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1. The Cahn-Hilliard equation is one of the most famous equations in materials science, and is an example 

of a more general description of materials with evolving structure known as ‘phase field’ models.   The 
original purpose of the Cahn-Hilliard equation was to describe spinodal decomposition of a single-phase 
liquid or solid into two phases, but it has since been extended to model many other phenomena.    
 
The canonical Cahn-Hilliard equation describes a binary solution of A and B, whose composition is 
characterized by a variable c: 1c =  corresponds to pure A, while  1c = −  corresponds to pure B.  The 
Gibbs free energy of the solution is often taken to be 
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where κ  is a material property (quantifying the energy per unit area of an interface between A and B). 
The free energy has minima at 1c = ±  .   It is therefore energetically favorable for the solid solution to 
phase separate into A- and B-rich regions.     Moreover, it is energetically favorable for the system to 
minimize concentration gradients.  As a result, a material that starts with c close to zero phase separates 
into regions of A and B, which then gradually coarsen, as shown in the figure. 
 
The Cahn-Hilliard equation describes how this process occurs.  The concentration variable is governed 
by a diffusion equation 
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where D is a diffusion coefficient (which we will assume is constant, but could depend on c).    
 



Our goal is to solve this system of equations for c(t), given some initial conditions.   To keep things 
simple, we will consider a 2D rectangular region of material (shown in the figure), with symmetry 
boundary conditions (so 0c µ∇ ⋅ = ∇ ⋅ =n n  on all boundaries). 
 
The first step is to set up a finite element approximation to the PDEs.   This is usually done by solving 
simultaneously for µ  and c (this avoids having to solve a fourth-order PDE).  Introducing variations of 

, cδµ δ  , you should be able to show that the weak form of the governing equations is 
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Introducing finite element interpolation functions for µ  and c in the usual way 
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then yields the discrete system of equations 
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Finally, we need a way to integrate this discrete system of equations with respect to time.   As in all FEA 
problems, we use a time-marching scheme: given values ,a acµ at time t,  we find the increments 

,a acµ∆ ∆  during the next time interval t∆ , and then update the solution.   A backward-Euler integration 
is used for µ   
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while a generalized mid-point time integration scheme is used to integrate the equation for the 
concentration 
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where 0 1θ< <  is a numerical parameter.  Choosing 0θ =  gives a forward-Euler scheme; choosing 

1θ =  gives a backward-Euler scheme, and 0.5θ =  (the usual choice) gives a mid-point scheme. 
 

We now have a system of nonlinear equations to solve for ,a acµ∆ ∆  and are on familiar territory. 
 
To implement this idea, we need to re-write it as the usual set of finite element operations, as follows: 
 

• Note that each node in the finite element mesh will have two degrees of freedom: the value of µ  
and the value of c.   At a generic time-step, we will be solving for ,a acµ∆ ∆  at each node. 

• Instead of the usual B matrix that maps displacements to strains, we can introduce a modified B 
matrix that maps nodal values of ,a acµ  to , , / , /i ic x c xµ µ∂ ∂ ∂ ∂  .  Thus 
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• The finite element stiffness matrix and residual vector can then be expressed as 
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Your goal is to implement this in EN234FEA.   Some guidelines: 

• Your nodes have 2 coordinates and 2 DOF; you can use the same variables to store these as 
in your 2D linear elasticity codes. 

• You can use any of the standard family of 2D elements.  They have 3 properties: the 
diffusion coefficient D, κ  , and θ   

• You will find that you can solve the problem with rather minor changes to the 2D elasticity 
code you wrote for Homework 3 – you merely need to re-define the B matrix and D matrix 



(note that D depends on concentration, and so must be evaluated inside the integration loop), 
and implement a procedure to calculate the vector  q .  

• You don’t need to project values from integration points to the nodes, so you can just delete 
the field projection subroutine for this element. 

• There are no direct or forced boundary conditions in this problem 
• You will need to define an initial value for the concentration.  The solution shown in the 

figure was generated with 
1 2( 0) 0.01sin(15 )sin(15 )c t x x= =  

EN234FEA has a user-subroutine that can be used to define initial values of degrees of 
freedom, and this function has already been coded for you.   Feel free to change it – the 
pattern you get is determined by the initial conditions. 

• As an example, run solutions for a square region 1 20.5 0.5 0.5 0.5x x− < < − < <  , with 
parameter values as follows: 

o 1, 0.0001, 0.5D κ θ= = =   
o Time step 0.001 

You can run 50 steps or so (the evolution slows down towards the end so running longer 
simulations gets boring).   

• To save you some time, an input file setting up this problem has been provided for you in a 
file called Cahn_hilliard_2d.in.     Edit the file to run the code with CHECK STIFFNESS 
before trying to run a full simulation, and try it with just a few steps before running all 50 
steps.   The full simulations might take a minute or two to run in Debug mode. 
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