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1. This problem illustrates the Newton-Raphson method for solving 
nonlinear equilibrium equations with a very simple example.   
Consider the truss structure shown in the figure – the two 
members both have stiffness k.   When undeformed, the two 
members have lengths L.  Loads ,x yF F  act on the joint at A, 

inducing displacements ,x yu u  . 

a. Write down the total potential energy of the system.  Do 
not assume small deflections. 

b. By minimizing the potential energy derive two nonlinear equilibrium equations for 
,x yu u .  Your equations should have the form  
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where ,x yR R  are two (pretty messy) functions to be determined  

c. The equilibrium equations can be solved for ,x yu u  by means of the Newton-Raphson 

method.   To do this, we start with some initial guess ,x yw w  for the solution, and then 

repeatedly correct it by solving 
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and then correcting the solution so that x x y yw dw w dw   (hopefully) approaches 

the solution.   Implement this procedure in a simple MATLAB code. 
d. Test your code by plotting the deformed structure for a few representative values of 

,x yF F  (you should be able to make the structure exhibit ‘snap through’ buckling) 

 
 
2. Implement an element in FEACHEAP that will solve boundary value problems involving a rate 

independent, power-law isotropic hardening elastic-plastic solid, with incremental stress-strain relations 
pe
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and a yield criterion 
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Your solution should include the following steps: 

2.1 Devise a method for calculating the stress ( 1)n
ij   at the end of a load increment.  Use a fully implicit 

computation, in which the yield criterion is exactly satisfied at the end of the load increment.  Your 
derivation should follow closely the procedure discussed in class, except that 

a. After computing the elastic predictor for the stress, you should check and see if the stresses 
are below yield (use the yield criterion).   If so, the elastic predictor is the correct stress. 

b.  If the elastic predictor exceeds yield, the relationship between ( 1)n
e
  and e  must be 

calculated using the yield criterion, i.e. you should calculate e  such that 
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You can use the approach discussed in class (show that 
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1 *n
ij ijS S  ) to obtain a nonlinear equation that can be solved for e  using Newton-

Raphson iteration. 

2.2 Calculate the tangent stiffness ( 1) /n
klij    for the rate independent solid, by differentiating the result 

of 1.  This is pretty horrible, but simpler than the rate dependent case.  Make sure your expression is 
symmetric. 

2.3 Implement the results of 1 and 2 in your code.  It is simplest to do this in the fully integrated 
element, but you can use your B-bar element as well if you prefer.  If you do this, it is important 
to use the correct element residual vector – instead of  
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in a standard element, you need to use 
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(the residual vector is not used for a linear elasticity computation – it is zero – so this was 
not necessary in the linear elasticity code unless you used the nonlinear solver). 

You will also need to modify your input file to activate the nonlinear equation solver.  It is a 
good idea to apply the load in a series of steps – for example, to ramp the load up from zero to 
10 in 5 steps, you can use the following key words: 
 
 
 



% The HISTORY key defines a time history that can be applied to DOFs or 
%distributed loads.  The numbers in the table are time,load value, and are 
%interpolated linearly by the code 
        HISTORY, dload_history 
          0.d0, 0.d0 
          1.d0,  10.d0 
 
% Syntax here is element set, face #, history name, nx,ny,(nz) (time dependent 
%pressure to element face in direction (nx,ny,nz)) 
 
%        DISTRIBUTED LOADS 
%          end_element, 4, dload_history, 1.d0,0.d0,0.d0 
%        END DISTRIBUTED LOADS 
 
%   The STATIC STEP key initializes a static load step 
 
     STATIC STEP 
 
%     The TIME STEP key defines values of parameters controlling time stepping. 
%        These parameters are passed to subroutine staticstep. 
%        The parameters must be entered in the correct order 
 
          TIME STEP 
%        Initial time step value 
           0.2d0 
%        Max and min time step (making the max 0.2 will ensure at least 5 steps) 
           0.2d0, 0.001d0 
%        Max no. time steps (should stop after 5 steps when t=1 unless there is 
%a cutback in time step caused by poor convergence) 
           15 
%        Stop time 
           1.d0 
%        Time interval between state prints and no. steps between state prints 
           1000.d0, 1 
%        Time interval between user prints and no. steps between user prints 
           1000.d0, 1000 
% Syntax here is solver type, nonlinear equations, NR tolerance, max iterations. 
         SOLVER, FACTOR, NONLINEAR, 0.00001, 20 

It is also really helpful to run the CHECK STIFFNESS on your code to make sure that the 
residual and stiffness are consistent – if not, the Newton-Raphson iterations are unlikely to 
converge.  You can test your element by comparing its predictions to the MATLAB version… 

 
2.4 Test your code by using it to calculate the stress-strain relation for the viscoplastic material under 

uniaxial tension.  Model the specimen using a single 8 noded brick, and use material properties 

010000, 0.3 18, 0.5 10E Y n      .  
 
 
 
3. Optional Implement a finite-strain F-bar hyperelastic element in FEACHEAP.  For simplicity, consider 

a compressible Neo-Hookean material with stress-strain relation 
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The tangent stiffness for this material is 
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To implement the F-bar element, we re-write the virtual work equation as 
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Where ,F L  are modified deformation and velocity gradients, computed as 
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where n=2 for a 2D problem and n=3 for a 3D problem, while J=det(F), and  
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The modified virtual work equation must be solved for the unknown nodal displacements by Newton-
Raphson iteration.  As usual, the Newton-Raphson procedure involves repeatedly solving the following 

system of linear equations for corrections to the displacement field b
kdw  
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and ij ij   is the Kirchhoff stress, calculated from the constitutive equation using  F to determine the 

strain measures. The consistent tangents follow from linearizing the virtual work equation 
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Some tedious algebra shows that the integrands can be reduced to 
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Where eC  is the tangent stiffness, but again computed using F , and 
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You could check this element by modeling a near incompressible pressurized hyperelastic cylinder, and 
comparing the numerical solution to the analytical one. 


