
   
EN234: Computational methods in Structural and Solid Mechanics 

 
Homework 9: Explicit Dynamics: modeling dynamic ductile fracture  

Due Wed Nov 18, 2015 
   

 
School of Engineering 
Brown University 
 
Background problem  The following preliminary coding exercise will be helpful in completing this weeks 
homework.  Let 
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where  * *, , ,e p Es ν  are constants. 
 
Write a MATLAB code to solve the following equations for ee∆ ve∆  by Newton-Raphson iteration (write 
your own Newton-Raphson loop, don’t use the matlab equation solvers.   The goal is to get the Newton loop 
to work so you can transfer it into your Fortran code) 
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where 0 , ,m te ∆  are constants. Use the following values for the constants (you can check with other values 
too but note that solutions only exist for * *( , ) 0e pf s > ): 
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The Newton iterations require repeatedly solving the following linear equations for corrections ,e vd e d e∆ ∆   
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The hard part of this problem is calculating and typing in the derivatives of F correctly (note that f  is a 
function of ,e ve e∆ ∆  so the derivatives of F contain second derivatives of f  ).  You need to be extremely 
organized in both your calculations and designing the code to make the steps transparent. Fortunately as long 
as the iterations converge sufficiently rapidly (4-5  iterations are typical) you can sometimes get away with a 
few small errors, as long as F is correctly calculated! 



 
 
 
In the remainder of this homework you will implement an explicit dynamic simulation of ductile fracture in a 
polycrystalline metal, using the famous ‘Gurson’ plasticity model, which accounts for nucleation and growth 
of voids in a metal.  You can find a short discussion of the Gurson model here, and some more detail of the 
model that will be implemented here in the ABAQUS theory manual.  
 
Implicit dynamics with finite strains: Because ductile fracture generally involves large plastic strains, we 
must implement a finite strain version of the explicit dynamic finite element method.  The procedure 
followed here is somewhat similar to ABAQUS/Explicit, except that we will use the Jaumann rather than 
Green-Naghdi measure of stress rate (a more extensive discussion of stress rate measures and the difference 
between them can be found here) 
 
The finite-strain version of explicit dynamics is based on the principle of virtual power 
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where ijt  is the Kirchhoff stress; ivd  is a virtual velocity (a test function) and /ij i jL v yd d= ∂ ∂  is the virtual 
velocity gradient.   Since we are solving a metal plasticity problem we interpolate displacement and virtual 
velocity fields using the finite-strain version of the B-bar method, which yields a system of equations for the 
accelerations 
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Where n =2 for a 2D problem and n=3 for a 3D problem.   EN234FEA integrates these equations with 
respect to time using a Newmark scheme, with lumped mass matrix, 2 0β =  and 1 1β =  .   This gives the 
following algorithm: 

At time t=0 the velocities (0)a
iv  and accelerations (0)a

ia  are initialized (the user can specify the 
velocity; the accelerations are zero). 
The time incrementation loop proceeds as follows: 
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 ; impose any prescribed displacements. 

2. Calculate ( )a b
i kR u∆   

http://solidmechanics.org/Text/Chapter9_2/Chapter9_2.php
http://www.civil.northwestern.edu/people/bazant/PDFs/Papers/531.pdf


3. Calculate ( ) ( ) /a a a
i i i aaa t t R F M+ ∆ = − +   

4. Update ( ) ( ) ( )a a a
i i iv t t v t ta t t+ ∆ = + ∆ + ∆   

5. Update ( ) ( )a a a
i i iu t t u t u+ ∆ = + ∆   

This procedure is already coded in EN234FEA (the code is in explicit_dynamic_step.f90).   You only need 
to write code to calculate ( )a b

i kR u∆ , through the user subroutine. 
 
To implement any new material model, you must calculate the Kirchhoff stress [ ]mj klFt  given a 

displacement increment a
iu∆ , and hence calculate the nodal forces ( )a b

i kR u∆ .    Once [ ]mj klFt  has been 

found, you can find ( )a b
i kR u∆  using the usual method. 

 
In this homework, the stress will be calculated from the displacements using the constitutive relations for a 
porous plasticity model known as the ‘Extended Gurson’ model.   This is very similar to the rate-dependent 
viscoplastic constitutive equation discussed in class, except that it also accounts for the nucleation, growth 
and coalescence of voids.   
 
