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamyyamaaBaaaleaacaaIYa aabeaakiaahwgadaWgaaWcbaGaaGOmaaqabaGccqGHflY1caWHTbWa aSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamyyamaaBaaaleaacaaIZa aabeaakiaahwgadaWgaaWcbaGaaG4maaqabaGccqGHflY1caWHTbWa aSbaaSqaaiaaigdaaeqaaaGcbaGaeqySde2aaSbaaSqaaiaaikdaae qaaOGaeyypa0JaaCyyaiabgwSixlaah2gadaWgaaWcbaGaaGOmaaqa baGccqGH9aqpcaWGHbWaaSbaaSqaaiaaigdaaeqaaOGaaCyzamaaBa aaleaacaaIXaaabeaakiabgwSixlaah2gadaWgaaWcbaGaaGOmaaqa baGccqGHRaWkcaWGHbWaaSbaaSqaaiaaikdaaeqaaOGaaCyzamaaBa aaleaacaaIYaaabeaakiabgwSixlaah2gadaWgaaWcbaGaaGOmaaqa baGccqGHRaWkcaWGHbWaaSbaaSqaaiaaiodaaeqaaOGaaCyzamaaBa aaleaacaaIZaaabeaakiabgwSixlaah2gadaWgaaWcbaGaaGOmaaqa baaakeaacqaHXoqydaWgaaWcbaGaaG4maaqabaGccqGH9aqpcaWHHb GaeyyXICTaaCyBamaaBaaaleaacaaIZaaabeaakiabg2da9iaadgga daWgaaWcbaGaaGymaaqabaGccaWHLbWaaSbaaSqaaiaaigdaaeqaaO GaeyyXICTaaCyBamaaBaaaleaacaaIZaaabeaakiabgUcaRiaadgga daWgaaWcbaGaaGOmaaqabaGccaWHLbWaaSbaaSqaaiaaikdaaeqaaO GaeyyXICTaaCyBamaaBaaaleaacaaIZaaabeaakiabgUcaRiaadgga daWgaaWcbaGaaG4maaqabaGccaWHLbWaaSbaaSqaaiaaiodaaeqaaO GaeyyXICTaaCyBamaaBaaaleaacaaIZaaabeaaaaaa@9F24@

This transformation is conveniently written as a matrix operation

[ α ]=[ Q ][ a ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiabeg 7aHbGaay5waiaaw2faaiabg2da9maadmaabaGaamyuaaGaay5waiaa w2faamaadmaabaGaamyyaaGaay5waiaaw2faaaaa@3FAC@ ,

where [ α ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiabeg 7aHbGaay5waiaaw2faaaaa@3906@  is a matrix consisting of the components of a in the basis { m 1 , m 2 , m 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaah2 gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaCyBamaaBaaaleaacaaI YaaabeaakiaacYcacaWHTbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7b GaayzFaaaaaa@3EBE@ , [ a ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg gaaiaawUfacaGLDbaaaaa@384D@  is a matrix consisting of the components of a in the basis { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaahw gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaCyzamaaBaaaleaacaaI YaaabeaakiaacYcacaWHLbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7b GaayzFaaaaaa@3EA6@ , and [ Q ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg faaiaawUfacaGLDbaaaaa@383D@  is a `rotation matrix’ as follows

[ α ]=[ α 1 α 2 α 3 ][ a ]=[ a 1 a 2 a 3 ][ Q ]=[ m 1 e 1 m 1 e 2 m 1 e 3 m 2 e 1 m 2 e 2 m 2 e 3 m 3 e 1 m 3 e 2 m 3 e 3 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiabeg 7aHbGaay5waiaaw2faaiabg2da9maadmaaeaqabeaacqaHXoqydaWg aaWcbaGaaGymaaqabaaakeaacqaHXoqydaWgaaWcbaGaaGOmaaqaba aakeaacqaHXoqydaWgaaWcbaGaaG4maaqabaaaaOGaay5waiaaw2fa aiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7daWadaqaaiaadggaaiaawUfacaGLDbaacqGH9aqp daWadaabaeqabaGaamyyamaaBaaaleaacaaIXaaabeaaaOqaaiaadg gadaWgaaWcbaGaaGOmaaqabaaakeaacaWGHbWaaSbaaSqaaiaaioda aeqaaaaakiaawUfacaGLDbaacaaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7daWa daqaaiaadgfaaiaawUfacaGLDbaacqGH9aqpdaWadaabaeqabaGaaC yBamaaBaaaleaacaaIXaaabeaakiabgwSixlaahwgadaWgaaWcbaGa aGymaaqabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca WHTbWaaSbaaSqaaiaaigdaaeqaaOGaeyyXICTaaCyzamaaBaaaleaa caaIYaaabeaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aah2gadaWgaaWcbaGaaGymaaqabaGccqGHflY1caWHLbWaaSbaaSqa aiaaiodaaeqaaaGcbaGaaCyBamaaBaaaleaacaaIYaaabeaakiabgw SixlaahwgadaWgaaWcbaGaaGymaaqabaGccaaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caWHTbWaaSbaaSqaaiaaikdaaeqaaOGaey yXICTaaCyzamaaBaaaleaacaaIYaaabeaakiaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaah2gadaWgaaWcbaGaaGOmaaqabaGccq GHflY1caWHLbWaaSbaaSqaaiaaiodaaeqaaaGcbaGaaCyBamaaBaaa leaacaaIZaaabeaakiabgwSixlaahwgadaWgaaWcbaGaaGymaaqaba GccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWHTbWaaSba aSqaaiaaiodaaeqaaOGaeyyXICTaaCyzamaaBaaaleaacaaIYaaabe aakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaah2gadaWg aaWcbaGaaG4maaqabaGccqGHflY1caWHLbWaaSbaaSqaaiaaiodaae qaaaaakiaawUfacaGLDbaaaaa@E501@

Note that the elements of [ Q ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg faaiaawUfacaGLDbaaaaa@383D@  have a simple physical interpretation.  For example, m 1 e 1 =cosθ( m 1 , e 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHTbWaaSbaaS qaaiaaigdaaeqaaOGaeyyXICTaaCyzamaaBaaaleaacaaIXaaabeaa kiabg2da9iGacogacaGGVbGaai4CaiabeI7aXjaacIcacaWHTbWaaS baaSqaaiaaigdaaeqaaOGaaiilaiaahwgadaWgaaWcbaGaaGymaaqa baGccaGGPaaaaa@46E3@ , where θ( m 1 , e 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH4oqCcaGGOa GaaCyBamaaBaaaleaacaaIXaaabeaakiaacYcacaWHLbWaaSbaaSqa aiaaigdaaeqaaOGaaiykaaaa@3CFA@  is the angle between the m 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHTbWaaSbaaS qaaiaaigdaaeqaaaaa@3752@  and e 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHLbWaaSbaaS qaaiaaigdaaeqaaaaa@374A@  axes.  Similarly m 1 e 2 =cosθ( m 1 , e 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHTbWaaSbaaS qaaiaaigdaaeqaaOGaeyyXICTaaCyzamaaBaaaleaacaaIYaaabeaa kiabg2da9iGacogacaGGVbGaai4CaiabeI7aXjaacIcacaWHTbWaaS baaSqaaiaaigdaaeqaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqa baGccaGGPaaaaa@46E5@  where θ( m 1 , e 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH4oqCcaGGOa GaaCyBamaaBaaaleaacaaIXaaabeaakiaacYcacaWHLbWaaSbaaSqa aiaaikdaaeqaaOGaaiykaaaa@3CFB@  is the angle between the m 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHTbWaaSbaaS qaaiaaigdaaeqaaaaa@3752@  and e 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHLbWaaSbaaS qaaiaaikdaaeqaaaaa@374B@  axes.  In practice, we usually know the angles between the axes that make up the two bases, so it is simplest to assemble the elements of [ Q ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg faaiaawUfacaGLDbaaaaa@383D@  by putting the cosines of the known angles in the appropriate places.

 

Index notation provides another convenient way to write this transformation:

α i = Q ij a j , Q ij = e i m j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHXoqydaWgaaWcbaGaamyAaaqaba GccqGH9aqpcaWGrbWaaSbaaSqaaiaadMgacaWGQbaabeaakiaadgga daWgaaWcbaGaamOAaaqabaGccaGGSaGaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caWGrbWaaSbaaSqaaiaadMgacaWGQbaabeaaki abg2da9iaahwgadaWgaaWcbaGaamyAaaqabaGccqGHflY1caWHTbWa aSbaaSqaaiaadQgaaeqaaaaa@5C28@

You don’t need to know index notation in detail to understand this MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  all you need to know is that

Q ij a j j=1 3 Q ij a j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGrbWaaSbaaSqaaiaadMgacaWGQb aabeaakiaadggadaWgaaWcbaGaamOAaaqabaGccaaMc8UaeyyyIO7a aabCaeaacaWGrbWaaSbaaSqaaiaadMgacaWGQbaabeaakiaadggada WgaaWcbaGaamOAaaqabaaabaGaamOAaiabg2da9iaaigdaaeaacaaI ZaaaniabggHiLdaaaa@459B@

 

The same approach may be used to find an expression for a i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGHbWaaSbaaSqaaiaadMgaaeqaaa aa@34C6@  in terms of α i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHXoqydaWgaaWcbaGaamyAaaqaba aaaa@357F@ .  If you work through the details, you will find that

[ a 1 a 2 a 3 ]=[ m 1 e 1 m 2 e 1 m 3 e 1 m 1 e 2 m 2 e 2 m 3 e 2 m 1 e 3 m 2 e 3 m 3 e 3 ][ α 1 α 2 α 3 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWadaabaeqabaGaamyyamaaBaaale aacaaIXaaabeaaaOqaaiaadggadaWgaaWcbaGaaGOmaaqabaaakeaa caWGHbWaaSbaaSqaaiaaiodaaeqaaaaakiaawUfacaGLDbaacaaMc8 UaaGPaVlaaykW7cqGH9aqpdaWadaqaauaabeqadmaaaeaacaWHTbWa aSbaaSqaaiaaigdaaeqaaOGaeyyXICTaaCyzamaaBaaaleaacaaIXa aabeaaaOqaaiaah2gadaWgaaWcbaGaaGOmaaqabaGccqGHflY1caWH LbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaaCyBamaaBaaaleaacaaIZa aabeaakiabgwSixlaahwgadaWgaaWcbaGaaGymaaqabaaakeaacaWH TbWaaSbaaSqaaiaaigdaaeqaaOGaeyyXICTaaCyzamaaBaaaleaaca aIYaaabeaaaOqaaiaah2gadaWgaaWcbaGaaGOmaaqabaGccqGHflY1 caWHLbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaaCyBamaaBaaaleaaca aIZaaabeaakiabgwSixlaahwgadaWgaaWcbaGaaGOmaaqabaaakeaa caWHTbWaaSbaaSqaaiaaigdaaeqaaOGaeyyXICTaaCyzamaaBaaale aacaaIZaaabeaaaOqaaiaah2gadaWgaaWcbaGaaGOmaaqabaGccqGH flY1caWHLbWaaSbaaSqaaiaaiodaaeqaaaGcbaGaaCyBamaaBaaale aacaaIZaaabeaakiabgwSixlaahwgadaWgaaWcbaGaaG4maaqabaaa aaGccaGLBbGaayzxaaGaaGPaVlaaykW7daWadaabaeqabaGaeqySde 2aaSbaaSqaaiaaigdaaeqaaaGcbaGaeqySde2aaSbaaSqaaiaaikda aeqaaaGcbaGaeqySde2aaSbaaSqaaiaaiodaaeqaaaaakiaawUfaca GLDbaaaaa@855C@

Comparing this result with the formula for α i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHXoqydaWgaaWcbaGaamyAaaqaba aaaa@357F@  in terms of a i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGHbWaaSbaaSqaaiaadMgaaeqaaa aa@34C6@ , we see that

[ a ]= [ Q ] T [ α ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWadaqaaiaadggaaiaawUfacaGLDb aacqGH9aqpdaWadaqaaiaadgfaaiaawUfacaGLDbaadaahaaWcbeqa aiaadsfaaaGcdaWadaqaaiabeg7aHbGaay5waiaaw2faaaaa@3E0C@

where the superscript T denotes the transpose (rows and columns interchanged). The transformation matrix [ Q ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg faaiaawUfacaGLDbaaaaa@383D@  is therefore orthogonal, and satisfies

[ Q ] 1 = [ Q ] T [ Q ] [ Q ] T = [ Q ] T [ Q ]=[ I ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWadaqaaiaadgfaaiaawUfacaGLDb aadaahaaWcbeqaaiabgkHiTiaaigdaaaGccqGH9aqpdaWadaqaaiaa dgfaaiaawUfacaGLDbaadaahaaWcbeqaaiaadsfaaaGccaaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7daWadaqaaiaadgfaaiaawUfacaGLDbaadaWada qaaiaadgfaaiaawUfacaGLDbaadaahaaWcbeqaaiaadsfaaaGccqGH 9aqpdaWadaqaaiaadgfaaiaawUfacaGLDbaadaahaaWcbeqaaiaads faaaGcdaWadaqaaiaadgfaaiaawUfacaGLDbaacqGH9aqpdaWadaqa aiaadMeaaiaawUfacaGLDbaaaaa@60DB@

where [I] is the identity matrix.

 

 

 

 

 

 

 

 

 

5. Useful vector operations

 Calculating areas

The area of a triangle bounded by vectors a, b¸and b-a is

A= 1 2 |a×b| MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGbbGaeyypa0JaaGPaVpaalaaaba GaaGymaaqaaiaaikdaaaGaaiiFaiaahggacqGHxdaTcaWHIbGaaiiF aaaa@3D8F@

The area of the parallelogram shown in the picture is 2A.

 

 Calculating angles

The angle between two vectors a and b is

θ= cos 1 ( ab/| a || b | ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH4oqCcqGH9aqpcaaMc8Uaci4yai aac+gacaGGZbWaaWbaaSqabeaacqGHsislcaaIXaaaaOWaaeWaaeaa caWHHbGaeyyXICTaaCOyaiaac+cadaabdaqaaiaahggaaiaawEa7ca GLiWoadaabdaqaaiaahkgaaiaawEa7caGLiWoaaiaawIcacaGLPaaa aaa@4A32@

 

 Calculating the normal to a surface.

If two vectors a and b can be found which are known to lie in the surface, then the unit normal to the surface is

n=± a×b | a×b | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHUbGaeyypa0JaaGPaVlabgglaXo aalaaabaGaaCyyaiabgEna0kaahkgaaeaadaabdaqaaiaahggacqGH xdaTcaWHIbaacaGLhWUaayjcSdaaaaaa@4345@

If the surface is specified by a parametric equation of the form r=r(s,t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHYbGaeyypa0JaaGPaVlaahkhaca GGOaGaam4CaiaacYcacaWG0bGaaiykaaaa@3B46@ , where s and t are two parameters and r is the position vector of a point on the surface, then two vectors which lie in the plane may be computed from

a= r s ,b= r t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHHbGaeyypa0ZaaSaaaeaacqGHci ITcaWHYbaabaGaeyOaIyRaam4CaaaacaGGSaGaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaahkgacqGH9aqpdaWcaaqaai abgkGi2kaahkhaaeaacqGHciITcaWG0baaaaaa@4BC2@

 

 Calculating Volumes

The volume of the parallelopiped defined by three vectors a, b, c is

V=|c( a×b )| MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGwbGaeyypa0JaaiiFaiaaykW7ca WHJbGaeyyXIC9aaeWaaeaacaWHHbGaey41aqRaaCOyaaGaayjkaiaa wMcaaiaacYhaaaa@40DC@

The volume of the tetrahedron shown outlined in red is V/6.

