EN234: Computational methods in Structural and Solid Mechanics
Homework 8: Time dependent problems: The Cahn Hilliard Equation Due Wed Nov 11, 2015

School of Engineering
Brown University

1. The Cahn-Hilliard equation is one of the most famous equations in materials science, and is an example of a more general description of materials with evolving structure known as 'phase field' models. The original purpose of the Cahn-Hilliard equation was to describe spinodal decomposition of a single-phase liquid or solid into two phases, but it has since been extended to model many other phenomena.

The canonical Cahn-Hilliard equation describes a binary solution of A and B, whose composition is characterized by a variable $c: c=1$ corresponds to pure A , while $c=-1$ corresponds to pure B . The Gibbs free energy of the solution is often taken to be

$$
F(c)=\frac{1}{4}\left(c^{2}-1\right)^{2}+\frac{1}{2} \kappa|\nabla c|^{2}
$$

where κ is a material property (quantifying the energy per unit area of an interface between A and B). The free energy has minima at $c= \pm 1$. It is therefore energetically favorable for the solid solution to phase separate into A- and B-rich regions. Moreover, it is energetically favorable for the system to minimize concentration gradients. As a result, a material that starts with c close to zero phase separates into regions of A and B , which then gradually coarsen, as shown in the figure.

The Cahn-Hilliard equation describes how this process occurs. The concentration variable is governed by a diffusion equation

$$
\frac{\partial c}{\partial t}=\nabla \cdot D \nabla \mu \quad \mu=\frac{\delta G}{\delta c}=c\left(c^{2}-1\right)-\kappa \nabla^{2} c
$$

where D is a diffusion coefficient (which we will assume is constant, but could depend on c).

Our goal is to solve this system of equations for $c(t)$, given some initial conditions. To keep things simple, we will consider a 2 D rectangular region of material (shown in the figure), with symmetry boundary conditions (so $\nabla c \cdot \mathbf{n}=\nabla \mu \cdot \mathbf{n}=0$ on all boundaries).

The first step is to set up a finite element approximation to the PDEs. This is usually done by solving simultaneously for μ and c (this avoids having to solve a fourth-order PDE). Introducing variations of $\delta \mu, \delta c$, you should be able to show that the weak form of the governing equations is

$$
\int_{V} \frac{\partial c}{\partial t} \delta c d V-\int_{V} D \frac{\partial \mu}{\partial x_{i}} \frac{\partial \delta c}{\partial x_{i}} d V=0 \quad \int_{V} \mu \delta \mu d V-\int_{V}\left(c\left(c^{2}-1\right) \delta \mu+\kappa \frac{\partial c}{\partial x_{i}} \frac{\partial \delta \mu}{\partial x_{i}}\right) d V=0 \quad \forall\{\delta c, \delta \mu\}
$$

Introducing finite element interpolation functions for μ and c in the usual way

$$
\mu=N^{a} \mu^{a} \quad c=N^{a} c^{a} \quad \mu=N^{b} \delta \mu^{b} \quad c=N^{b} \delta c^{b}
$$

then yields the discrete system of equations

$$
M_{a b} \frac{d c^{b}}{d t}+D K_{a b} \mu^{b}=0 \quad M_{a b} \mu^{b}-H^{a}\left(c^{b}\right)+\kappa P_{a b} c^{b}=0
$$

where

$$
M_{a b}=\int_{V} N^{a} N^{b} d V \quad P_{a b}=\int_{V} \frac{\partial N^{a}}{\partial x_{i}} \frac{N^{b}}{\partial x_{i}} d V \quad H^{b}=\int_{V} c\left(c^{2}-1\right) N^{b} d V
$$

Finally, we need a way to integrate this discrete system of equations with respect to time. As in all FEA problems, we use a time-marching scheme: given values μ^{a}, c^{a} at time t, we find the increments $\Delta \mu^{a}, \Delta c^{a}$ during the next time interval Δt, and then update the solution. A backward-Euler integration is used for μ

$$
M_{a b}\left(\mu^{b}+\Delta \mu^{b}\right)-H^{a}\left(c^{b}+\Delta c^{b}\right)-\kappa P_{a b}\left(c^{b}+\Delta c^{b}\right)=0
$$

while a generalized mid-point time integration scheme is used to integrate the equation for the concentration

$$
M_{a b} \frac{\Delta c^{b}}{\Delta t}+D P_{a b}\left[(1-\theta) \mu^{b}(t)+\theta\left(\mu^{b}(t)+\Delta \mu^{b}\right)\right]=0
$$

where $0<\theta<1$ is a numerical parameter. Choosing $\theta=0$ gives a forward-Euler scheme; choosing $\theta=1$ gives a backward-Euler scheme, and $\theta=0.5$ (the usual choice) gives a mid-point scheme.

