

EN234: Computational methods in Structural and Solid Mechanics
 Homework 5: Advanced elements - small strain B-bar element Due Wed Oct 21, 2015

School of Engineering Brown University

In this homework you will implement a small-strain version of a B-bar element that eliminates volumetric locking in near-incompressible materials. This is probably the easiest HW of the entire semester....

The basic idea was discussed in class (see the notes for Lecture 9). You can also find a (somewhat inefficient) MATLAB example on the notes page of the website.

Your goal is to implement a more efficient version of the B-bar method in EN234FEA.
One way to simplify the procedure is to introduce the volume averaged shape function derivatives

$$
\frac{\overline{\partial N^{a}}}{\partial x_{i}}=\frac{1}{V_{e l}} \int_{V_{e l}} \frac{\partial N^{a}}{\partial x_{i}} d V
$$

This can be stored in a two-dimensional matrix dNbardx (1:n_nodes, 1:3) (for a 3D problem; use 1:2 for a 2D problem) Note that in EN234FEA, the Element_Utilities module pre-defines a set of arrays that are intended to be used for this purpose:

$$
\begin{aligned}
& \text { real (prec) :: vol_avg_shape_function_derivatives_1D }(3,1) \\
& \text { real (prec) }:: \text { vol_avg_shape_function_derivatives_2D(9,2) } \\
& \text { real (prec) }:: \text { vol_avg_shape_function_derivatives_3D }(27,3)
\end{aligned}
$$

You can simply 'use' these variables in your code using the same approach that you used to define N and $d N d x$.

In matrix form, the element stiffness and residual vectors are

$$
\mathbf{r}=\int_{V_{e}^{(l)}} \overline{\mathbf{B}}^{T} \boldsymbol{\sigma} d V \quad \mathbf{k}=\int_{V_{e}^{(l)}} \overline{\mathbf{B}}^{T} \mathbf{D} \overline{\mathbf{B}} d V
$$

This is just the usual expression, with $\overline{\mathbf{B}}$ instead of \mathbf{B}. From this it is clear that implementing the B-bar method requires just a small modification to a standard small-strain solid element.

For a 3D element, the vectors and matrices in this expression are

$$
\boldsymbol{\sigma}=\left[\begin{array}{l}
\sigma_{11} \\
\sigma_{22} \\
\sigma_{33} \\
\sigma_{12} \\
\sigma_{13} \\
\sigma_{23}
\end{array}\right] \quad \boldsymbol{\varepsilon}=\left[\begin{array}{c}
\varepsilon_{11} \\
\varepsilon_{22} \\
\varepsilon_{33} \\
2 \varepsilon_{12} \\
2 \varepsilon_{13} \\
2 \varepsilon_{23}
\end{array}\right] \quad \mathbf{D}=\left[\begin{array}{llllll}
C_{1111} & C_{1122} & C_{1133} & C_{1112} & C_{1113} & C_{1123} \\
C_{2211} & & & & & \\
& & & & & \\
& & & & &
\end{array}\right]
$$

$$
\mathbf{B}=\left[\begin{array}{ccccc}
\frac{\partial N^{1}}{\partial y_{1}} & 0 & 0 & \frac{\partial N^{2}}{\partial y_{1}} & \ldots \\
0 & \frac{\partial N^{2}}{\partial y_{2}} & 0 & & \frac{\partial N^{2}}{\partial y_{1}} \\
0 & 0 & \frac{\partial N^{2}}{\partial y_{3}} & & \\
\frac{\partial N^{1}}{\partial y_{2}} & \frac{\partial N^{1}}{\partial y_{1}} & 0 & \frac{\partial N^{2}}{\partial y_{2}} & \frac{\partial N^{2}}{\partial y_{1}} \\
\vdots & & & & \ddots
\end{array}\right]
$$

We can incorporate the correction for volumetric locking very simply, by defining

$$
\overline{\mathbf{B}}=\mathbf{B}+\frac{1}{3}\left[\begin{array}{ccc}
\left(\frac { \frac { \partial N ^ { 1 } } { \partial y _ { 1 } } - \frac { \partial N ^ { 1 } } { \partial y _ { 1 } }) } { (\frac { \partial N ^ { 1 } } { \partial y _ { 2 } } - \frac { \partial N ^ { 1 } } { \partial y _ { 2 } }) } \left(\begin{array}{ll}
\left.\frac{\partial N^{1}}{\partial y_{3}}-\frac{\partial N^{1}}{\partial y_{3}}\right) & \left(\overline{\frac{\partial N^{2}}{\partial y_{1}}}-\frac{\partial N^{2}}{\partial y_{1}}\right)
\end{array} \cdots\right.\right. \\
\left(\overline{\left.\frac{\partial N^{1}}{\partial y_{1}}-\frac{\partial N^{1}}{\partial y_{1}}\right)}\left(\begin{array}{cc}
\left(\overline{\frac{\partial N^{1}}{\partial y_{2}}}-\frac{\partial N^{1}}{\partial y_{2}}\right) & \left(\frac{\partial N^{1}}{\partial y_{3}}-\frac{\partial N^{1}}{\partial y_{3}}\right) \\
\left(\frac{\partial N^{1}}{\partial y_{1}}-\frac{\partial N^{1}}{\partial y_{1}}\right) & \left(\frac{\partial N^{1}}{\partial y_{2}}-\frac{\partial N^{1}}{\partial y_{2}}\right) \\
0 & 0
\end{array}\right]\right.
\end{array}\right]
$$

(The $1 / 3$ becomes a $1 / 2$ for plane strain, and some rows/columns must be removed).
Update your EN234FEA code to incorporate the B-bar element. You don't need to create a new subroutine for this; you can simply put some conditional statements in your existing code to make it function either as a standard element or a B-bar element, as the user wishes. Behavior can be controlled by the 'element identifier' variable. Note that both the element stiffness and the 'field variables' subroutines should use the same B-bar matrix, for consistency

As usual, hand in a 1 or 2 page description of the tests you ran to check your code, and push your revised code to GitHub. You should modify at least the 3D element; and optionally your 2D small-strain element as well.