 

 

 

 

 

 VECTOR FIELDS AND VECTOR CALCULUS

 

 

1. Scalar field.

 

Let  { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaahw gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaCyzamaaBaaaleaacaaI YaaabeaakiaacYcacaWHLbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7b GaayzFaaaaaa@3EA6@  be a Cartesian basis with origin O in three dimensional space.  Let

r= x 1 e 1 + x 2 e 2 + x 3 e 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHYbGaeyypa0JaaGPaVlaadIhada WgaaWcbaGaaGymaaqabaGccaWHLbWaaSbaaSqaaiaaigdaaeqaaOGa ey4kaSIaamiEamaaBaaaleaacaaIYaaabeaakiaahwgadaWgaaWcba GaaGOmaaqabaGccqGHRaWkcaWG4bWaaSbaaSqaaiaaiodaaeqaaOGa aCyzamaaBaaaleaacaaIZaaabeaaaaa@4378@

denote the position vector of a point in space.  A scalar field is a scalar valued function of position in space.  A scalar field is a function of the components of the position vector, and so may be expressed as ϕ( x 1 , x 2 , x 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHvpGzcaGGOaGaamiEamaaBaaale aacaaIXaaabeaakiaacYcacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGa aiilaiaadIhadaWgaaWcbaGaaG4maaqabaGccaGGPaaaaa@3D13@ . The value of ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHvpGzaaa@373D@  at a particular point in space must be independent of the choice of basis vectors.  A scalar field may be a function of time (and possibly other parameters) as well as position in space.

 

 

2. Vector field

 

Let  { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaahw gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaCyzamaaBaaaleaacaaI YaaabeaakiaacYcacaWHLbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7b GaayzFaaaaaa@3EA6@  be a Cartesian basis with origin O in three dimensional space.  Let

r= x 1 e 1 + x 2 e 2 + x 3 e 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHYbGaeyypa0JaaGPaVlaadIhada WgaaWcbaGaaGymaaqabaGccaWHLbWaaSbaaSqaaiaaigdaaeqaaOGa ey4kaSIaamiEamaaBaaaleaacaaIYaaabeaakiaahwgadaWgaaWcba GaaGOmaaqabaGccqGHRaWkcaWG4bWaaSbaaSqaaiaaiodaaeqaaOGa aCyzamaaBaaaleaacaaIZaaabeaaaaa@4378@

denote the position vector of a point in space.  A vector field is a vector valued function of position in space.  A vector field is a function of the components of the position vector, and so may be expressed as v( x 1 , x 2 , x 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWH2bGaaiikaiaadIhadaWgaaWcba GaaGymaaqabaGccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaakiaa cYcacaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaaiykaaaa@3C4A@ .  The vector may also be expressed as components in the basis { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaGadaqaaiaahwgadaWgaaWcbaGaaG ymaaqabaGccaGGSaGaaCyzamaaBaaaleaacaaIYaaabeaakiaacYca caWHLbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7bGaayzFaaGaaGPaVd aa@3D81@

v( x 1 , x 2 , x 3 )= v 1 ( x 1 , x 2 , x 3 ) e 1 + v 2 ( x 1 , x 2 , x 3 ) e 2 + v 3 ( x 1 , x 2 , x 3 ) e 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWH2bGaaiikaiaadIhadaWgaaWcba GaaGymaaqabaGccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaakiaa cYcacaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaaiykaiabg2da9iaadA hadaWgaaWcbaGaaGymaaqabaGccaGGOaGaamiEamaaBaaaleaacaaI XaaabeaakiaacYcacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaiilai aadIhadaWgaaWcbaGaaG4maaqabaGccaGGPaGaaCyzamaaBaaaleaa caaIXaaabeaakiabgUcaRiaadAhadaWgaaWcbaGaaGOmaaqabaGcca GGOaGaamiEamaaBaaaleaacaaIXaaabeaakiaacYcacaWG4bWaaSba aSqaaiaaikdaaeqaaOGaaiilaiaadIhadaWgaaWcbaGaaG4maaqaba GccaGGPaGaaCyzamaaBaaaleaacaaIYaaabeaakiabgUcaRiaadAha daWgaaWcbaGaaG4maaqabaGccaGGOaGaamiEamaaBaaaleaacaaIXa aabeaakiaacYcacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaiilaiaa dIhadaWgaaWcbaGaaG4maaqabaGccaGGPaGaaCyzamaaBaaaleaaca aIZaaabeaaaaa@6403@

The magnitude and direction of v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH2baaaa@3674@  at a particular point in space is independent of the choice of basis vectors.   A vector field may be a function of time (and possibly other parameters) as well as position in space.

 

 

3. Change of basis for scalar fields.

Let { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaahw gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaCyzamaaBaaaleaacaaI YaaabeaakiaacYcacaWHLbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7b GaayzFaaaaaa@3EA6@  be a Cartesian basis with origin O in three dimensional space. Express the position vector of a point relative to O in { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaahw gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaCyzamaaBaaaleaacaaI YaaabeaakiaacYcacaWHLbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7b GaayzFaaaaaa@3EA6@  as

r= x 1 e 1 + x 2 e 2 + x 3 e 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHYbGaeyypa0JaaGPaVlaadIhada WgaaWcbaGaaGymaaqabaGccaWHLbWaaSbaaSqaaiaaigdaaeqaaOGa ey4kaSIaamiEamaaBaaaleaacaaIYaaabeaakiaahwgadaWgaaWcba GaaGOmaaqabaGccqGHRaWkcaWG4bWaaSbaaSqaaiaaiodaaeqaaOGa aCyzamaaBaaaleaacaaIZaaabeaaaaa@4378@

and let ϕ( x 1 , x 2 , x 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHvpGzcaGGOaGaamiEamaaBaaale aacaaIXaaabeaakiaacYcacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGa aiilaiaadIhadaWgaaWcbaGaaG4maaqabaGccaGGPaGaaGPaVdaa@3E9E@  be a scalar field.

Let { m 1 , m 2 , m 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaGadaqaaiaah2gadaWgaaWcbaGaaG ymaaqabaGccaGGSaGaaCyBamaaBaaaleaacaaIYaaabeaakiaacYca caWHTbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7bGaayzFaaGaaGPaVd aa@3D99@  be a second Cartesian basis, with origin P.  Let c OP MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHJbGaeyyyIO7aa8HaaeaacaWGpb GaamiuaaGaay51GaGaaGPaVdaa@3A62@  denote the position vector of  P relative to O. Express the position vector of a point relative to P in { m 1 , m 2 , m 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaGadaqaaiaah2gadaWgaaWcbaGaaG ymaaqabaGccaGGSaGaaCyBamaaBaaaleaacaaIYaaabeaakiaacYca caWHTbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7bGaayzFaaGaaGPaVd aa@3D99@  as

p= ξ 1 m 1 + ξ 2 m 2 + ξ 3 m 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHWbGaeyypa0JaeqOVdG3aaSbaaS qaaiaaigdaaeqaaOGaaCyBamaaBaaaleaacaaIXaaabeaakiabgUca Riabe67a4naaBaaaleaacaaIYaaabeaakiaah2gadaWgaaWcbaGaaG OmaaqabaGccqGHRaWkcqaH+oaEdaWgaaWcbaGaaG4maaqabaGccaWH TbWaaSbaaSqaaiaaiodaaeqaaaaa@4455@

 

To find ϕ( ξ 1 , ξ 2 , ξ 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHvpGzcaGGOaGaeqOVdG3aaSbaaS qaaiaaigdaaeqaaOGaaiilaiabe67a4naaBaaaleaacaaIYaaabeaa kiaacYcacqaH+oaEdaWgaaWcbaGaaG4maaqabaGccaGGPaGaaGPaVd aa@40F0@ , use the following procedure.  First, express  p as components in the basis { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaGadaqaaiaahwgadaWgaaWcbaGaaG ymaaqabaGccaGGSaGaaCyzamaaBaaaleaacaaIYaaabeaakiaacYca caWHLbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7bGaayzFaaaaaa@3BF6@ , using the procedure outlined in Section 1.4:

p= p 1 e 1 + p 2 e 2 + p 3 e 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHWbGaeyypa0JaamiCamaaBaaale aacaaIXaaabeaakiaahwgadaWgaaWcbaGaaGymaaqabaGccqGHRaWk caWGWbWaaSbaaSqaaiaaikdaaeqaaOGaaCyzamaaBaaaleaacaaIYa aabeaakiabgUcaRiaadchadaWgaaWcbaGaaG4maaqabaGccaWHLbWa aSbaaSqaaiaaiodaaeqaaaaa@41D3@

where

p 1 = ξ 1 e 1 m 1 + ξ 2 e 2 m 1 + ξ 3 e 3 m 1 p 2 = ξ 1 e 1 m 2 + ξ 2 e 2 m 2 + ξ 3 e 3 m 2 p 3 = ξ 1 e 1 m 3 + ξ 2 e 2 m 3 + ξ 3 e 3 m 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakqaabeqaaiaadchadaWgaaWcbaGaaGymaa qabaGccqGH9aqpcqaH+oaEdaWgaaWcbaGaaGymaaqabaGccaWHLbWa aSbaaSqaaiaaigdaaeqaaOGaeyyXICTaaCyBamaaBaaaleaacaaIXa aabeaakiabgUcaRiabe67a4naaBaaaleaacaaIYaaabeaakiaahwga daWgaaWcbaGaaGOmaaqabaGccqGHflY1caWHTbWaaSbaaSqaaiaaig daaeqaaOGaey4kaSIaeqOVdG3aaSbaaSqaaiaaiodaaeqaaOGaaCyz amaaBaaaleaacaaIZaaabeaakiabgwSixlaah2gadaWgaaWcbaGaaG ymaaqabaaakeaacaWGWbWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0Ja eqOVdG3aaSbaaSqaaiaaigdaaeqaaOGaaCyzamaaBaaaleaacaaIXa aabeaakiabgwSixlaah2gadaWgaaWcbaGaaGOmaaqabaGccqGHRaWk cqaH+oaEdaWgaaWcbaGaaGOmaaqabaGccaWHLbWaaSbaaSqaaiaaik daaeqaaOGaeyyXICTaaCyBamaaBaaaleaacaaIYaaabeaakiabgUca Riabe67a4naaBaaaleaacaaIZaaabeaakiaahwgadaWgaaWcbaGaaG 4maaqabaGccqGHflY1caWHTbWaaSbaaSqaaiaaikdaaeqaaaGcbaGa amiCamaaBaaaleaacaaIZaaabeaakiabg2da9iabe67a4naaBaaale aacaaIXaaabeaakiaahwgadaWgaaWcbaGaaGymaaqabaGccqGHflY1 caWHTbWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaeqOVdG3aaSbaaS qaaiaaikdaaeqaaOGaaCyzamaaBaaaleaacaaIYaaabeaakiabgwSi xlaah2gadaWgaaWcbaGaaG4maaqabaGccqGHRaWkcqaH+oaEdaWgaa WcbaGaaG4maaqabaGccaWHLbWaaSbaaSqaaiaaiodaaeqaaOGaeyyX ICTaaCyBamaaBaaaleaacaaIZaaabeaaaaaa@8FD5@

or, using index notation

p i = Q ij ξ j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGWbWaaSbaaSqaaiaadMgaaeqaaO Gaeyypa0JaamyuamaaBaaaleaacaWGPbGaamOAaaqabaGccqaH+oaE daWgaaWcbaGaamOAaaqabaaaaa@3BAB@

where the transformation matrix Q ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGrbWaaSbaaS qaaiaadMgacaWGQbaabeaaaaa@3854@  is defined in Sect 1.4.

Now, express c as components in { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaGadaqaaiaahwgadaWgaaWcbaGaaG ymaaqabaGccaGGSaGaaCyzamaaBaaaleaacaaIYaaabeaakiaacYca caWHLbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7bGaayzFaaaaaa@3BF6@ , and note that

r=p+c x 1 e 1 + x 2 e 2 + x 3 e 3 = p 1 e 1 + p 2 e 2 + p 3 e 3 + c 1 e 1 + c 2 e 2 + c 3 e 3 x 1 = p 1 + c 1 , x 2 = p 2 + c 2 , x 3 = p 3 + c 3 x i = Q ij ξ j + c i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakqaabeqaaiaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaCOCaiabg2da9iaahchacqGH RaWkcaWHJbaabaGaeyO0H4TaaGPaVlaaykW7caWG4bWaaSbaaSqaai aaigdaaeqaaOGaaCyzamaaBaaaleaacaaIXaaabeaakiabgUcaRiaa dIhadaWgaaWcbaGaaGOmaaqabaGccaWHLbWaaSbaaSqaaiaahkdaae qaaOGaey4kaSIaamiEamaaBaaaleaacaaIZaaabeaakiaahwgadaWg aaWcbaGaaG4maaqabaGccqGH9aqpcaWGWbWaaSbaaSqaaiaaigdaae qaaOGaaCyzamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadchadaWg aaWcbaGaaGOmaaqabaGccaWHLbWaaSbaaSqaaiaahkdaaeqaaOGaey 4kaSIaamiCamaaBaaaleaacaaIZaaabeaakiaahwgadaWgaaWcbaGa aG4maaqabaGccqGHRaWkcaWGJbWaaSbaaSqaaiaaigdaaeqaaOGaaC yzamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadogadaWgaaWcbaGa aGOmaaqabaGccaWHLbWaaSbaaSqaaiaahkdaaeqaaOGaey4kaSIaam 4yamaaBaaaleaacaaIZaaabeaakiaahwgadaWgaaWcbaGaaG4maaqa baaakeaacqGHshI3caWG4bWaaSbaaSqaaiaaigdaaeqaaOGaeyypa0 JaamiCamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadogadaWgaaWc baGaaGymaaqabaGccaGGSaGaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaadIhadaWgaaWcbaGaaGOmaaqabaGccqGH9aqp caWGWbWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaam4yamaaBaaale aacaaIYaaabeaakiaacYcacaaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaamiEamaaBaaaleaacaaIZaaabeaakiabg2da9i aadchadaWgaaWcbaGaaG4maaqabaGccqGHRaWkcaWGJbWaaSbaaSqa aiaaiodaaeqaaaGcbaGaeyO0H4TaamiEamaaBaaaleaacaWGPbaabe aakiabg2da9iaadgfadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaeqOV dG3aaSbaaSqaaiaadQgaaeqaaOGaey4kaSIaam4yamaaBaaaleaaca WGPbaabeaaaaaa@B0DA@

so that

ϕ( x 1 , x 2 , x 3 )=ϕ( p 1 + c 1 , p 2 + c 2 , p 3 + c 3 ) =ϕ( Q 1j ξ j + c 1 , Q 2j ξ j + c 2 , Q 3j ξ j + c 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakqaabeqaaiabew9aMjaacIcacaWG4bWaaS baaSqaaiaaigdaaeqaaOGaaiilaiaadIhadaWgaaWcbaGaaGOmaaqa baGccaGGSaGaamiEamaaBaaaleaacaaIZaaabeaakiaacMcacqGH9a qpcqaHvpGzcaGGOaGaamiCamaaBaaaleaacaaIXaaabeaakiabgUca RiaadogadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamiCamaaBaaale aacaaIYaaabeaakiabgUcaRiaadogadaWgaaWcbaGaaGOmaaqabaGc caGGSaGaamiCamaaBaaaleaacaaIZaaabeaakiabgUcaRiaadogada WgaaWcbaGaaG4maaqabaGccaGGPaaabaGaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7cqGH9aqpcqaHvpGzcaGGOaGaamyuamaaBaaaleaacaaI XaGaamOAaaqabaGccqaH+oaEdaWgaaWcbaGaamOAaaqabaGccqGHRa WkcaWGJbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadgfadaWgaaWc baGaaGOmaiaadQgaaeqaaOGaeqOVdG3aaSbaaSqaaiaadQgaaeqaaO Gaey4kaSIaam4yamaaBaaaleaacaaIYaaabeaakiaacYcacaWGrbWa aSbaaSqaaiaaiodacaWGQbaabeaakiabe67a4naaBaaaleaacaWGQb aabeaakiabgUcaRiaadogadaWgaaWcbaGaaG4maaqabaGccaGGPaaa aaa@9BE1@

 

 

 