We now have a system of nonlinear equations to solve for $\Delta \mu^{a}, \Delta c^{a}$ and are on familiar territory.
To implement this idea, we need to re-write it as the usual set of finite element operations, as follows:

- Note that each node in the finite element mesh will have two degrees of freedom: the value of μ and the value of c. At a generic time-step, we will be solving for $\Delta \mu^{a}, \Delta c^{a}$ at each node.
- Instead of the usual B matrix that maps displacements to strains, we can introduce a modified B matrix that maps nodal values of μ^{a}, c^{a} to $\mu, c, \partial \mu / \partial x_{i}, \partial c / \partial x_{i}$. Thus

$$
\begin{aligned}
& {\left[\begin{array}{c}
\mu \\
c \\
\partial \mu / \partial x_{1} \\
\partial \mu / \partial x_{2} \\
\partial c / \partial x_{1} \\
\partial c / \partial x_{2}
\end{array}\right]=[\mathbf{B}]\left[\begin{array}{c}
\mu^{1} \\
c^{2} \\
\mu^{2} \\
c^{2} \\
\mu^{3} \\
c^{3} \\
\vdots
\end{array}\right]} \\
& {[\mathbf{B}]=\left[\begin{array}{ccc}
N^{1} & 0 & N^{2} \\
0 & N^{1} & 0 \\
\partial N^{1} / \partial x_{1} & 0 & \partial N^{2} / \partial x_{1} \\
\partial N^{1} / \partial x_{2} & 0 & \partial N^{2} / \partial x_{2} \\
0 & \partial N^{1} / \partial x_{1} & 0 \\
0 & \partial N^{1} / \partial x_{2} & 0
\end{array}\right]}
\end{aligned}
$$

- The finite element stiffness matrix and residual vector can then be expressed as

$$
\left[k^{e l}\right]=\int_{V}[\mathbf{B}]^{T}[\mathbf{D}][\mathbf{B}] d V \quad \underline{r^{e l}}=-\int_{V}[\mathbf{B}]^{T} \underline{q} d V
$$

Where

$$
\begin{aligned}
& \underline{q}=\left[\begin{array}{c}
\mu+\Delta \mu-f(c+\Delta c) \\
\Delta c / \Delta t \\
-\kappa \partial(c+\Delta c) / \partial x_{1} \\
-\kappa \partial(c+\Delta c) / \partial x_{2} \\
D \partial(\mu+\theta \Delta \mu) / \partial x_{1} \\
D \partial(\mu+\theta \Delta \mu) / \partial x_{2}
\end{array}\right] \quad f(c)=c\left(c^{2}-1\right) \\
& {[\mathbf{D}]=\left[\begin{array}{cccccc}
1 & -d f / d c & 0 & 0 & 0 & 0 \\
0 & 1 / \Delta t & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -\kappa & 0 \\
0 & 0 & 0 & 0 & 0 & -\kappa \\
0 & 0 & \theta D & 0 & 0 & 0 \\
0 & 0 & 0 & \theta D & 0 & 0
\end{array}\right] \quad d f / d c=3(c+\Delta c)^{2}-1}
\end{aligned}
$$

Your goal is to implement this in EN234FEA. Some guidelines:

- Your nodes have 2 coordinates and 2 DOF; you can use the same variables to store these as in your 2D linear elasticity codes.
- You can use any of the standard family of 2D elements. They have 3 properties: the diffusion coefficient D, κ, and θ
- You will find that you can solve the problem with rather minor changes to the 2D elasticity code you wrote for Homework 3 - you merely need to re-define the \mathbf{B} matrix and \mathbf{D} matrix
(note that \mathbf{D} depends on concentration, and so must be evaluated inside the integration loop), and implement a procedure to calculate the vector \underline{q}.
- You don't need to project values from integration points to the nodes, so you can just delete the field projection subroutine for this element.
- There are no direct or forced boundary conditions in this problem
- You will need to define an initial value for the concentration. The solution shown in the figure was generated with

$$
c(t=0)=0.01 \sin \left(15 x_{1}\right) \sin \left(15 x_{2}\right)
$$

EN234FEA has a user-subroutine that can be used to define initial values of degrees of freedom, and this function has already been coded for you. Feel free to change it - the pattern you get is determined by the initial conditions.

- As an example, run solutions for a square region $-0.5<x_{1}<0.5 \quad-0.5<x_{2}<0.5$, with parameter values as follows:
- $D=1, \kappa=0.0001, \theta=0.5$
- Time step 0.001

You can run 50 steps or so (the evolution slows down towards the end so running longer simulations gets boring).

- To save you some time, an input file setting up this problem has been provided for you in a file called Cahn_hilliard_2d.in. Edit the file to run the code with CHECK STIFFNESS before trying to run a full simulation, and try it with just a few steps before running all 50 steps. The full simulations might take a minute or two to run in Debug mode.

