

EN234: Computational methods in Structural and Solid Mechanics

Homework 5: Special elements, Time Dependent Problems

Due Thursday Oct 30, 2013
Division of Engineering

Brown University

1. Modify the 2D element you coded in FEACHEAP last week to function as a B-bar element.

You can follow the MATLAB code provided on the homework page to see the extra lines of

code that correct the stiffness to avoid volumetric locking. This should require quite minor edits

to your existing code (if you prefer, you could set up a 3D code). Test the modified element on

some suitable boundary value problem that will illustrate that the modification successfully

avoids volumetric locking.

2. Optional: Write an augmented Lagrangean hybrid element for FEACHEAP that will solve near

incompressible linear elasticity problems. You can write a 2D or 3D code, as you prefer (or

both, if you really have nothing better to do). You will need to use the following general

approach. There is a sample MATLAB code online that you can use as a guide. The MATLAB

code retains the pressure degrees of freedom in the global stiffness matrix, however. In

FEACHEAP it is better to eliminate the pressure degrees of freedom inside the subroutine that

calculates the element stiffness rather than create pressure nodes in the mesh (because you

would have to write special routines to print this type of mesh for TECPLOT to read – if you

really want a challenge you could try this – you would have to use the user-defined print

subroutine in usrprn.f90)

 The mesh in the input file should look exactly the same as for regular linear elasticity

elements

 The element stiffness should be constructed as follows. First, assemble the matrices
, ,K Q Π as follows

() () () () ()
()

1
() ()

e

e

a b a b a
b

aibk ijkl aib
j l i k iV V

a b
ab

V

N N N N N
k C K dV q M dV

x x x x x

M M dV
K

x x x x x
x

x x

where / 9ppqqK C is the bulk modulus (this assumes 3D – in 2D the expression is / 4K C .

Here, aN are the usual element shape functions, and
aM are interpolation functions for the

pressure. These should be one order lower than the displacement interpolations – if you are using

linear displacement interpolation then there is only one pressure node, and M is simply equal to 1. If

you are using quadratic interpolation for displacements then M should be linear shape functions. The

integrals defining iakbk may be evaluated using the full integration scheme. The remaining integrals

can be evaluated using one order integration lower (but the method should still work if you use the

same integration scheme for all integrals – you can try this in the matlab code).

 Finally, compute the element stiffness as 1el T K K QΠ Q (this step is not done in the

matlab code)

 Test your code on some interesting problem!

3. Write an element for FEACHEAP that will solve the transient diffusion equation. Start with the

governing equations for concentration and flux

* *
2 10 on oni

i i i
i i

jc c
j D j n j S c c S

t x x

Taking c as the unknown variable, the weak form can be expressed as

2

* 0
i iV V S

c c c
c D j cdA

t x x

We can regard this equation as a first order differential equation of the form

()
dc

f c
dt

and evaluate the time integral using a generalized Euler scheme

() (1) ()
c

f c f c c
t

where 0 1 is an adjustable parameter (you can recover both a forward-Euler and backward-

Euler scheme, as well as a mid-point trapezoidal scheme with an appropriate choice). If we

introduce the usual finite element interpolation for c the finite element equations for an increment in

concentration ac can be expressed in the form
b

ab a aK c R F

where K, R, and F are obtained by summing the element stiffness matrix, residual and external

force vectors

*1
(1)

e e e

a b a b
el a b el b el a
ab a a

i i i iV V V

N N N N
k N N D dV r D c dV f j N dA

t x x x x

Implement these expressions in FEACHEAP, as follows:

 It is best to start with the new_user_element_stub.f90 code for this problem rather than

copy one of the linear elasticity elements.

 Note that the nodes in your mesh will contain only 1 degree of freedom – make sure to

specify this in the input file.

 The variables DULOC and UTLOC in the element stiffness subroutine will contain the

concentration increment c (which is not required in your calculations) and c at the

nodes. You will need to use c to compute the el
ar vector.

 The time variable and time increment variable are stored in the Globals module and

called TIME and DTIME, respectively. To access these you need to put a use

Globals statement at the top of your code (this is already in the element template)

 The values of , D are properties for your element (define them in the input file)

 The element stiffness can be evaluated using the usual procedure – but note that you

have to use a higher order integration scheme because the shape functions are not

differentiated.

 The components el
ar should be stored in the vector called resid(), and can be evaluated

using the standard integration scheme.

 FEACHEAP will do the book-keeping necessary to model the evolution of

concentration with time – you don’t need to add any special code to deal with this.

 Start by solving a problem with prescribed concentrations on the boundary, so you don’t

need to code the element force vector f. You can add this later (of course the pre-coded

‘DLOAD’ subroutines won’t work for this problem).

 If you like, you could use the ‘new_user_element_elstat’ subroutine to project the flux

vector components (or the magnitude of the flux) as nodal state variables, but you can

comment out the PROJECT STATE command in the input file to avoid having to do

this.

 FEACHEAP should have no problem printing the nodal concentrations and mesh to a

tecplot readable file in the usual way (the code will detect that nodes have only 1 DOF

and will not attempt to plot a deformed mesh).

 You should use a LINEAR solution procedure in your input file. Note that even though

you compute a residual for this element the CHECK STIFFNESS code will not work (it

works only when an element is coded for NONLINEAR solution procedures, but we are

still working on linear problems…).

 Test your code by simulating a 1D problem that has an exact solution. Start by running

the code with 0 (this is the most stable solution – in fact with t the steady

state solution is computed directly) and a small time-step. Then explore other values of

 , the influence of time step size, etc, on the accuracy and stability of the solution.

 OPTIONAL Once the code works with prescribed concentrations, you could code a

‘new_user_element_dload’ subroutine to apply the prescribed flux boundary condition.