4. Change of basis for vector fields.

Let { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaahw gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaCyzamaaBaaaleaacaaI YaaabeaakiaacYcacaWHLbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7b GaayzFaaaaaa@3EA6@  be a Cartesian basis with origin O in three dimensional space. Express the position vector of a point relative to O in { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaahw gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaCyzamaaBaaaleaacaaI YaaabeaakiaacYcacaWHLbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7b GaayzFaaaaaa@3EA6@  as

r= x 1 e 1 + x 2 e 2 + x 3 e 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHYbGaeyypa0JaamiEamaaBaaale aacaaIXaaabeaakiaahwgadaWgaaWcbaGaaGymaaqabaGccqGHRaWk caWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaCyzamaaBaaaleaacaaIYa aabeaakiabgUcaRiaadIhadaWgaaWcbaGaaG4maaqabaGccaWHLbWa aSbaaSqaaiaaiodaaeqaaaaa@41ED@

and let v( x 1 , x 2 , x 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWH2bGaaiikaiaadIhadaWgaaWcba GaaGymaaqabaGccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaakiaa cYcacaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaaiykaaaa@3C4A@  be a vector  field, with components

v( x 1 , x 2 , x 3 )= v 1 ( x 1 , x 2 , x 3 ) e 1 + v 2 ( x 1 , x 2 , x 3 ) e 2 + v 3 ( x 1 , x 2 , x 3 ) e 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWH2bGaaiikaiaadIhadaWgaaWcba GaaGymaaqabaGccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaakiaa cYcacaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaaiykaiabg2da9iaadA hadaWgaaWcbaGaaGymaaqabaGccaGGOaGaamiEamaaBaaaleaacaaI XaaabeaakiaacYcacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaiilai aadIhadaWgaaWcbaGaaG4maaqabaGccaGGPaGaaCyzamaaBaaaleaa caaIXaaabeaakiabgUcaRiaadAhadaWgaaWcbaGaaGOmaaqabaGcca GGOaGaamiEamaaBaaaleaacaaIXaaabeaakiaacYcacaWG4bWaaSba aSqaaiaaikdaaeqaaOGaaiilaiaadIhadaWgaaWcbaGaaG4maaqaba GccaGGPaGaaCyzamaaBaaaleaacaaIYaaabeaakiabgUcaRiaadAha daWgaaWcbaGaaG4maaqabaGccaGGOaGaamiEamaaBaaaleaacaaIXa aabeaakiaacYcacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaiilaiaa dIhadaWgaaWcbaGaaG4maaqabaGccaGGPaGaaCyzamaaBaaaleaaca aIZaaabeaaaaa@6403@

Let { m 1 , m 2 , m 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaGadaqaaiaah2gadaWgaaWcbaGaaG ymaaqabaGccaGGSaGaaCyBamaaBaaaleaacaaIYaaabeaakiaacYca caWHTbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7bGaayzFaaaaaa@3C0E@  be a second Cartesian basis, with origin P.  Let c OP MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHJbGaeyyyIO7aa8HaaeaacaWGpb GaamiuaaGaay51Gaaaaa@38D7@  denote the position vector of  P relative to O. Express the position vector of a point relative to P in { m 1 , m 2 , m 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaah2 gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaCyBamaaBaaaleaacaaI YaaabeaakiaacYcacaWHTbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7b GaayzFaaaaaa@3EBE@  as

p= ξ 1 m 1 + ξ 2 m 2 + ξ 3 m 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHWbGaeyypa0JaeqOVdG3aaSbaaS qaaiaaigdaaeqaaOGaaCyBamaaBaaaleaacaaIXaaabeaakiabgUca Riabe67a4naaBaaaleaacaaIYaaabeaakiaah2gadaWgaaWcbaGaaG OmaaqabaGccqGHRaWkcqaH+oaEdaWgaaWcbaGaaG4maaqabaGccaWH TbWaaSbaaSqaaiaaiodaaeqaaaaa@4455@

 

To express the vector field as components in { m 1 , m 2 , m 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaGadaqaaiaah2gadaWgaaWcbaGaaG ymaaqabaGccaGGSaGaaCyBamaaBaaaleaacaaIYaaabeaakiaacYca caWHTbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7bGaayzFaaaaaa@3C0E@  and as a function of the components of p, use the following procedure.  First, express ( v 1 , v 2 , v 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaGGOaGaamODamaaBaaaleaacaaIXa aabeaakiaacYcacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaaiilaiaa dAhadaWgaaWcbaGaaG4maaqabaGccaGGPaaaaa@3B45@  in terms of ( ξ 1 , ξ 2 , ξ 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaGGOaGaeqOVdG3aaSbaaSqaaiaaig daaeqaaOGaaiilaiabe67a4naaBaaaleaacaaIYaaabeaakiaacYca cqaH+oaEdaWgaaWcbaGaaG4maaqabaGccaGGPaaaaa@3D9D@  using the procedure outlined for scalar fields in the preceding section

v k ( x 1 , x 2 , x 3 )= v k ( p 1 + c 1 , p 2 + c 2 , p 3 + c 3 ) = v k ( Q 1j ξ j + c 1 , Q 2j ξ j + c 2 , Q 3j ξ j + c 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakqaabeqaaiaadAhadaWgaaWcbaGaam4Aaa qabaGccaGGOaGaamiEamaaBaaaleaacaaIXaaabeaakiaacYcacaWG 4bWaaSbaaSqaaiaaikdaaeqaaOGaaiilaiaadIhadaWgaaWcbaGaaG 4maaqabaGccaGGPaGaeyypa0JaamODamaaBaaaleaacaWGRbaabeaa kiaacIcacaWGWbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaam4yam aaBaaaleaacaaIXaaabeaakiaacYcacaWGWbWaaSbaaSqaaiaaikda aeqaaOGaey4kaSIaam4yamaaBaaaleaacaaIYaaabeaakiaacYcaca WGWbWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaam4yamaaBaaaleaa caaIZaaabeaakiaacMcaaeaacaaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa Vlabg2da9iaadAhadaWgaaWcbaGaam4AaaqabaGccaGGOaGaamyuam aaBaaaleaacaaIXaGaamOAaaqabaGccqaH+oaEdaWgaaWcbaGaamOA aaqabaGccqGHRaWkcaWGJbWaaSbaaSqaaiaaigdaaeqaaOGaaiilai aadgfadaWgaaWcbaGaaGOmaiaadQgaaeqaaOGaeqOVdG3aaSbaaSqa aiaadQgaaeqaaOGaey4kaSIaam4yamaaBaaaleaacaaIYaaabeaaki aacYcacaWGrbWaaSbaaSqaaiaaiodacaWGQbaabeaakiabe67a4naa BaaaleaacaWGQbaabeaakiabgUcaRiaadogadaWgaaWcbaGaaG4maa qabaGccaGGPaaaaaa@9CEC@

for k=1,2,3.  Now, find the components  of v in { m 1 , m 2 , m 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaGadaqaaiaah2gadaWgaaWcbaGaaG ymaaqabaGccaGGSaGaaCyBamaaBaaaleaacaaIYaaabeaakiaacYca caWHTbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7bGaayzFaaaaaa@3C0E@  using the procedure outlined in Section 1.4.  Using index notation, the result is

v= Q 1i v i ( Q 1j ξ j + c 1 , Q 2j ξ j + c 2 , Q 3j ξ j + c 3 ) e 1 + Q 2i v i ( Q 1j ξ j + c 1 , Q 2j ξ j + c 2 , Q 3j ξ j + c 3 ) e 2 + Q 2i v i ( Q 1j ξ j + c 1 , Q 2j ξ j + c 2 , Q 3j ξ j + c 3 ) e 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakqaabeqaaiaahAhacqGH9aqpcaWGrbWaaS baaSqaaiaaigdacaWGPbaabeaakiaadAhadaWgaaWcbaGaamyAaaqa baGccaGGOaGaamyuamaaBaaaleaacaaIXaGaamOAaaqabaGccqaH+o aEdaWgaaWcbaGaamOAaaqabaGccqGHRaWkcaWGJbWaaSbaaSqaaiaa igdaaeqaaOGaaiilaiaadgfadaWgaaWcbaGaaGOmaiaadQgaaeqaaO GaeqOVdG3aaSbaaSqaaiaadQgaaeqaaOGaey4kaSIaam4yamaaBaaa leaacaaIYaaabeaakiaacYcacaWGrbWaaSbaaSqaaiaaiodacaWGQb aabeaakiabe67a4naaBaaaleaacaWGQbaabeaakiabgUcaRiaadoga daWgaaWcbaGaaG4maaqabaGccaGGPaGaaCyzamaaBaaaleaacaaIXa aabeaaaOqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlab gUcaRiaadgfadaWgaaWcbaGaaGOmaiaadMgaaeqaaOGaamODamaaBa aaleaacaWGPbaabeaakiaacIcacaWGrbWaaSbaaSqaaiaaigdacaWG Qbaabeaakiabe67a4naaBaaaleaacaWGQbaabeaakiabgUcaRiaado gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamyuamaaBaaaleaacaaI YaGaamOAaaqabaGccqaH+oaEdaWgaaWcbaGaamOAaaqabaGccqGHRa WkcaWGJbWaaSbaaSqaaiaaikdaaeqaaOGaaiilaiaadgfadaWgaaWc baGaaG4maiaadQgaaeqaaOGaeqOVdG3aaSbaaSqaaiaadQgaaeqaaO Gaey4kaSIaam4yamaaBaaaleaacaaIZaaabeaakiaacMcacaWHLbWa aSbaaSqaaiaaikdaaeqaaaGcbaGaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8Uaey4kaSIaamyuamaaBaaaleaacaaIYaGaamyAaaqa baGccaWG2bWaaSbaaSqaaiaadMgaaeqaaOGaaiikaiaadgfadaWgaa WcbaGaaGymaiaadQgaaeqaaOGaeqOVdG3aaSbaaSqaaiaadQgaaeqa aOGaey4kaSIaam4yamaaBaaaleaacaaIXaaabeaakiaacYcacaWGrb WaaSbaaSqaaiaaikdacaWGQbaabeaakiabe67a4naaBaaaleaacaWG QbaabeaakiabgUcaRiaadogadaWgaaWcbaGaaGOmaaqabaGccaGGSa GaamyuamaaBaaaleaacaaIZaGaamOAaaqabaGccqaH+oaEdaWgaaWc baGaamOAaaqabaGccqGHRaWkcaWGJbWaaSbaaSqaaiaaiodaaeqaaO GaaiykaiaahwgadaWgaaWcbaGaaG4maaqabaaaaaa@B08C@

 

 

5. Time derivatives of vectors

 

Let a(t) be a vector whose magnitude and direction vary with time, t.  Suppose that { i,j,k } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaahM gacaGGSaGaaCOAaiaacYcacaWHRbaacaGL7bGaayzFaaaaaa@3BDF@  is a fixed basis, i.e. independent of time.  We may express a(t) in terms of components ( a x , a y , a z ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaamyyam aaBaaaleaacaWG4baabeaakiaacYcacaWGHbWaaSbaaSqaaiaadMha aeqaaOGaaiilaiaadggadaWgaaWcbaGaamOEaaqabaGccaGGPaaaaa@3E7C@  in the basis { i,j,k } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaahM gacaGGSaGaaCOAaiaacYcacaWHRbaacaGL7bGaayzFaaaaaa@3BDF@  as

a(t)= a x i+ a y j+ a z k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHHbGaaiikai aadshacaGGPaGaeyypa0JaamyyamaaBaaaleaacaWG4baabeaakiaa hMgacqGHRaWkcaWGHbWaaSbaaSqaaiaadMhaaeqaaOGaaCOAaiabgU caRiaadggadaWgaaWcbaGaamOEaaqabaGccaWHRbaaaa@44A2@ .

The time derivative of a is defined using the usual rules of calculus

a ˙ (t)= d dt a(t)= lim 0 a(t+)a(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWHHbGbaiaaca GGOaGaamiDaiaacMcacqGH9aqpdaWcaaqaaiaadsgaaeaacaWGKbGa amiDaaaacaWHHbGaaiikaiaadshacaGGPaGaeyypa0ZaaCbeaeaaci GGSbGaaiyAaiaac2gaaSqaaiabgIGiolabgkziUkaaicdaaeqaaOWa aSaaaeaacaWHHbGaaiikaiaadshacqGHRaWkcqGHiiIZcaGGPaGaey OeI0IaaCyyaiaacIcacaWG0bGaaiykaaqaaiabgIGiodaaaaa@537A@ ,

or in component form as

a ˙ (t)= a ˙ x i+ a ˙ y j+ a ˙ z k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWHHbGbaiaaca GGOaGaamiDaiaacMcacqGH9aqpceWGHbGbaiaadaWgaaWcbaGaamiE aaqabaGccaWHPbGaey4kaSIabmyyayaacaWaaSbaaSqaaiaadMhaae qaaOGaaCOAaiabgUcaRiqadggagaGaamaaBaaaleaacaWG6baabeaa kiaahUgaaaa@44C6@

The definition of the time derivative of a vector may be used to show the following rules

d dt [ α(t)a(t) ]= α ˙ (t)a(t)+α(t) a ˙ (t) d dt [ a(t)b(t) ]= a ˙ (t)b(t)+a(t) b ˙ (t) d dt [ a(t)×b(t) ]= a ˙ (t)×b(t)+a(t)× b ˙ (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaamaalaaaba GaamizaaqaaiaadsgacaWG0baaamaadmaabaGaeqySdeMaaiikaiaa dshacaGGPaGaaCyyaiaacIcacaWG0bGaaiykaaGaay5waiaaw2faai abg2da9iqbeg7aHzaacaGaaiikaiaadshacaGGPaGaaCyyaiaacIca caWG0bGaaiykaiabgUcaRiabeg7aHjaacIcacaWG0bGaaiykaiqahg gagaGaaiaacIcacaWG0bGaaiykaaqaamaalaaabaGaamizaaqaaiaa dsgacaWG0baaamaadmaabaGaaCyyaiaacIcacaWG0bGaaiykaiabgw SixlaahkgacaGGOaGaamiDaiaacMcaaiaawUfacaGLDbaacqGH9aqp ceWHHbGbaiaacaGGOaGaamiDaiaacMcacqGHflY1caWHIbGaaiikai aadshacaGGPaGaey4kaSIaaCyyaiaacIcacaWG0bGaaiykaiabgwSi xlqahkgagaGaaiaacIcacaWG0bGaaiykaaqaamaalaaabaGaamizaa qaaiaadsgacaWG0baaamaadmaabaGaaCyyaiaacIcacaWG0bGaaiyk aiabgEna0kaahkgacaGGOaGaamiDaiaacMcaaiaawUfacaGLDbaacq GH9aqpceWHHbGbaiaacaGGOaGaamiDaiaacMcacqGHxdaTcaWHIbGa aiikaiaadshacaGGPaGaey4kaSIaaCyyaiaacIcacaWG0bGaaiykai abgEna0kqahkgagaGaaiaacIcacaWG0bGaaiykaaaaaa@9352@

 

 

6. Using a rotating basis

 

It is often convenient to express position vectors as components in a basis which rotates with time.  To write equations of motion one must evaluate time derivatives of rotating vectors.