Summary of the Gurson model: Following the standard procedure in finite strain plasticity, we decompose 
the deformation gradient into elastic and plastic parts, which then allows us to decompose the total strain rate 
into elastic and plastic parts 
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The plastic strain rate is related to the Kirchoff stress by 
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where Y is the yield stress of the matrix (we neglect strain hardening, so Y is constant), 0 ,me  are two 
material constants (a characteristic strain rate and the stress exponent), and  
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Here, 1 2 3, ,q q q   are three material properties, and *f  is a function that quantifies the loss of strength resulting 
from void growth.   It is related to the volume fraction of voids in the material fV  by 
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Here, ,c Ff f  are two material parameters that represent the critical void volume fraction when voids start to 
coalesce, and when the material ultimately fails entirely, and 
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The volume fraction of voids is zero in the initial material.   As the material is plastically deformed, voids 
nucleate and grow, which causes fV  to increase.   It is governed by 
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where , ,N N Nf s e  are material properties controlling the rate of void nucleation with plastic strain (voids 
nucleate rapidly when the strain reaches Ne  ), and matrixe  is the total accumulated plastic strain in the matrix, 
which evolves according to 
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The elastic strain rate is related to the so called ‘co-rotational’ stress rate by 

1 1 2
e e

ij ij kk ij
E νt e e d
ν ν

∇  = + 
+ − 

   

where  
ij

ij ik kj ik kj
d

W W
dt
t

t t t
∇
= + −  

(for a more detailed discussion of rate forms of constitutive equations for elastic-plastic solid see here) 
 
 
Implementing the dynamic fracture/plasticity model requires three steps: 
 

(1) Given the displacement increment a
iu∆   and the displacement a

iu  at the start of the step, you must 
calculate the strain increment ije∆  , the spin increment ijW∆  and the rotation increment ijR∆   

(2) Given ije∆ , ijR∆ , the stress, and state variables at the start of the increment, calculate the stress and 
state variables at the end of the increment 

(3) Calculate the element residual forces
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These steps are described in more detail below, with a rough code template: 
 
 
 
 
 
 
 
 

http://solidmechanics.org/Text/Chapter3_9/Chapter3_9.php


 
Loop over the integration points: 

1. Calculate the increment in deformation gradient 
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4. Compute the contribution from the current integration point to the volume averaged spatial shape 

function derivatives 
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5. Compute the contribution from the current integration point to the element volume. 
 

End integration point loop 
 
Divide the volume averaged quantities by the element volume 

 
Loop over the integration points a second time 

 

1. Calculate the increment in deformation gradient 
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where I is the identity matrix. 
6. Calculate the Kirchoff stress at the end of the increment ( 1)n

ijt
+  and calculate the values of the 

updated material state variables for the current integration point (do this inside a subroutine – see 
below for the steps) 

7. Calculate the contribution to the element force vector from the current integration point 
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This is the same B-bar matrix you used earlier, except that the derivatives are with respect to y 
instead of x. 

 
End integration point loop 
 
Stress update algorithm 
The stress is updated using the approach discussed in class for small-strain plasticity problems (some of you 
may have implemented a small strain plasticity model in HW6 already).  Given ( ) ( ) ( ), , ,n n n

ij ij matrix fVe t e∆  , we 

wish to determine ( 1) ( 1) ( 1), ,n n n
ij matrix fVt e+ + + , as follows: 

1. Compute the elastic predictors for the deviatoric and hydrostatic stress 
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If 0f < ,  the increment is elastic, and the stress follows immediately as 

1 * *n
ij ij ijS pt d+ = +  

3. If 0f > , solve the following two equations for the magnitudes of the deviatoric  and volumetric 
plastic strains ,e ve e∆ ∆  (using Newton-Raphson iteration – you did this in MATLAB already) 
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where f  is computed using the void volume fraction at the start of the increment, together with the 
following expressions for p and es    
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4. The stress at the end of the increment can then be calculated from 
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5. Finally, the void volume fraction and matrix strain can be updated as 
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Implementation Notes 

• To implement an explicit dynamic element in EN234FEA, you must write two user-subroutines  
(i) a routine to compute the element residual force (there is an example in the el_linelast_3dbasic.f90 
file).  This routine must also compute values for the updated material state variables.  The subroutine 
arguments are shown below. 

subroutine el_linelast_3dbasic_dynamic(lmn, element_identifier, n_nodes, node_property_list, &            
    n_properties, element_properties,element_coords, length_coord_array, &                                
    dof_increment, dof_total, length_dof_array,  &                                                        
    n_state_variables, initial_state_variables, 
    updated_state_variables,element_residual,element_deleted)  ! Output variables                                           



(ii) the usual routine to project stresses and other field variables (eg the void volume fraction) to the 
nodes.    

