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In this homework your goal is to write a simple MATLAB code to solve steady-state diffusion equations. 
The main goal is to get comfortable with the book-keeping operations needed perform the various FEA 
tasks.  You can use the constant strain linear elastic finite element MATLAB code posted here as a 
general template for your calculations.   The biggest difference between the elasticity problem discussed 
in class and the problems you will solve here is that you only need to calculate values for a single degree 
of freedom (the concentration), instead of the displacement vector.   This makes the calculation a lot 
simpler, but you will have to work through how to modify the book-keeping in the MATLAB code to 
change the number of degrees of freedom.  
 
 
1. Let 0 ( ) 1jc x   denote the concentration of some species.   The steady state diffusion equation is 
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with boundary conditions 
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 on parts of the boundary 2S  where flux is prescribed.  Here, D is the 

diffusion coefficient, in  are components of a unit vector normal to the surface, and *j  is 
the flux of material into the solid. 

 

It can be shown (many of you probably know how…) that the concentration field that satisfies *( )c c x  

on 1S  and minimizes the function    
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will satisfy the steady state diffusion equation and the boundary 
condition on  2S . 
 
In this problem you will develop a two-dimensional FEA code to 
solve this equation. 
 
The basic scheme for linear elasticity discussed in class (see also 
chapter 7 of http://solidmechanics.org ) will be modified as follows: 
1. Identify a set of ‘nodes’ in the solid where we want to calculate c 
2. Divide the solid into triangles with the nodes at the corners 
3. Interpolate the voltage in each triangle linearly between values at 

the nodes.  So, for a generic triangle with corners a,b,c 
a a b b c cV N c N c N c    
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where the interpolation functions are exactly the same as those used for the elasticity problem.  
 

4. Since the interpolation functions are linear, / ic x   must be constant inside each triangle.  We can 
compute the contribution to   from just one element as 
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where elemA  is the area of the element.  
5. Compute the contribution to the potential from each element face with prescribed current 
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where L is the length of the element face 
6. Add up the contributions from each element, and each element face, to express the total potential   

in terms of the voltages at each node, where 
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where C is a big vector consisting of the unknown voltages at each node in the entire mesh. 
7. Minimize – follow the procedure discussed in class for linear elasticity -  this gives a system of linear 

equations for C 
8. Solve the equations, and post-process as needed. 
 
Your mission is to implement this procedure as a MATLAB code, which should contain the following 
sections: 

1. Generate the arrays defining the mesh and boundary conditions.  You could read the mesh 
definition from a file, following the structure of the linear elasticity code, or if you prefer just 
generate them directly using MATLAB. 

2. Assemble the global stiffness matrix and the boundary flux vector.  This will require: 
a. Loop over all the elements 
b. For the current element, compute the element stiffness matrix (it is cleanest to do this 

by creating a function that calculates the element stiffness matrix) 
c. Add the element stiffness matrix into the right rows and columns of the global 

stiffness matrix 
d. Loop over all the elements with loaded faces 
e. For the current element face, compute the element flux vector 
f. Add the element flux vector into the global flux vector. 

3. Modify the global stiffness matrix to impose prescribed values for c at boundary nodes.  This 
means 

a. Loop over the nodes with prescribed concentrations 
b. Find the row of the global stiffness matrix corresponding to the node, and set it to 

zero, with a 1 on the diagonal.   Replace the value of the global flux vector r   
corresponding to this row with the prescribed value of concentration. 

4. Solve the equation system 
 
 



 
 
Test your code by  
1. Calculating the concentration distribution in the simple two-element 

mesh shown in the figure.  Apply a uniform flux to the top surface, and 
constrain the concentration at the bottom surface.  Check your solution 
against the analytical result. 

2. Calculating concentration distribution in a strip with a circular hole at 
its center. You can use the mesh in the example input file 
http://solidmechanics.org/FEM_MATLAB/FEM_conststrain_holeplate.txt for 
this purpose, or generate your own.  Prescribe concentration on both 
left and right hand sides of the strip. 

 
 
 
 
 
2. Optional – intended for people with prior FEA experience.   As background read Song et al 
Biophysical Journal 86 2017 (2004).  The Smoluchowski equation is a more complicated advection-
diffusion equation of the form 
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where W  is a scalar potential. The weak form of the Smoluchowski equation is not symmetric, so some 
trickery is needed to turn it into a minimization problem.   But introducing exp( )c W  one can show 

that the solution for   must minimize  
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One solution method (but not the one used in the article cited) is to compute   by minimizing this 
expression, and then recover the value of c.    

 
 

Modify the code you wrote in the preceding problem to solve the Smoluchowski equation using this 
approach.  Test your code by comparing its predictions against analytical solutions. Try, for example 

(i) A rectangular strip (use at least 10 elements along the length) with prescribed concentration on 
each end, and a constant (but nonzero) value for W 

(ii) A strip with a prescribed flux on one end, and prescribed concentration on the other 
(iii) A strip with prescribed concentration one end, zero flux on the other, and a linearly varying 

function W (make the gradient of W large enough to see its effect) 

(iv)  An annular region a r b   with potential  ( ) 1 / i iW x xx  
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