 

Let { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaahw gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaCyzamaaBaaaleaacaaI YaaabeaakiaacYcacaWHLbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7b GaayzFaaaaaa@3EA6@  be a basis which rotates with instantaneous angular velocity Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHPoaaaa@33FA@ .  Then,

d e 1 dt =Ω× e 1 , d e 2 dt =Ω× e 2 , d e 3 dt =Ω× e 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWcaaqaaiaadsgacaWHLbWaaSbaaS qaaiaaigdaaeqaaaGcbaGaamizaiaadshaaaGaeyypa0JaaCyQdiab gEna0kaahwgadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVpaalaaabaGaamizaiaa hwgadaWgaaWcbaGaaGOmaaqabaaakeaacaWGKbGaamiDaaaacqGH9a qpcaWHPoGaey41aqRaaCyzamaaBaaaleaacaaIYaaabeaakiaacYca caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7daWcaaqaaiaads gacaWHLbWaaSbaaSqaaiaaiodaaeqaaaGcbaGaamizaiaadshaaaGa eyypa0JaaCyQdiabgEna0kaahwgadaWgaaWcbaGaaG4maaqabaaaaa@68F1@

 

 

7. Gradient of a scalar field.

 

Let ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHvpGzaaa@373D@  be a scalar field in three dimensional space.  The gradient of ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHvpGzaaa@373D@  is a vector field denoted by grad(ϕ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaqGNbGaaeOCai aabggacaqGKbGaaiikaiabew9aMjaacMcaaaa@3C40@  or ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqGHhis0cqaHvpGzaaa@3613@ , and is defined so that

(ϕ)a= lim 0 ϕ(r+a)ϕ(r) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaGGOaGaey4bIeTaeqy1dyMaaiykai abgwSixlaahggacqGH9aqpdaWfqaqaaiGacYgacaGGPbGaaiyBaaWc baGaeyicI4SaeyOKH4QaaGimaaqabaGcdaWcaaqaaiabew9aMjaacI cacaWHYbGaey4kaSIaeyicI4SaaGPaVlaahggacaGGPaGaeyOeI0Ia eqy1dyMaaiikaiaahkhacaGGPaaabaGaeyicI4maaaaa@5278@

for every position r in space and for every vector a.

 

Let  { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaahw gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaCyzamaaBaaaleaacaaI YaaabeaakiaacYcacaWHLbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7b GaayzFaaaaaa@3EA6@  be a Cartesian basis with origin O in three dimensional space.  Let

r= x 1 e 1 + x 2 e 2 + x 3 e 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHYbGaeyypa0JaamiEamaaBaaale aacaaIXaaabeaakiaahwgadaWgaaWcbaGaaGymaaqabaGccqGHRaWk caWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaCyzamaaBaaaleaacaaIYa aabeaakiabgUcaRiaadIhadaWgaaWcbaGaaG4maaqabaGccaWHLbWa aSbaaSqaaiaaiodaaeqaaaaa@41ED@

denote the position vector of a point in space.  Express ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHvpGzaaa@373D@  as a function of the components of r ϕ=ϕ( x 1 , x 2 , x 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHvpGzcqGH9aqpcqaHvpGzcaGGOa GaamiEamaaBaaaleaacaaIXaaabeaakiaacYcacaWG4bWaaSbaaSqa aiaaikdaaeqaaOGaaiilaiaadIhadaWgaaWcbaGaaG4maaqabaGcca GGPaaaaa@3FE1@ .  The gradient of  ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHvpGzaaa@373D@  in this basis is then given by

ϕ= ϕ x 1 e 1 + ϕ x 2 e 2 + ϕ x 3 e 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqGHhis0cqaHvpGzcqGH9aqpdaWcaa qaaiabgkGi2kabew9aMbqaaiabgkGi2kaadIhadaWgaaWcbaGaaGym aaqabaaaaOGaaCyzamaaBaaaleaacaaIXaaabeaakiabgUcaRmaala aabaGaeyOaIyRaeqy1dygabaGaeyOaIyRaamiEamaaBaaaleaacaaI YaaabeaaaaGccaWHLbWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSYaaS aaaeaacqGHciITcqaHvpGzaeaacqGHciITcaWG4bWaaSbaaSqaaiaa iodaaeqaaaaakiaahwgadaWgaaWcbaGaaG4maaqabaaaaa@522C@

 

8. Gradient of a vector field

 

Let v be a vector field in three dimensional space.  The gradient of v is a tensor field denoted by grad(v) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaqGNbGaaeOCaiaabggacaqGKbGaai ikaiaahAhacaGGPaaaaa@38C7@  or v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqGHhis0caWH2baaaa@354A@ , and is defined so that

(v)a= lim 0 v(r+a)v(r) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaGGOaGaey4bIeTaaCODaiaacMcacq GHflY1caWHHbGaeyypa0ZaaCbeaeaaciGGSbGaaiyAaiaac2gaaSqa aiabgIGiolabgkziUkaaicdaaeqaaOWaaSaaaeaacaWH2bGaaiikai aahkhacqGHRaWkcqGHiiIZcaaMc8UaaCyyaiaacMcacqGHsislcaWH 2bGaaiikaiaahkhacaGGPaaabaGaeyicI4maaaaa@501D@

for every position r in space and for every vector a.

 

Let  { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaGadaqaaiaahwgadaWgaaWcbaGaaG ymaaqabaGccaGGSaGaaCyzamaaBaaaleaacaaIYaaabeaakiaacYca caWHLbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7bGaayzFaaaaaa@3BF6@  be a Cartesian basis with origin O in three dimensional space.  Let

r= x 1 e 1 + x 2 e 2 + x 3 e 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHYbGaeyypa0JaamiEamaaBaaale aacaaIXaaabeaakiaahwgadaWgaaWcbaGaaGymaaqabaGccqGHRaWk caWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaCyzamaaBaaaleaacaaIYa aabeaakiabgUcaRiaadIhadaWgaaWcbaGaaG4maaqabaGccaWHLbWa aSbaaSqaaiaaiodaaeqaaaaa@41ED@

denote the position vector of a point in space.  Express v as a function of the components of r, so that v=v( x 1 , x 2 , x 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWH2bGaeyypa0JaaCODaiaacIcaca WG4bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadIhadaWgaaWcbaGa aGOmaaqabaGccaGGSaGaamiEamaaBaaaleaacaaIZaaabeaakiaacM caaaa@3E4F@ .  The gradient of  v in this basis is then given by

v=[ v 1 x 1 v 1 x 2 v 1 x 3 v 2 x 1 v 2 x 2 v 2 x 3 v 3 x 1 v 3 x 2 v 3 x 3 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqGHhis0caWH2bGaeyypa0ZaamWaae aafaqabeWadaaabaWaaSaaaeaacqGHciITcaWG2bWaaSbaaSqaaiaa igdaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaaIXaaabeaaaa aakeaadaWcaaqaaiabgkGi2kaadAhadaWgaaWcbaGaaGymaaqabaaa keaacqGHciITcaWG4bWaaSbaaSqaaiaaikdaaeqaaaaaaOqaamaala aabaGaeyOaIyRaamODamaaBaaaleaacaaIXaaabeaaaOqaaiabgkGi 2kaadIhadaWgaaWcbaGaaG4maaqabaaaaaGcbaWaaSaaaeaacqGHci ITcaWG2bWaaSbaaSqaaiaaikdaaeqaaaGcbaGaeyOaIyRaamiEamaa BaaaleaacaaIXaaabeaaaaaakeaadaWcaaqaaiabgkGi2kaadAhada WgaaWcbaGaaGOmaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaa ikdaaeqaaaaaaOqaamaalaaabaGaeyOaIyRaamODamaaBaaaleaaca aIYaaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaaG4maaqabaaa aaGcbaWaaSaaaeaacqGHciITcaWG2bWaaSbaaSqaaiaaiodaaeqaaa GcbaGaeyOaIyRaamiEamaaBaaaleaacaaIXaaabeaaaaaakeaadaWc aaqaaiabgkGi2kaadAhadaWgaaWcbaGaaG4maaqabaaakeaacqGHci ITcaWG4bWaaSbaaSqaaiaaikdaaeqaaaaaaOqaamaalaaabaGaeyOa IyRaamODamaaBaaaleaacaaIZaaabeaaaOqaaiabgkGi2kaadIhada WgaaWcbaGaaG4maaqabaaaaaaaaOGaay5waiaaw2faaaaa@74D1@

Alternatively, in index notation

[ v ] ij v i x j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWadaqaaiabgEGirlaahAhaaiaawU facaGLDbaadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaeyyyIO7aaSaa aeaacqGHciITcaWG2bWaaSbaaSqaaiaadMgaaeqaaaGcbaGaeyOaIy RaamiEamaaBaaaleaacaWGQbaabeaaaaaaaa@422B@

 

9. Divergence of a vector field

 

Let v be a vector field in three dimensional space.  The divergence of v is a scalar field denoted by div(v) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaqGKbGaaeyAaiaabAhacaGGOaGaaC ODaiaacMcaaaa@37E9@  or v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqGHhis0cqGHflY1caWH2baaaa@3794@ .  Formally, it is defined as trace(grad(v)) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaqG0bGaaeOCaiaabggacaqGJbGaae yzaiaabIcacaqGNbGaaeOCaiaabggacaqGKbGaaeikaiaahAhacaqG PaGaaeykaaaa@3EBA@  (the trace of a tensor is the sum of its diagonal terms). 

 

Let  { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGadaqaaiaahw gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaCyzamaaBaaaleaacaaI YaaabeaakiaacYcacaWHLbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7b GaayzFaaaaaa@3EA6@  be a Cartesian basis with origin O in three dimensional space.  Let

r= x 1 e 1 + x 2 e 2 + x 3 e 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHYbGaeyypa0JaamiEamaaBaaale aacaaIXaaabeaakiaahwgadaWgaaWcbaGaaGymaaqabaGccqGHRaWk caWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaCyzamaaBaaaleaacaaIYa aabeaakiabgUcaRiaadIhadaWgaaWcbaGaaG4maaqabaGccaWHLbWa aSbaaSqaaiaaiodaaeqaaaaa@41ED@

denote the position vector of a point in space.  Express v as a function of the components of r: v=v( x 1 , x 2 , x 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWH2bGaeyypa0JaaCODaiaacIcaca WG4bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadIhadaWgaaWcbaGa aGOmaaqabaGccaGGSaGaamiEamaaBaaaleaacaaIZaaabeaakiaacM caaaa@3E4F@ . The divergence of v is then

 

div(v)= v 1 x 1 + v 2 x 2 + v 3 x 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaqGKbGaaeyAaiaabAhacaqGOaGaaC ODaiaabMcacaqG9aWaaSaaaeaacqGHciITcaWG2bWaaSbaaSqaaiaa igdaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaaIXaaabeaaaa GccqGHRaWkdaWcaaqaaiabgkGi2kaadAhadaWgaaWcbaGaaGOmaaqa baaakeaacqGHciITcaWG4bWaaSbaaSqaaiaaikdaaeqaaaaakiabgU caRmaalaaabaGaeyOaIyRaamODamaaBaaaleaacaaIZaaabeaaaOqa aiabgkGi2kaadIhadaWgaaWcbaGaaG4maaqabaaaaaaa@4E89@

 

 

10. Curl of a vector field.

 

Let v be a vector field in three dimensional space.  The curl of  v  is a vector field denoted by curl(v) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaqGJbGaaeyDaiaabkhacaqGSbGaai ikaiaahAhacaGGPaaaaa@38DF@  or ×v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqGHhis0cqGHxdaTcaWH2baaaa@3761@ .  It is best defined in terms of its components in a given basis, although its magnitude and direction are not dependent on the choice of basis.

 

Let  { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaGadaqaaiaahwgadaWgaaWcbaGaaG ymaaqabaGccaGGSaGaaCyzamaaBaaaleaacaaIYaaabeaakiaacYca caWHLbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7bGaayzFaaaaaa@3BF6@  be a Cartesian basis with origin O in three dimensional space.  Let

r= x 1 e 1 + x 2 e 2 + x 3 e 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHYbGaeyypa0JaamiEamaaBaaale aacaaIXaaabeaakiaahwgadaWgaaWcbaGaaGymaaqabaGccqGHRaWk caWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaCyzamaaBaaaleaacaaIYa aabeaakiabgUcaRiaadIhadaWgaaWcbaGaaG4maaqabaGccaWHLbWa aSbaaSqaaiaaiodaaeqaaaaa@41ED@

denote the position vector of a point in space.  Express v as a function of the components of r  v=v( x 1 , x 2 , x 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWH2bGaeyypa0JaaCODaiaacIcaca WG4bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadIhadaWgaaWcbaGa aGOmaaqabaGccaGGSaGaamiEamaaBaaaleaacaaIZaaabeaakiaacM caaaa@3E4F@ . The curl of  v in this basis is then given by

×v=| e 1 e 2 e 3 x 1 x 2 x 3 v 1 v 2 v 3 |=( v 3 x 2 v 2 x 3 ) e 1 +( v 1 x 3 v 3 x 1 ) e 2 +( v 2 x 1 v 1 x 2 ) e 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqGHhis0cqGHxdaTcaWH2bGaeyypa0 ZaaqWaaeaafaqabeWadaaabaGaaCyzamaaBaaaleaacaaIXaaabeaa aOqaaiaahwgadaWgaaWcbaGaaGOmaaqabaaakeaacaWHLbWaaSbaaS qaaiaaiodaaeqaaaGcbaWaaSaaaeaacqGHciITaeaacqGHciITcaWG 4bWaaSbaaSqaaiaaigdaaeqaaaaaaOqaamaalaaabaGaeyOaIylaba GaeyOaIyRaamiEamaaBaaaleaacaaIYaaabeaaaaaakeaadaWcaaqa aiabgkGi2cqaaiabgkGi2kaadIhadaWgaaWcbaGaaG4maaqabaaaaa GcbaGaamODamaaBaaaleaacaaIXaaabeaaaOqaaiaadAhadaWgaaWc baGaaGOmaaqabaaakeaacaWG2bWaaSbaaSqaaiaaiodaaeqaaaaaaO Gaay5bSlaawIa7aiabg2da9maabmaabaWaaSaaaeaacqGHciITcaWG 2bWaaSbaaSqaaiaaiodaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaale aacaaIYaaabeaaaaGccqGHsisldaWcaaqaaiabgkGi2kaadAhadaWg aaWcbaGaaGOmaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaaio daaeqaaaaaaOGaayjkaiaawMcaaiaahwgadaWgaaWcbaGaaGymaaqa baGccqGHRaWkdaqadaqaamaalaaabaGaeyOaIyRaamODamaaBaaale aacaaIXaaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaaG4maaqa baaaaOGaeyOeI0YaaSaaaeaacqGHciITcaWG2bWaaSbaaSqaaiaaio daaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaaIXaaabeaaaaaa kiaawIcacaGLPaaacaWHLbWaaSbaaSqaaiaaikdaaeqaaOGaey4kaS YaaeWaaeaadaWcaaqaaiabgkGi2kaadAhadaWgaaWcbaGaaGOmaaqa baaakeaacqGHciITcaWG4bWaaSbaaSqaaiaaigdaaeqaaaaakiabgk HiTmaalaaabaGaeyOaIyRaamODamaaBaaaleaacaaIXaaabeaaaOqa aiabgkGi2kaadIhadaWgaaWcbaGaaGOmaaqabaaaaaGccaGLOaGaay zkaaGaaCyzamaaBaaaleaacaaIZaaabeaaaaa@8D7A@

Using index notation, this may be expressed as

[ ×v ] i = ijk v k x j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWadaqaaiabgEGirlabgEna0kaahA haaiaawUfacaGLDbaadaWgaaWcbaGaamyAaaqabaGccqGH9aqpcqGH iiIZdaWgaaWcbaGaamyAaiaadQgacaWGRbaabeaakmaalaaabaGaey OaIyRaamODamaaBaaaleaacaWGRbaabeaaaOqaaiabgkGi2kaadIha daWgaaWcbaGaamOAaaqabaaaaaaa@4719@

 

 

11. The Divergence Theorem.

Let V be a closed region in three dimensional space, bounded by an orientable surface S. Let n  denote the unit vector normal to S, taken so that n points out of V. Let u be a vector field which is continuous and has continuous first partial derivatives in some domain containing T.  Then

V div(u) dV= S un dA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWdrbqaaiaabsgacaqGPbGaaeODai aabIcacaWH1bGaaeykaaWcbaGaamOvaaqab0Gaey4kIipakiaaykW7 caWGKbGaamOvaiabg2da9maapefabaGaaCyDaiabgwSixlaah6gaaS qaaiaadofaaeqaniabgUIiYdGccaaMc8Uaamizaiaadgeaaaa@4A0F@

alternatively, expressed in index notation

V u i x i dV= S u i n i dA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWdrbqaamaalaaabaGaeyOaIyRaam yDamaaBaaaleaacaWGPbaabeaaaOqaaiabgkGi2kaadIhadaWgaaWc baGaamyAaaqabaaaaOGaamizaiaadAfacqGH9aqpdaWdrbqaaiaadw hadaWgaaWcbaGaamyAaaqabaGccaWGUbWaaSbaaSqaaiaadMgaaeqa aOGaamizaiaadgeaaSqaaiaadofaaeqaniabgUIiYdaaleaacaWGwb aabeqdcqGHRiI8aaaa@48D5@

For a proof of this extremely useful theorem consult e.g. Kreyzig, Advanced Engineering Mathematics, Wiley, New York, (1998).

 

 

 

MATRICES

 

1. Definition

 

An (n×m) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaamOBai abgEna0kaad2gacaGGPaaaaa@3ACA@  matrix [A] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGBbGaamyqai aac2faaaa@37FB@  is a set of numbers, arranged in m rows and n columns

[ A ]=[ a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n a m1 a m2 a m3 a mn ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaacqGH9aqpdaWadaabaeqabaGaamyyamaaBaaa leaacaaIXaGaaGymaaqabaGccaaMc8UaaGPaVlaaykW7caWGHbWaaS baaSqaaiaaigdacaaIYaaabeaakiaaykW7caaMc8UaaGPaVlaadgga daWgaaWcbaGaaGymaiaaiodaaeqaaOGaaGPaVlaaykW7cqWIVlctca aMc8UaaGPaVlaadggadaWgaaWcbaGaaGymaiaad6gaaeqaaaGcbaGa amyyamaaBaaaleaacaaIYaGaaGymaaqabaGccaaMc8UaaGPaVlaayk W7caWGHbWaaSbaaSqaaiaaikdacaaIYaaabeaakiaaykW7caaMc8Ua aGPaVlaadggadaWgaaWcbaGaaGOmaiaaiodaaeqaaOGaaGPaVlaayk W7cqWIVlctcaaMc8UaaGPaVlaadggadaWgaaWcbaGaaGOmaiaad6ga aeqaaaGcbaGaaGPaVlaaykW7cqWIUlstcaaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabl6UinjaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaeSO7I0KaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlablgVipjaaykW7caaMc8UaaGPaVlabl6Uinbqaaiaadggada WgaaWcbaGaamyBaiaaigdaaeqaaOGaaGPaVlaaykW7caaMc8Uaamyy amaaBaaaleaacaWGTbGaaGOmaaqabaGccaaMc8UaaGPaVlaaykW7ca WGHbWaaSbaaSqaaiaad2gacaaIZaaabeaakiaaykW7caaMc8UaeS47 IWKaaGPaVlaaykW7caWGHbWaaSbaaSqaaiaad2gacaWGUbaabeaaaa GccaGLBbGaayzxaaaaaa@C92B@

 

 A square matrix has equal numbers of rows and columns

 A diagonal matrix is a square matrix with elements such that a ij =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaadMgacaWGQbaabeaakiabg2da9iaaicdaaaa@3A2E@  for ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbGaeyiyIK RaamOAaaaa@3919@

 The identity matrix [ I ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadM eaaiaawUfacaGLDbaaaaa@3835@  is a diagonal matrix for which all diagonal elements a ii =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaadMgacaWGPbaabeaakiabg2da9iaaigdaaaa@3A2E@

 A symmetric matrix is a square matrix with elements such that a ij = a ji MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaadMgacaWGQbaabeaakiabg2da9iaadggadaWgaaWcbaGaamOA aiaadMgaaeqaaaaa@3C63@

 A skew symmetric matrix is a square matrix with elements such that a ij = a ji MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaadMgacaWGQbaabeaakiabg2da9iabgkHiTiaadggadaWgaaWc baGaamOAaiaadMgaaeqaaaaa@3D50@

 

 

2. Matrix operations

 

 Addition  Let  [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaaaaa@382D@  and [ B ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadk eaaiaawUfacaGLDbaaaaa@382E@  be two matrices of order (m×n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaamyBai abgEna0kaad6gacaGGPaaaaa@3ACA@  with elements a ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaadMgacaWGQbaabeaaaaa@3864@  and b ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGIbWaaSbaaS qaaiaadMgacaWGQbaabeaaaaa@3865@ .  Then

[ C ]=[ A ]+[ B ] c ij = a ij + b ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaado eaaiaawUfacaGLDbaacqGH9aqpdaWadaqaaiaadgeaaiaawUfacaGL DbaacqGHRaWkdaWadaqaaiaadkeaaiaawUfacaGLDbaacqGHuhY2ca WGJbWaaSbaaSqaaiaadMgacaWGQbaabeaakiabg2da9iaadggadaWg aaWcbaGaamyAaiaadQgaaeqaaOGaey4kaSIaamOyamaaBaaaleaaca WGPbGaamOAaaqabaaaaa@4CB0@

 

 

 Multiplication by a scalar.  Let [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaaaaa@382D@  be a matrix with elements a ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaadMgacaWGQbaabeaaaaa@3864@ , and let k be a scalar.  Then

[ B ]=k[ A ] b ij =k a ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadk eaaiaawUfacaGLDbaacqGH9aqpcaWGRbWaamWaaeaacaWGbbaacaGL BbGaayzxaaGaeyi1HSTaamOyamaaBaaaleaacaWGPbGaamOAaaqaba GccqGH9aqpcaWGRbGaamyyamaaBaaaleaacaWGPbGaamOAaaqabaaa aa@4717@

 

 

 Multiplication by a matrix. Let [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaaaaa@382D@  be a matrix of order (m×n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaamyBai abgEna0kaad6gacaGGPaaaaa@3ACA@  with elements a ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaadMgacaWGQbaabeaaaaa@3864@ , and let [ B ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadk eaaiaawUfacaGLDbaaaaa@382E@  be a matrix of order (p×q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaamiCai abgEna0kaadghacaGGPaaaaa@3AD0@  with elements b ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGIbWaaSbaaS qaaiaadMgacaWGQbaabeaaaaa@3865@ .  The product [ C ]=[ A ][ B ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaado eaaiaawUfacaGLDbaacqGH9aqpdaWadaqaaiaadgeaaiaawUfacaGL DbaadaWadaqaaiaadkeaaiaawUfacaGLDbaaaaa@3EA6@  is defined only if n=p, and is an (m×q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaamyBai abgEna0kaadghacaGGPaaaaa@3ACD@  matrix such that

[ C ]=[ A ][ B ] c ij = k=1 n a ik b kj MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaado eaaiaawUfacaGLDbaacqGH9aqpdaWadaqaaiaadgeaaiaawUfacaGL DbaadaWadaqaaiaadkeaaiaawUfacaGLDbaacqGHuhY2caWGJbWaaS baaSqaaiaadMgacaWGQbaabeaakiabg2da9maaqahabaGaamyyamaa BaaaleaacaWGPbGaam4AaaqabaGccaWGIbWaaSbaaSqaaiaadUgaca WGQbaabeaaaeaacaWGRbGaeyypa0JaaGymaaqaaiaad6gaa0Gaeyye Iuoaaaa@50CA@

Note that multiplication is distributive and associative, but not commutative, i.e.

[ A ]( [ B ]+[ C ] )=[ A ][ B ]+[ A ][ C ][ A ]( [ B ][ C ] )=( [ A ][ B ] )[ C ][ A ][ B ][ B ][ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaadaqadaqaamaadmaabaGaamOqaaGaay5waiaa w2faaiabgUcaRmaadmaabaGaam4qaaGaay5waiaaw2faaaGaayjkai aawMcaaiabg2da9maadmaabaGaamyqaaGaay5waiaaw2faamaadmaa baGaamOqaaGaay5waiaaw2faaiabgUcaRmaadmaabaGaamyqaaGaay 5waiaaw2faamaadmaabaGaam4qaaGaay5waiaaw2faaiaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVpaadmaabaGaamyqaaGaay5wai aaw2faamaabmaabaWaamWaaeaacaWGcbaacaGLBbGaayzxaaWaamWa aeaacaWGdbaacaGLBbGaayzxaaaacaGLOaGaayzkaaGaeyypa0Zaae WaaeaadaWadaqaaiaadgeaaiaawUfacaGLDbaadaWadaqaaiaadkea aiaawUfacaGLDbaaaiaawIcacaGLPaaadaWadaqaaiaadoeaaiaawU facaGLDbaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVpaadmaabaGaamyqaaGaay5waiaaw2faamaadmaabaGaam OqaaGaay5waiaaw2faaiabgcMi5oaadmaabaGaamOqaaGaay5waiaa w2faamaadmaabaGaamyqaaGaay5waiaaw2faaaaa@8387@

The multiplication of a vector by a matrix is a particularly important operation.  Let b and c be two vectors with n components, which we think of as (1×n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaaGymai abgEna0kaad6gacaGGPaaaaa@3A93@  matrices.  Let [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaaaaa@382D@  be an (m×n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaamyBai abgEna0kaad6gacaGGPaaaaa@3ACA@  matrix.  Thus

b=[ b 1 b 2 b 3 b n ]c=[ c 1 c 2 c 3 c n ][ A ]=[ a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n a m1 a m2 a m3 a mn ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHIbGaeyypa0 ZaamWaaqaabeqaaiaadkgadaWgaaWcbaGaaGymaaqabaaakeaacaWG IbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaamOyamaaBaaaleaacaaIZa aabeaaaOqaaiaaykW7caaMc8UaeSO7I0eabaGaamOyamaaBaaaleaa caWGUbaabeaaaaGccaGLBbGaayzxaaGaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWH JbGaeyypa0ZaamWaaqaabeqaaiaadogadaWgaaWcbaGaaGymaaqaba aakeaacaWGJbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaam4yamaaBaaa leaacaaIZaaabeaaaOqaaiaaykW7caaMc8UaeSO7I0eabaGaam4yam aaBaaaleaacaWGUbaabeaaaaGccaGLBbGaayzxaaGaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7daWadaqaaiaadgeaaiaawUfacaGLDbaacqGH9aqpdaWadaab aeqabaGaamyyamaaBaaaleaacaaIXaGaaGymaaqabaGccaaMc8UaaG PaVlaaykW7caWGHbWaaSbaaSqaaiaaigdacaaIYaaabeaakiaaykW7 caaMc8UaaGPaVlaadggadaWgaaWcbaGaaGymaiaaiodaaeqaaOGaaG PaVlaaykW7cqWIVlctcaaMc8UaaGPaVlaadggadaWgaaWcbaGaaGym aiaad6gaaeqaaaGcbaGaamyyamaaBaaaleaacaaIYaGaaGymaaqaba GccaaMc8UaaGPaVlaaykW7caWGHbWaaSbaaSqaaiaaikdacaaIYaaa beaakiaaykW7caaMc8UaaGPaVlaadggadaWgaaWcbaGaaGOmaiaaio daaeqaaOGaaGPaVlaaykW7cqWIVlctcaaMc8UaaGPaVlaadggadaWg aaWcbaGaaGOmaiaad6gaaeqaaaGcbaGaaGPaVlaaykW7cqWIUlstca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlab l6UinjaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaeSO7I0KaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlablgVipjaaykW7caaMc8UaaGPaVl abl6UinbqaaiaadggadaWgaaWcbaGaamyBaiaaigdaaeqaaOGaaGPa VlaaykW7caaMc8UaamyyamaaBaaaleaacaWGTbGaaGOmaaqabaGcca aMc8UaaGPaVlaaykW7caWGHbWaaSbaaSqaaiaad2gacaaIZaaabeaa kiaaykW7caaMc8UaeS47IWKaaGPaVlaaykW7caWGHbWaaSbaaSqaai aad2gacaWGUbaabeaaaaGccaGLBbGaayzxaaaaaa@0C3A@

Now,

c=[ A ]b c i = j=1 n a ij b j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHJbGaeyypa0 ZaamWaaeaacaWGbbaacaGLBbGaayzxaaGaaCOyaiaaykW7caaMc8Ua eyi1HSTaaGPaVlaaykW7caaMc8Uaam4yamaaBaaaleaacaWGPbaabe aakiabg2da9maaqahabaGaamyyamaaBaaaleaacaWGPbGaamOAaaqa baGccaWGIbWaaSbaaSqaaiaadQgaaeqaaaqaaiaadQgacqGH9aqpca aIXaaabaGaamOBaaqdcqGHris5aaaa@5304@

i.e.

c 1 = a 11 b 1 + a 12 b 2 + a 13 b 3 + a 1n b n c 2 = a 21 b 1 + a 22 b 2 + a 23 b 3 + a 2n b n c m = a m1 b 1 + a m2 b 2 + a m3 b 3 + a mn b n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaadogada WgaaWcbaGaaGymaaqabaGccqGH9aqpcaWGHbWaaSbaaSqaaiaaigda caaIXaaabeaakiaadkgadaWgaaWcbaGaaGymaaqabaGccqGHRaWkca WGHbWaaSbaaSqaaiaaigdacaaIYaaabeaakiaadkgadaWgaaWcbaGa aGOmaaqabaGccqGHRaWkcaWGHbWaaSbaaSqaaiaaigdacaaIZaaabe aakiaadkgadaWgaaWcbaGaaG4maaqabaGccqGHRaWkcaaMc8UaaGPa VlaaykW7cqWIVlctcaaMc8UaaGPaVlaaykW7caWGHbWaaSbaaSqaai aaigdacaWGUbaabeaakiaadkgadaWgaaWcbaGaamOBaaqabaaakeaa caWGJbWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaamyyamaaBaaale aacaaIYaGaaGymaaqabaGccaWGIbWaaSbaaSqaaiaaigdaaeqaaOGa ey4kaSIaamyyamaaBaaaleaacaaIYaGaaGOmaaqabaGccaWGIbWaaS baaSqaaiaaikdaaeqaaOGaey4kaSIaamyyamaaBaaaleaacaaIYaGa aG4maaqabaGccaWGIbWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaaG PaVlaaykW7caaMc8UaeS47IWKaaGPaVlaaykW7caaMc8Uaamyyamaa BaaaleaacaaIYaGaamOBaaqabaGccaWGIbWaaSbaaSqaaiaad6gaae qaaaGcbaGaaGPaVlaaykW7cqWIUlstaeaacaWGJbWaaSbaaSqaaiaa d2gaaeqaaOGaeyypa0JaamyyamaaBaaaleaacaWGTbGaaGymaaqaba GccaWGIbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamyyamaaBaaa leaacaWGTbGaaGOmaaqabaGccaWGIbWaaSbaaSqaaiaaikdaaeqaaO Gaey4kaSIaamyyamaaBaaaleaacaWGTbGaaG4maaqabaGccaWGIbWa aSbaaSqaaiaaiodaaeqaaOGaey4kaSIaaGPaVlaaykW7caaMc8UaeS 47IWKaaGPaVlaaykW7caaMc8UaamyyamaaBaaaleaacaWGTbGaamOB aaqabaGccaWGIbWaaSbaaSqaaiaad6gaaeqaaaaaaa@A409@

 

 Transpose. Let [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaaaaa@382D@  be a matrix of order (m×n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaamyBai abgEna0kaad6gacaGGPaaaaa@3ACA@  with elements a ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaadMgacaWGQbaabeaaaaa@3864@ .  The transpose of [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaaaaa@382D@  is denoted [ A ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaadaahaaWcbeqaaiaadsfaaaaaaa@3933@ .  If [ B ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadk eaaiaawUfacaGLDbaaaaa@382E@  is an (n×m) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaamOBai abgEna0kaad2gacaGGPaaaaa@3ACA@  matrix such that [ B ]= [ A ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadk eaaiaawUfacaGLDbaacqGH9aqpdaWadaqaaiaadgeaaiaawUfacaGL DbaadaahaaWcbeqaaiaadsfaaaaaaa@3CF2@ , then b ij = a ji MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGIbWaaSbaaS qaaiaadMgacaWGQbaabeaakiabg2da9iaadggadaWgaaWcbaGaamOA aiaadMgaaeqaaaaa@3C64@ , i.e.

[ A ] T = [ a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n a m1 a m2 a m3 a mn ] T =[ a 11 a 21 a 31 a n1 a 12 a 22 a 3 2 a n2 a 1m a 2m a 3m a nm ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaadaahaaWcbeqaaiaadsfaaaGccqGH9aqpdaWa daabaeqabaGaamyyamaaBaaaleaacaaIXaGaaGymaaqabaGccaaMc8 UaaGPaVlaaykW7caWGHbWaaSbaaSqaaiaaigdacaaIYaaabeaakiaa ykW7caaMc8UaaGPaVlaadggadaWgaaWcbaGaaGymaiaaiodaaeqaaO GaaGPaVlaaykW7cqWIVlctcaaMc8UaaGPaVlaadggadaWgaaWcbaGa aGymaiaad6gaaeqaaaGcbaGaamyyamaaBaaaleaacaaIYaGaaGymaa qabaGccaaMc8UaaGPaVlaaykW7caWGHbWaaSbaaSqaaiaaikdacaaI YaaabeaakiaaykW7caaMc8UaaGPaVlaadggadaWgaaWcbaGaaGOmai aaiodaaeqaaOGaaGPaVlaaykW7cqWIVlctcaaMc8UaaGPaVlaadgga daWgaaWcbaGaaGOmaiaad6gaaeqaaaGcbaGaaGPaVlaaykW7cqWIUl stcaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa Vlabl6UinjaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaeSO7I0KaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlablgVipjaaykW7caaMc8UaaG PaVlabl6UinbqaaiaadggadaWgaaWcbaGaamyBaiaaigdaaeqaaOGa aGPaVlaaykW7caaMc8UaamyyamaaBaaaleaacaWGTbGaaGOmaaqaba GccaaMc8UaaGPaVlaaykW7caWGHbWaaSbaaSqaaiaad2gacaaIZaaa beaakiaaykW7caaMc8UaeS47IWKaaGPaVlaaykW7caWGHbWaaSbaaS qaaiaad2gacaWGUbaabeaaaaGccaGLBbGaayzxaaWaaWbaaSqabeaa caWGubaaaOGaeyypa0ZaamWaaqaabeqaaiaadggadaWgaaWcbaGaaG ymaiaaigdaaeqaaOGaaGPaVlaaykW7caaMc8UaamyyamaaBaaaleaa caaIYaGaaGymaaqabaGccaaMc8UaaGPaVlaaykW7caWGHbWaaSbaaS qaaiaaiodacaaIXaaabeaakiaaykW7caaMc8UaeS47IWKaaGPaVlaa ykW7caWGHbWaaSbaaSqaaiaad6gacaaIXaaabeaaaOqaaiaadggada WgaaWcbaGaaGymaiaaikdaaeqaaOGaaGPaVlaaykW7caaMc8Uaamyy amaaBaaaleaacaaIYaGaaGOmaaqabaGccaaMc8UaaGPaVlaaykW7ca WGHbWaaSbaaSqaaiaaiodaaeqaaOWaaSbaaSqaaiaaikdaaeqaaOGa aGPaVlaaykW7cqWIVlctcaaMc8UaaGPaVlaadggadaWgaaWcbaGaam OBaiaaikdaaeqaaaGcbaGaaGPaVlaaykW7cqWIUlstcaaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabl6Uinjaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaeSO7I0KaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlablgVipjaaykW7caaMc8UaaGPaVlabl6Uinbqa aiaadggadaWgaaWcbaGaaGymaiaad2gaaeqaaOGaaGPaVlaaykW7ca aMc8UaamyyamaaBaaaleaacaaIYaGaamyBaaqabaGccaaMc8UaaGPa VlaaykW7caWGHbWaaSbaaSqaaiaaiodacaWGTbaabeaakiaaykW7ca aMc8UaeS47IWKaaGPaVlaaykW7caWGHbWaaSbaaSqaaiaad6gacaWG TbaabeaaaaGccaGLBbGaayzxaaaaaa@5C7F@

Note that

( [ A ][ B ] ) T = [ B ] T [ A ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaamaadm aabaGaamyqaaGaay5waiaaw2faamaadmaabaGaamOqaaGaay5waiaa w2faaaGaayjkaiaawMcaamaaCaaaleqabaGaamivaaaakiabg2da9m aadmaabaGaamOqaaGaay5waiaaw2faamaaCaaaleqabaGaamivaaaa kmaadmaabaGaamyqaaGaay5waiaaw2faamaaCaaaleqabaGaamivaa aaaaa@460C@

 

 Determinant  The determinant is defined only for a square matrix.  Let [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaaaaa@382D@  be a (2×2) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaaGOmai abgEna0kaaikdacaGGPaaaaa@3A5D@  matrix with components a ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaadMgacaWGQbaabeaaaaa@3864@ .  The determinant of  [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaaaaa@382D@  is denoted by det[ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGKbGaaiyzai aacshadaWadaqaaiaadgeaaiaawUfacaGLDbaaaaa@3AF8@  or | A | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaabdaqaaiaadg eaaiaawEa7caGLiWoaaaa@395D@  and is given by

| A |=| a 11 a 12 a 21 a 22 |= a 11 a 22 a 12 a 21 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaabdaqaaiaadg eaaiaawEa7caGLiWoacqGH9aqpdaabdaabaeqabaGaamyyamaaBaaa leaacaaIXaGaaGymaaqabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caWGHbWaaSbaaSqaaiaaigda caaIYaaabeaaaOqaaiaadggadaWgaaWcbaGaaGOmaiaaigdaaeqaaO GaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaamyyamaaBaaaleaacaaIYaGaaGOmaaqabaaaaOGaay5bSl aawIa7aiabg2da9iaadggadaWgaaWcbaGaaGymaiaaigdaaeqaaOGa amyyamaaBaaaleaacaaIYaGaaGOmaaqabaGccqGHsislcaWGHbWaaS baaSqaaiaaigdacaaIYaaabeaakiaadggadaWgaaWcbaGaaGOmaiaa igdaaeqaaaaa@6FD3@

Now, let [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaaaaa@382D@  be an ( n×n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaaiaad6 gacqGHxdaTcaWGUbaacaGLOaGaayzkaaaaaa@3AFB@  matrix.  Define the minors M ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGnbWaaSbaaS qaaiaadMgacaWGQbaabeaaaaa@3850@  of [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaaaaa@382D@  as the determinant formed by omitting the ith row and jth column of [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaaaaa@382D@ .  For example, the minors M 11 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGnbWaaSbaaS qaaiaaigdacaaIXaaabeaaaaa@37E9@  and M 12 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGnbWaaSbaaS qaaiaaigdacaaIYaaabeaaaaa@37EA@  for a ( 3×3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaaiaaio dacqGHxdaTcaaIZaaacaGLOaGaayzkaaaaaa@3A8F@  matrix are computed as follows.   Let

[ A ]=[ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaacqGH9aqpdaWadaabaeqabaGaamyyamaaBaaa leaacaaIXaGaaGymaaqabaGccaaMc8UaaGPaVlaaykW7caWGHbWaaS baaSqaaiaaigdacaaIYaaabeaakiaaykW7caaMc8UaaGPaVlaaykW7 caWGHbWaaSbaaSqaaiaaigdacaaIZaaabeaaaOqaaiaadggadaWgaa WcbaGaaGOmaiaaigdaaeqaaOGaaGPaVlaaykW7caaMc8Uaamyyamaa BaaaleaacaaIYaGaaGOmaaqabaGccaaMc8UaaGPaVlaaykW7caWGHb WaaSbaaSqaaiaaikdacaaIZaaabeaakiaaykW7aeaacaWGHbWaaSba aSqaaiaaiodacaaIXaaabeaakiaaykW7caaMc8UaaGPaVlaadggada WgaaWcbaGaaG4maiaaikdaaeqaaOGaaGPaVlaaykW7caaMc8Uaamyy amaaBaaaleaacaaIZaGaaG4maaqabaaaaOGaay5waiaaw2faaaaa@713D@

Then

M 11 =| a 22 a 23 a 32 a 33 |= a 22 a 33 a 32 a 23 M 12 =| a 21 a 23 a 31 a 33 |= a 21 a 33 a 31 a 23 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGnbWaaSbaaS qaaiaaigdacaaIXaaabeaakiabg2da9maaemaaeaqabeaacaWGHbWa aSbaaSqaaiaaikdacaaIYaaabeaakiaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadggadaWgaaWcbaGa aGOmaiaaiodaaeqaaaGcbaGaamyyamaaBaaaleaacaaIZaGaaGOmaa qabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caWGHbWaaSbaaSqaaiaaiodacaaIZaaabeaaaaGcca GLhWUaayjcSdGaeyypa0JaamyyamaaBaaaleaacaaIYaGaaGOmaaqa baGccaWGHbWaaSbaaSqaaiaaiodacaaIZaaabeaakiabgkHiTiaadg gadaWgaaWcbaGaaG4maiaaikdaaeqaaOGaamyyamaaBaaaleaacaaI YaGaaG4maaqabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaamytamaaBaaaleaacaaIXaGaaGOmaaqabaGccqGH9aqp daabdaabaeqabaGaamyyamaaBaaaleaacaaIYaGaaGymaaqabaGcca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caWGHbWaaSbaaSqaaiaaikdacaaIZaaabeaaaOqaaiaadggada WgaaWcbaGaaG4maiaaigdaaeqaaOGaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaamyyamaaBaaaleaaca aIZaGaaG4maaqabaaaaOGaay5bSlaawIa7aiabg2da9iaadggadaWg aaWcbaGaaGOmaiaaigdaaeqaaOGaamyyamaaBaaaleaacaaIZaGaaG 4maaqabaGccqGHsislcaWGHbWaaSbaaSqaaiaaiodacaaIXaaabeaa kiaadggadaWgaaWcbaGaaGOmaiaaiodaaeqaaaaa@B251@

Define the cofactors C ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGdbWaaSbaaS qaaiaadMgacaWGQbaabeaaaaa@3846@  of [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaaaaa@382D@  as

C ij = ( 1 ) i+j M ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGdbWaaSbaaS qaaiaadMgacaWGQbaabeaakiabg2da9maabmaabaGaeyOeI0IaaGym aaGaayjkaiaawMcaamaaCaaaleqabaGaamyAaiabgUcaRiaadQgaaa GccaWGnbWaaSbaaSqaaiaadMgacaWGQbaabeaaaaa@4258@

Then, the determinant of the ( n×n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaaiaad6 gacqGHxdaTcaWGUbaacaGLOaGaayzkaaaaaa@3AFB@  matrix [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaaaaa@382D@  is computed as follows

| A |= j=1 n a ij C ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaabdaqaaiaadg eaaiaawEa7caGLiWoacqGH9aqpdaaeWbqaaiaadggadaWgaaWcbaGa amyAaiaadQgaaeqaaOGaam4qamaaBaaaleaacaWGPbGaamOAaaqaba aabaGaamOAaiabg2da9iaaigdaaeaacaWGUbaaniabggHiLdaaaa@4607@

The result is the same whichever row i is chosen for the expansion.  For the particular case of a ( 3×3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaaiaaio dacqGHxdaTcaaIZaaacaGLOaGaayzkaaaaaa@3A8F@  matrix

det[ A ]=det[ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ]= a 11 ( a 22 a 33 a 23 a 32 )+ a 12 ( a 23 a 31 a 21 a 33 )+ a 13 ( a 21 a 32 a 31 a 22 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGKbGaaiyzai aacshadaWadaqaaiaadgeaaiaawUfacaGLDbaacqGH9aqpciGGKbGa aiyzaiaacshadaWadaabaeqabaGaamyyamaaBaaaleaacaaIXaGaaG ymaaqabaGccaaMc8UaaGPaVlaaykW7caWGHbWaaSbaaSqaaiaaigda caaIYaaabeaakiaaykW7caaMc8UaaGPaVlaaykW7caWGHbWaaSbaaS qaaiaaigdacaaIZaaabeaaaOqaaiaadggadaWgaaWcbaGaaGOmaiaa igdaaeqaaOGaaGPaVlaaykW7caaMc8UaamyyamaaBaaaleaacaaIYa GaaGOmaaqabaGccaaMc8UaaGPaVlaaykW7caWGHbWaaSbaaSqaaiaa ikdacaaIZaaabeaakiaaykW7aeaacaWGHbWaaSbaaSqaaiaaiodaca aIXaaabeaakiaaykW7caaMc8UaaGPaVlaadggadaWgaaWcbaGaaG4m aiaaikdaaeqaaOGaaGPaVlaaykW7caaMc8UaamyyamaaBaaaleaaca aIZaGaaG4maaqabaaaaOGaay5waiaaw2faaiabg2da9iaadggadaWg aaWcbaGaaGymaiaaigdaaeqaaOGaaiikaiaadggadaWgaaWcbaGaaG OmaiaaikdaaeqaaOGaamyyamaaBaaaleaacaaIZaGaaG4maaqabaGc cqGHsislcaWGHbWaaSbaaSqaaiaaikdacaaIZaaabeaakiaadggada WgaaWcbaGaaG4maiaaikdaaeqaaOGaaiykaiabgUcaRiaadggadaWg aaWcbaGaaGymaiaaikdaaeqaaOGaaiikaiaadggadaWgaaWcbaGaaG OmaiaaiodaaeqaaOGaamyyamaaBaaaleaacaaIZaGaaGymaaqabaGc cqGHsislcaWGHbWaaSbaaSqaaiaaikdacaaIXaaabeaakiaadggada WgaaWcbaGaaG4maiaaiodaaeqaaOGaaiykaiabgUcaRiaadggadaWg aaWcbaGaaGymaiaaiodaaeqaaOGaaiikaiaadggadaWgaaWcbaGaaG OmaiaaigdaaeqaaOGaamyyamaaBaaaleaacaaIZaGaaGOmaaqabaGc cqGHsislcaWGHbWaaSbaaSqaaiaaiodacaaIXaaabeaakiaadggada WgaaWcbaGaaGOmaiaaikdaaeqaaOGaaiykaaaa@A71E@

The determinant may also be evaluated by summing over rows, i.e.

| A |= i=1 n a ij C ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaabdaqaaiaadg eaaiaawEa7caGLiWoacqGH9aqpdaaeWbqaaiaadggadaWgaaWcbaGa amyAaiaadQgaaeqaaOGaam4qamaaBaaaleaacaWGPbGaamOAaaqaba aabaGaamyAaiabg2da9iaaigdaaeaacaWGUbaaniabggHiLdaaaa@4606@

and as before the result is the same for each choice of column j.  Finally, note that

det [ A ] T =det[ A ]det( [ A ][ B ] )=det[ A ]det[ B ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGKbGaaiyzai aacshadaWadaqaaiaadgeaaiaawUfacaGLDbaadaahaaWcbeqaaiaa dsfaaaGccqGH9aqpciGGKbGaaiyzaiaacshadaWadaqaaiaadgeaai aawUfacaGLDbaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7ciGGKbGaaiyzaiaacshadaqadaqaamaadm aabaGaamyqaaGaay5waiaaw2faamaadmaabaGaamOqaaGaay5waiaa w2faaaGaayjkaiaawMcaaiabg2da9iGacsgacaGGLbGaaiiDamaadm aabaGaamyqaaGaay5waiaaw2faaiGacsgacaGGLbGaaiiDamaadmaa baGaamOqaaGaay5waiaaw2faaaaa@6646@

 

 Inversion.  Let [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaaaaa@382D@  be an ( n×n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaaiaad6 gacqGHxdaTcaWGUbaacaGLOaGaayzkaaaaaa@3AFB@  matrix.  The inverse of [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaaaaa@382D@  is denoted by [ A ] 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaadaahaaWcbeqaaiabgkHiTiaaigdaaaaaaa@3A02@  and is defined such that

[ A ] 1 [ A ]=[ I ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaadaahaaWcbeqaaiabgkHiTiaaigdaaaGcdaWa daqaaiaadgeaaiaawUfacaGLDbaacqGH9aqpdaWadaqaaiaadMeaai aawUfacaGLDbaaaaa@408A@

The inverse of [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaaaaa@382D@  exists if and only if det[ A ]0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGKbGaaiyzai aacshadaWadaqaaiaadgeaaiaawUfacaGLDbaacqGHGjsUcaaIWaaa aa@3D79@ .  A matrix which has no inverse is said to be singular.  The inverse of a matrix may be computed explicitly, by forming the cofactor matrix [ C ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaado eaaiaawUfacaGLDbaaaaa@382F@  with components c ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGJbWaaSbaaS qaaiaadMgacaWGQbaabeaaaaa@3866@  as defined in the preceding section.  Then

[ A ] 1 = 1 det[ A ] [ C ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaadaahaaWcbeqaaiabgkHiTiaaigdaaaGccqGH 9aqpdaWcaaqaaiaaigdaaeaaciGGKbGaaiyzaiaacshadaWadaqaai aadgeaaiaawUfacaGLDbaaaaWaamWaaeaacaWGdbaacaGLBbGaayzx aaWaaWbaaSqabeaacaWGubaaaaaa@4520@

In practice, it is faster to compute the inverse of a matrix using methods such as Gaussian elimination. 

 

Note that

( [ A ][ B ] ) 1 = [ B ] 1 [ A ] 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaamaadm aabaGaamyqaaGaay5waiaaw2faamaadmaabaGaamOqaaGaay5waiaa w2faaaGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaaki abg2da9maadmaabaGaamOqaaGaay5waiaaw2faamaaCaaaleqabaGa eyOeI0IaaGymaaaakmaadmaabaGaamyqaaGaay5waiaaw2faamaaCa aaleqabaGaeyOeI0IaaGymaaaaaaa@4879@

For a diagonal matrix, the inverse is

[ A ]=[ a 11 000 0 a 22 00 000 a nn ]=[ 1/ a 11 000 01/ a 22 00 0001/ a nn ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaacqGH9aqpcaaMc8UaaGPaVpaadmaaeaqabeaa caWGHbWaaSbaaSqaaiaaigdacaaIXaaabeaakiaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGimaiaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGimaiaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlabl+UimjaaykW7caaMc8UaaGPaVlaaicdacaaM c8oabaGaaGPaVlaaicdacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaamyyamaaBaaaleaacaaIYaGaaGOmaaqabaGccaaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaicdacaaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7cqWIVlctcaaMc8UaaGPaVlaaicdaaeaa caaMc8UaaGPaVlabl6UinjaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqWIUlstcaaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaeSO7I0KaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqWIXlYtcaaM c8UaaGPaVlaaykW7cqWIUlstaeaacaaMc8UaaGPaVlaaicdacaaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaicda caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaicdacaaMc8UaaGPaVlaaykW7caaMc8UaeS47IWKaaGPaVlaaykW7 caWGHbWaaSbaaSqaaiaad6gacaWGUbaabeaaaaGccaGLBbGaayzxaa Gaeyypa0JaaGPaVlaaykW7caaMc8+aamWaaqaabeqaaiaaigdacaGG VaGaamyyamaaBaaaleaacaaIXaGaaGymaaqabaGccaaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaicdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaIWaGaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaeS47IWKaaGPaVlaaykW7caaMc8Ua aGimaiaaykW7aeaacaaMc8UaaGPaVlaaicdacaaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaIXaGaai4l aiaaykW7caWGHbWaaSbaaSqaaiaaikdacaaIYaaabeaakiaaykW7ca aMc8UaaGPaVlaaicdacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7cqWIVlctcaaMc8UaaGPaVlaaykW7caaIWaaabaGaaGPaVlaayk W7cqWIUlstcaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabl6 UinjaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlabl6UinjaaykW7caaMc8UaaG PaVlablgVipjaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7cqWIUlstaeaacaaMc8UaaGPaVlaaicdacaaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaIWaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaicdacaaMc8UaaGPaVlaaykW7 caaMc8UaeS47IWKaaGPaVlaaykW7caaMc8UaaGymaiaac+cacaWGHb WaaSbaaSqaaiaad6gacaWGUbaabeaaaaGccaGLBbGaayzxaaaaaa@D23B@

For a ( 2×2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaaiaaik dacqGHxdaTcaaIYaaacaGLOaGaayzkaaaaaa@3A8D@  matrix, the inverse is

[ a 11 a 12 a 21 a 22 ]= 1 a 11 a 22 a 12 a 21 [ a 22 a 12 a 21 a 11 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaabaeqaba GaamyyamaaBaaaleaacaaIXaGaaGymaaqabaGccaaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGHbWaaS baaSqaaiaaigdacaaIYaaabeaaaOqaaiaadggadaWgaaWcbaGaaGOm aiaaigdaaeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaamyyamaaBaaaleaacaaIYaGaaGOmaaqa baaaaOGaay5waiaaw2faaiabg2da9maalaaabaGaaGymaaqaaiaadg gadaWgaaWcbaGaaGymaiaaigdaaeqaaOGaamyyamaaBaaaleaacaaI YaGaaGOmaaqabaGccqGHsislcaWGHbWaaSbaaSqaaiaaigdacaaIYa aabeaakiaadggadaWgaaWcbaGaaGOmaiaaigdaaeqaaaaakmaadmaa eaqabeaacaaMc8UaaGPaVlaadggadaWgaaWcbaGaaGOmaiaaikdaae qaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlab gkHiTiaaykW7caWGHbWaaSbaaSqaaiaaigdacaaIYaaabeaaaOqaai abgkHiTiaadggadaWgaaWcbaGaaGOmaiaaigdaaeqaaOGaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam yyamaaBaaaleaacaaIXaGaaGymaaqabaaaaOGaay5waiaaw2faaaaa @95FA@

 

 Eigenvalues and eigenvectors. Let [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaaaaa@382D@  be an ( n×n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaaiaad6 gacqGHxdaTcaWGUbaacaGLOaGaayzkaaaaaa@3AFB@  matrix, with coefficients a ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaadMgacaWGQbaabeaaaaa@3864@ .  Consider the vector equation

[ A ]x=λx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaacaWH4bGaeyypa0Jaeq4UdWMaaCiEaaaa@3CE9@                                                 (1)

where x is a vector with n components, and λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBaaa@3729@  is a scalar (which may be complex).  The n nonzero vectors x and corresponding scalars λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBaaa@3729@  which satisfy this equation are the eigenvectors and eigenvalues of [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaaaaa@382D@ .

 

Formally, eighenvalues and eigenvectors may be computed as follows.  Rearrange the preceding equation to

( [ A ]λ[ I ] )x=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaamaadm aabaGaamyqaaGaay5waiaaw2faaiabgkHiTiabeU7aSnaadmaabaGa amysaaGaay5waiaaw2faaaGaayjkaiaawMcaaiaahIhacqGH9aqpca WHWaaaaa@41D7@                                      (2)

This has nontrivial solutions for x only if the determinant of the matrix ( [ A ]λ[ I ] ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaamaadm aabaGaamyqaaGaay5waiaaw2faaiabgkHiTiabeU7aSnaadmaabaGa amysaaGaay5waiaaw2faaaGaayjkaiaawMcaaaaa@3F17@  vanishes.  The equation

det( [ A ]λ[ I ] )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGKbGaaiyzai aacshadaqadaqaamaadmaabaGaamyqaaGaay5waiaaw2faaiabgkHi TiabeU7aSnaadmaabaGaamysaaGaay5waiaaw2faaaGaayjkaiaawM caaiabg2da9iaaicdaaaa@43A2@

is an nth order polynomial which may be solved for λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBaaa@3729@ .  In general the polynomial will have n roots, which may be complex.  The eigenvectors may then be computed using equation (2).  For example, a (2×2) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaaGOmai abgEna0kaaikdacaGGPaaaaa@3A5D@  matrix generally has two eigenvectors, which satisfy

| AλI |=| a 11 λ a 12 a 21 a 22 λ |=( a 11 λ)( a 22 λ) a 12 a 21 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaabdaqaaiaadg eacqGHsislcqaH7oaBcaWGjbaacaGLhWUaayjcSdGaeyypa0ZaaqWa aqaabeqaaiaadggadaWgaaWcbaGaaGymaiaaigdaaeqaaOGaeyOeI0 Iaeq4UdWMaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaamyyamaaBaaaleaacaaIXaGaaGOmaaqabaaake aacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadggadaWgaaWcbaGa aGOmaiaaigdaaeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaamyyamaaBaaaleaacaaIYaGaaGOm aaqabaGccqGHsislcqaH7oaBaaGaay5bSlaawIa7aiabg2da9iaacI cacaWGHbWaaSbaaSqaaiaaigdacaaIXaaabeaakiabgkHiTiabeU7a SjaacMcacaGGOaGaamyyamaaBaaaleaacaaIYaGaaGOmaaqabaGccq GHsislcqaH7oaBcaGGPaGaeyOeI0IaamyyamaaBaaaleaacaaIXaGa aGOmaaqabaGccaWGHbWaaSbaaSqaaiaaikdacaaIXaaabeaakiabg2 da9iaaicdaaaa@89F9@

Solve the quadratic equation to see that

λ 1 = 1 2 ( a 11 + a 22 ) 1 2 { ( a 11 + a 22 ) 2 4( a 11 a 22 a 12 a 21 ) } 1/2 λ 2 = 1 2 ( a 11 + a 22 )+ 1 2 { ( a 11 + a 22 ) 2 4( a 11 a 22 a 12 a 21 ) } 1/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiabeU7aSn aaBaaaleaacaaIXaaabeaakiabg2da9maalaaabaGaaGymaaqaaiaa ikdaaaWaaeWaaeaacaWGHbWaaSbaaSqaaiaaigdacaaIXaaabeaaki abgUcaRiaadggadaWgaaWcbaGaaGOmaiaaikdaaeqaaaGccaGLOaGa ayzkaaGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaadaGadaqaam aabmaabaGaamyyamaaBaaaleaacaaIXaGaaGymaaqabaGccqGHRaWk caWGHbWaaSbaaSqaaiaaikdacaaIYaaabeaaaOGaayjkaiaawMcaam aaCaaaleqabaGaaGOmaaaakiabgkHiTiaaisdadaqadaqaaiaadgga daWgaaWcbaGaaGymaiaaigdaaeqaaOGaamyyamaaBaaaleaacaaIYa GaaGOmaaqabaGccqGHsislcaWGHbWaaSbaaSqaaiaaigdacaaIYaaa beaakiaadggadaWgaaWcbaGaaGOmaiaaigdaaeqaaaGccaGLOaGaay zkaaaacaGL7bGaayzFaaWaaWbaaSqabeaacaaIXaGaai4laiaaikda aaaakeaacqaH7oaBdaWgaaWcbaGaaGOmaaqabaGccqGH9aqpdaWcaa qaaiaaigdaaeaacaaIYaaaamaabmaabaGaamyyamaaBaaaleaacaaI XaGaaGymaaqabaGccqGHRaWkcaWGHbWaaSbaaSqaaiaaikdacaaIYa aabeaaaOGaayjkaiaawMcaaiabgUcaRmaalaaabaGaaGymaaqaaiaa ikdaaaWaaiWaaeaadaqadaqaaiaadggadaWgaaWcbaGaaGymaiaaig daaeqaaOGaey4kaSIaamyyamaaBaaaleaacaaIYaGaaGOmaaqabaaa kiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaI0a WaaeWaaeaacaWGHbWaaSbaaSqaaiaaigdacaaIXaaabeaakiaadgga daWgaaWcbaGaaGOmaiaaikdaaeqaaOGaeyOeI0IaamyyamaaBaaale aacaaIXaGaaGOmaaqabaGccaWGHbWaaSbaaSqaaiaaikdacaaIXaaa beaaaOGaayjkaiaawMcaaaGaay5Eaiaaw2haamaaCaaaleqabaGaaG ymaiaac+cacaaIYaaaaaaaaa@8ADC@

The two corresponding eigenvectors may be computed from (2), which shows that

[ a 11 λ i a 12 a 21 a 22 λ i ][ x 1 (i) x 2 (i) ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaabaeqaba GaamyyamaaBaaaleaacaaIXaGaaGymaaqabaGccqGHsislcqaH7oaB daWgaaWcbaGaamyAaaqabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caWGHbWaaSbaaSqaaiaaigda caaIYaaabeaaaOqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam yyamaaBaaaleaacaaIYaGaaGymaaqabaGccaaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGHbWaaSbaaS qaaiaaikdacaaIYaaabeaakiabgkHiTiabeU7aSnaaBaaaleaacaWG PbaabeaaaaGccaGLBbGaayzxaaWaamWaaqaabeqaaiaadIhadaqhaa WcbaGaaGymaaqaaiaacIcacaWGPbGaaiykaaaaaOqaaiaadIhadaqh aaWcbaGaaGOmaaqaaiaacIcacaWGPbGaaiykaaaaaaGccaGLBbGaay zxaaGaeyypa0JaaGimaaaa@78E7@

so that, multiplying out the first row of the matrix (you can use the second row too, if you wish MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  since we chose λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBaaa@3729@  to make the determinant of the matrix vanish, the two equations have the same solutions.  In fact, if a 12 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGHbWaaSbaaSqaaiaaigdacaaIYa aabeaakiabg2da9iaaicdaaaa@3719@ , you will need to do this, because the first equation will simply give 0=0 when trying to solve for one of the eigenvectors)

( 1 2 ( a 11 a 22 )+ 1 2 { ( a 11 + a 22 ) 2 4( a 11 a 22 a 12 a 21 ) } 1/2 ) x 1 (1) + a 12 x 2 (1) =0 ( 1 2 ( a 11 a 22 ) 1 2 { ( a 11 + a 22 ) 2 4( a 11 a 22 a 12 a 21 ) } 1/2 ) x 1 (2) + a 12 x 2 (2) =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakqaabeqaamaabmaabaWaaSaaaeaacaaIXa aabaGaaGOmaaaadaqadaqaaiaadggadaWgaaWcbaGaaGymaiaaigda aeqaaOGaeyOeI0IaamyyamaaBaaaleaacaaIYaGaaGOmaaqabaaaki aawIcacaGLPaaacqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaaamaa cmaabaWaaeWaaeaacaWGHbWaaSbaaSqaaiaaigdacaaIXaaabeaaki abgUcaRiaadggadaWgaaWcbaGaaGOmaiaaikdaaeqaaaGccaGLOaGa ayzkaaWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGinamaabmaaba GaamyyamaaBaaaleaacaaIXaGaaGymaaqabaGccaWGHbWaaSbaaSqa aiaaikdacaaIYaaabeaakiabgkHiTiaadggadaWgaaWcbaGaaGymai aaikdaaeqaaOGaamyyamaaBaaaleaacaaIYaGaaGymaaqabaaakiaa wIcacaGLPaaaaiaawUhacaGL9baadaahaaWcbeqaaiaaigdacaGGVa GaaGOmaaaaaOGaayjkaiaawMcaaiaadIhadaqhaaWcbaGaaGymaaqa aiaacIcacaaIXaGaaiykaaaakiabgUcaRiaadggadaWgaaWcbaGaaG ymaiaaikdaaeqaaOGaamiEamaaDaaaleaacaaIYaaabaGaaiikaiaa igdacaGGPaaaaOGaeyypa0JaaGimaaqaamaabmaabaWaaSaaaeaaca aIXaaabaGaaGOmaaaadaqadaqaaiaadggadaWgaaWcbaGaaGymaiaa igdaaeqaaOGaeyOeI0IaamyyamaaBaaaleaacaaIYaGaaGOmaaqaba aakiaawIcacaGLPaaacqGHsisldaWcaaqaaiaaigdaaeaacaaIYaaa amaacmaabaWaaeWaaeaacaWGHbWaaSbaaSqaaiaaigdacaaIXaaabe aakiabgUcaRiaadggadaWgaaWcbaGaaGOmaiaaikdaaeqaaaGccaGL OaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGinamaabm aabaGaamyyamaaBaaaleaacaaIXaGaaGymaaqabaGccaWGHbWaaSba aSqaaiaaikdacaaIYaaabeaakiabgkHiTiaadggadaWgaaWcbaGaaG ymaiaaikdaaeqaaOGaamyyamaaBaaaleaacaaIYaGaaGymaaqabaaa kiaawIcacaGLPaaaaiaawUhacaGL9baadaahaaWcbeqaaiaaigdaca GGVaGaaGOmaaaaaOGaayjkaiaawMcaaiaadIhadaqhaaWcbaGaaGym aaqaaiaacIcacaaIYaGaaiykaaaakiabgUcaRiaadggadaWgaaWcba GaaGymaiaaikdaaeqaaOGaamiEamaaDaaaleaacaaIYaaabaGaaiik aiaaikdacaGGPaaaaOGaeyypa0JaaGimaaaaaa@9E81@

which are satisfied by any vector of the form

x (1) =[ 2 a 12 ( a 11 a 22 )+ { ( a 11 + a 22 ) 2 4( a 11 a 22 a 12 a 21 ) } 1/2 ]p x (2) =[ 2 a 12 ( a 11 a 22 ) { ( a 11 + a 22 ) 2 4( a 11 a 22 a 12 a 21 ) } 1/2 ]q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakqaabeqaaiaahIhadaahaaWcbeqaaiaacI cacaaIXaGaaiykaaaakiabg2da9maadmaaeaqabeaacaaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaikdacaWGHbWaaSbaaSqaaiaaigdacaaIYa aabeaaaOqaamaabmaabaGaamyyamaaBaaaleaacaaIXaGaaGymaaqa baGccqGHsislcaWGHbWaaSbaaSqaaiaaikdacaaIYaaabeaaaOGaay jkaiaawMcaaiabgUcaRmaacmaabaWaaeWaaeaacaWGHbWaaSbaaSqa aiaaigdacaaIXaaabeaakiabgUcaRiaadggadaWgaaWcbaGaaGOmai aaikdaaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGa eyOeI0IaaGinamaabmaabaGaamyyamaaBaaaleaacaaIXaGaaGymaa qabaGccaWGHbWaaSbaaSqaaiaaikdacaaIYaaabeaakiabgkHiTiaa dggadaWgaaWcbaGaaGymaiaaikdaaeqaaOGaamyyamaaBaaaleaaca aIYaGaaGymaaqabaaakiaawIcacaGLPaaaaiaawUhacaGL9baadaah aaWcbeqaaiaaigdacaGGVaGaaGOmaaaaaaGccaGLBbGaayzxaaGaam iCaaqaaiaahIhadaahaaWcbeqaaiaacIcacaaIYaGaaiykaaaakiab g2da9maadmaaeaqabeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaIYaGaamyyamaaBa aaleaacaaIXaGaaGOmaaqabaaakeaadaqadaqaaiaadggadaWgaaWc baGaaGymaiaaigdaaeqaaOGaeyOeI0IaamyyamaaBaaaleaacaaIYa GaaGOmaaqabaaakiaawIcacaGLPaaacqGHsisldaGadaqaamaabmaa baGaamyyamaaBaaaleaacaaIXaGaaGymaaqabaGccqGHRaWkcaWGHb WaaSbaaSqaaiaaikdacaaIYaaabeaaaOGaayjkaiaawMcaamaaCaaa leqabaGaaGOmaaaakiabgkHiTiaaisdadaqadaqaaiaadggadaWgaa WcbaGaaGymaiaaigdaaeqaaOGaamyyamaaBaaaleaacaaIYaGaaGOm aaqabaGccqGHsislcaWGHbWaaSbaaSqaaiaaigdacaaIYaaabeaaki aadggadaWgaaWcbaGaaGOmaiaaigdaaeqaaaGccaGLOaGaayzkaaaa caGL7bGaayzFaaWaaWbaaSqabeaacaaIXaGaai4laiaaikdaaaaaaO Gaay5waiaaw2faaiaadghaaaaa@3071@

where p and q are arbitrary real numbers.

 

It is often convenient to normalize eigenvectors so that they have unit `length’.  For this purpose, choose p and q so that x (i) x (i) =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH4bWaaWbaaS qabeaacaGGOaGaamyAaiaacMcaaaGccqGHflY1caWH4bWaaWbaaSqa beaacaGGOaGaamyAaiaacMcaaaGccqGH9aqpcaaIXaaaaa@407E@ .  (For vectors of dimension n, the generalized dot product is defined such that xx= i=1 n x i x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH4bGaeyyXIC TaaCiEaiabg2da9maaqadabaGaamiEamaaBaaaleaacaWGPbaabeaa kiaadIhadaWgaaWcbaGaamyAaaqabaaabaGaamyAaiabg2da9iaaig daaeaacaWGUbaaniabggHiLdaaaa@4498@  )

 

One may calculate explicit expressions for eigenvalues and eigenvectors for any matrix up to order ( 4×4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaaiaais dacqGHxdaTcaaI0aaacaGLOaGaayzkaaaaaa@3A91@ , but the results are so cumbersome that, except for the ( 2×2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaaiaaik dacqGHxdaTcaaIYaaacaGLOaGaayzkaaaaaa@3A8D@  results, they are virtually useless.  In practice, numerical values may be computed using several iterative techniques.  Packages like Mathematica, Maple or Matlab make calculations like this easy.

 

The eigenvalues of a real symmetric matrix are always real, and its eigenvectors are orthogonal, i.e. the ith and jth eigenvectors (with ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbGaeyiyIK RaamOAaaaa@3919@  ) satisfy x (i) x (j) =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH4bWaaWbaaS qabeaacaGGOaGaamyAaiaacMcaaaGccqGHflY1caWH4bWaaWbaaSqa beaacaGGOaGaamOAaiaacMcaaaGccqGH9aqpcaaIWaaaaa@407E@ .

 

The eigenvalues of a skew symmetric matrix are pure imaginary.

 

 Spectral and singular value decomposition.  Let [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaaaaa@382D@  be a real symmetric  ( n×n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaaiaad6 gacqGHxdaTcaWGUbaacaGLOaGaayzkaaaaaa@3AFB@  matrix. Denote the n (real) eigenvalues of [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaaaaa@382D@  by λ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBdaWgaa WcbaGaamyAaaqabaaaaa@3843@ , and let w (i) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH3bWaaWbaaS qabeaacaGGOaGaamyAaiaacMcaaaaaaa@38E9@  be the corresponding normalized eigenvectors, such that w (i) w (i) =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH3bWaaWbaaS qabeaacaGGOaGaamyAaiaacMcaaaGccqGHflY1caWH3bWaaWbaaSqa beaacaGGOaGaamyAaiaacMcaaaGccqGH9aqpcaaIXaaaaa@407C@ .  Then, for any arbitrary vector b,

[ A ]b= i=1 n λ i ( w (i) b ) w (i) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaacaWHIbGaeyypa0ZaaabCaeaacqaH7oaBdaWg aaWcbaGaamyAaaqabaGcdaqadaqaaiaahEhadaahaaWcbeqaaiaacI cacaWGPbGaaiykaaaakiabgwSixlaahkgaaiaawIcacaGLPaaacaaM c8UaaGPaVlaahEhadaahaaWcbeqaaiaacIcacaWGPbGaaiykaaaaae aacaWGPbGaeyypa0JaaGymaaqaaiaad6gaa0GaeyyeIuoaaaa@5195@

Let [ Λ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiabfU 5ambGaay5waiaaw2faaaaa@38DC@  be a diagonal matrix which contains the n eigenvalues of [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaaaaa@382D@  as elements of the diagonal, and let [ Q ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg faaiaawUfacaGLDbaaaaa@383D@  be a matrix consisting of the n eigenvectors as columns, i.e.

[ Λ ]=[ λ 1 000 0 λ 2 00 000 λ n ][ Q ]=[ w 1 (1) w 1 (2) w 1 (3) w 1 (n) w 2 (1) w 2 (2) w 2 (3) w 2 (n) w n (1) w n (2) w n (3) w n (n) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiabfU 5ambGaay5waiaaw2faaiabg2da9iaaykW7daWadaabaeqabaGaeq4U dW2aaSbaaSqaaiaaigdaaeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaicdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaicdacaaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7cqWIVlctcaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGimaaqaaiaaicdacaaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqaH7oaBdaWg aaWcbaGaaGOmaaqabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaIWaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqWIVlct caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGimaa qaaiaaykW7cqWIUlstcaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqWIUlstca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7cqWIUlstcaaMc8UaaGPaVlaaykW7caaMc8UaeSy8I8KaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua eSO7I0eabaGaaGimaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGimaiaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGimaiaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabl+UimjaaykW7caaM c8UaaGPaVlaaykW7cqaH7oaBdaWgaaWcbaGaamOBaaqabaaaaOGaay 5waiaaw2faaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7daWadaqaaiaadgfaaiaawUfacaGLDb aacqGH9aqpcaaMc8+aamWaaqaabeqaaiaadEhadaqhaaWcbaGaaGym aaqaaiaacIcacaaIXaGaaiykaaaakiaaykW7caaMc8UaaGPaVlaayk W7caaMc8Uaam4DamaaDaaaleaacaaIXaaabaGaaiikaiaaikdacaGG PaaaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam4Dam aaDaaaleaacaaIXaaabaGaaiikaiaaiodacaGGPaaaaOGaaGPaVlaa ykW7caaMc8UaaGPaVlabl+UimjaaykW7caaMc8UaaGPaVlaaykW7ca aMc8Uaam4DamaaDaaaleaacaaIXaaabaGaaiikaiaad6gacaGGPaaa aOGaaGPaVdqaaiaadEhadaqhaaWcbaGaaGOmaaqaaiaacIcacaaIXa GaaiykaaaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam4Damaa DaaaleaacaaIYaaabaGaaiikaiaaikdacaGGPaaaaOGaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8Uaam4DamaaDaaaleaacaaIYaaa baGaaiikaiaaiodacaGGPaaaaOGaaGPaVlaaykW7caaMc8UaaGPaVl abl+UimjaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam4DamaaDaaa leaacaaIYaaabaGaaiikaiaad6gacaGGPaaaaaGcbaGaaGPaVlaayk W7caaMc8UaeSO7I0KaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeSO7I0KaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeSO7I0KaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaeSy8I8KaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlabl6UinbqaaiaadEhadaqhaaWcbaGaamOBaaqaaiaacIcacaaI XaGaaiykaaaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam4Dam aaDaaaleaacaWGUbaabaGaaiikaiaaikdacaGGPaaaaOGaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam4DamaaDaaaleaacaWGUb aabaGaaiikaiaaiodacaGGPaaaaOGaaGPaVlaaykW7caaMc8UaaGPa Vlabl+UimjaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam4DamaaDa aaleaacaWGUbaabaGaaiikaiaad6gacaGGPaaaaaaakiaawUfacaGL Dbaaaaa@1029@

Then

[ A ]=[ Q ][ Λ ] [ Q ] T [ Q ] T [ Q ]=[ Q ] [ Q ] T =[ I ] [ Q ] T [ A ][ Q ]=[ Λ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaacqGH9aqpdaWadaqaaiaadgfaaiaawUfacaGL DbaadaWadaqaaiabfU5ambGaay5waiaaw2faamaadmaabaGaamyuaa Gaay5waiaaw2faamaaCaaaleqabaGaamivaaaakiaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8+aamWaaeaacaWGrb aacaGLBbGaayzxaaWaaWbaaSqabeaacaWGubaaaOWaamWaaeaacaWG rbaacaGLBbGaayzxaaGaeyypa0ZaamWaaeaacaWGrbaacaGLBbGaay zxaaWaamWaaeaacaWGrbaacaGLBbGaayzxaaWaaWbaaSqabeaacaWG ubaaaOGaeyypa0ZaamWaaeaacaWGjbaacaGLBbGaayzxaaGaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8+aamWaaeaacaWGrbaacaGLBbGaayzxaaWaaW baaSqabeaacaWGubaaaOWaamWaaeaacaWGbbaacaGLBbGaayzxaaWa amWaaeaacaWGrbaacaGLBbGaayzxaaGaeyypa0ZaamWaaeaacqqHBo ataiaawUfacaGLDbaaaaa@81E7@

Note that this gives another (generally quite useless) way to invert [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaaaaa@382D@

[ A ] 1 =[ Q ] [ Λ ] 1 [ Q ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaadaahaaWcbeqaaiabgkHiTiaaigdaaaGccqGH 9aqpdaWadaqaaiaadgfaaiaawUfacaGLDbaadaWadaqaaiabfU5amb Gaay5waiaaw2faamaaCaaaleqabaGaeyOeI0IaaGymaaaakmaadmaa baGaamyuaaGaay5waiaaw2faamaaCaaaleqabaGaamivaaaaaaa@46EE@

where [ Λ ] 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiabfU 5ambGaay5waiaaw2faamaaCaaaleqabaGaeyOeI0IaaGymaaaaaaa@3AB1@  is easy to compute since [ Λ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiabfU 5ambGaay5waiaaw2faaaaa@38DC@  is diagonal.

 

 Square root of a matrix.   Let [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaaaaa@382D@  be a real symmetric  ( n×n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaaiaad6 gacqGHxdaTcaWGUbaacaGLOaGaayzkaaaaaa@3AFB@  matrix.  Denote the singular value decomposition of [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaaaaa@382D@  by [ A ]=[ Q ][ Λ ] [ Q ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaacqGH9aqpdaWadaqaaiaadgfaaiaawUfacaGL DbaadaWadaqaaiabfU5ambGaay5waiaaw2faamaadmaabaGaamyuaa Gaay5waiaaw2faamaaCaaaleqabaGaamivaaaakiaaykW7aaa@44C5@  as defined above.  Suppose that [ S ]= [ A ] 1/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaado faaiaawUfacaGLDbaacqGH9aqpdaWadaqaaiaadgeaaiaawUfacaGL DbaadaahaaWcbeqaaiaaigdacaGGVaGaaGOmaaaaaaa@3E54@  denotes the square root of [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaaaaa@382D@ , defined so that

[ S ][ S ]=[ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaado faaiaawUfacaGLDbaadaWadaqaaiaadofaaiaawUfacaGLDbaacqGH 9aqpdaWadaqaaiaadgeaaiaawUfacaGLDbaaaaa@3EC7@

One way to compute [ S ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaado faaiaawUfacaGLDbaaaaa@383F@  is through the singular value decomposition of [ A ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaadg eaaiaawUfacaGLDbaaaaa@382D@

[ S ]=[ Q ] [ Λ ] 1/2 [ Q ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiaado faaiaawUfacaGLDbaacqGH9aqpdaWadaqaaiaadgfaaiaawUfacaGL DbaadaWadaqaaiabfU5ambGaay5waiaaw2faamaaCaaaleqabaGaaG ymaiaac+cacaaIYaaaaOWaamWaaeaacaWGrbaacaGLBbGaayzxaaWa aWbaaSqabeaacaWGubaaaaaa@45A3@

where

[ Λ ] 1/2 =[ λ 1 000 0 λ 2 00 000 λ n ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiabfU 5ambGaay5waiaaw2faamaaCaaaleqabaGaaGymaiaac+cacaaIYaaa aOGaeyypa0JaaGPaVpaadmaaeaqabeaadaGcaaqaaiabeU7aSnaaBa aaleaacaaIXaaabeaaaeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaicdacaaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaicdacaaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7cqWIVlctcaaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGimaaqaaiaaicdacaaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7daGcaaqaaiabeU 7aSnaaBaaaleaacaaIYaaabeaaaeqaaOGaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGimaiaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaeS47IWKaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaicdaaeaacaaMc8UaeSO7I0KaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaeSO7I0KaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaeSO7I0KaaGPaVlaaykW7caaMc8UaaGPaVlab lgVipjaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlabl6UinbqaaiaaicdacaaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaic dacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaicdacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqWIVl ctcaaMc8UaaGPaVlaaykW7caaMc8+aaOaaaeaacqaH7oaBdaWgaaWc baGaamOBaaqabaaabeaaaaGccaGLBbGaayzxaaGaaGPaVlaaykW7aa a@18D3@