 
• The Gurson material has 13 material properties: 0 1 2 3, , , , , , , , , , , ,N N N c FE Y m q q q f s f fν e e   
• The material has the following state variables: stress components ijt  , the matrix strain matrixe  and 

the void volume fraction fV  .  The values of these variables need to be stored, and updated, for at 
each integration point in the element. In EN234FEA, all state variables for an element are stored in 
two 1-D vectors: the user subroutine will provide the values of state variables at the start of the step 
in a vector called initial_state_variables; your user-subroutine must return their values at the end of 
the step in a variable called updated_state_variables.   You can use any storage scheme you like for 
your variables as long as they are consistent.   For example, in my code I extract the state variables 
for the first integration point as 
    stress0 = initial_state_variables(1:6) ! Stress at start of increment 
    ematrix = initial_state_variables(7) 

           Vf = initial_state_variables(8)    
The data for the second integration point starts at initial_state_variables(9), and so on. 

• It is best to separate the calculations into element operations (calculating shape function derivatives, 
deformation measures, etc) and material operations (calculating the stress).   There are various ways 
to do this, but the basic idea is to write a subroutine that calculates the updated stress and updated 
state variables for just one integration point, given values of the state variables, the strain increment, 
and the rotation increment , with a subroutine of the form 

subroutine gurson(element_properties,n_properties,n_state_variables,initial_state_variables, & 
updated_state_variables,dstrain,dRot,stress1) 
    use Types 
    use ParamIO 
    use Globals, only : TIME, DTIME 
 
    implicit none 
 
    integer, intent( in )       :: n_properties 
    integer, intent( in )       :: n_state_variables 
 
    real (prec), intent( in )   :: element_properties(n_properties) 
    real (prec), intent( in )   :: initial_state_variables(n_state_variables) 
    real (prec), intent( in )   :: dstrain(3,3) 
    real (prec), intent( in )   :: dRot(3,3) 
 
    real (prec), intent( out )  :: stress1(6) 
    real (prec), intent( out )  :: updated_state_variables(n_state_variables) 

 
Note that n_state_variables here is the number of state variables for ONE INTEGRATION POINT, not 
all of them, and you must slice the vector that stores the full set of variables for all the integration points 
to pass the correct set to this subroutine. 
• The condition 0f >  is best checked numerically as epsf > , where eps is a small number (10-8) to 

avoid divide by zero errors. 
• The ‘Element Utilities’ module in EN234FEA defines a function to compute Dn

ik kl jlR Rt∆ ∆  
        stress1 = rotatesymvec(stress0,dR) 
Here dR is a 3x3 orthogonal matrix and stress0 is a vector containing components of a symmetric 
tensor s= [s11,s22,s33,s12,s13,s23]. 

• Both EN234FEA and ABAQUS allow elements to be deleted during an explicit dynamic 
computation, to simulate material failure.   In EN234FEA this is accomplished by setting the 



‘element_deleted’ variable to .true. inside the user-element subroutine.  You could delete elements 
when f FV f>   for all the integration points in the element. 

• You are coding and running a fairly sophisticated FEA model in this homework, so debugging might 
take a bit of work.   The following procedure will test your code in stages: 

1. Run your code with only two elements (eg with the mesh in Gurson_3d_dynamic.in), and parameter 
values that will produce an elastic material, eg 
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Use a mass density 10ρ =  and a time-step of 0.01 units.   You can apply any sensible boundary 
conditions.   Your code should reproduce the results in linear_elastic_dynamic_3d.in (with the same 
boundary conditions). 

2. Run your 2 element test with plasticity, but no void nucleation, eg.  
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Check the convergence of the Newton iterations in the plasticity model – they should converge after 
2-4 iterations.   If this does not happen there is probably an error in the derivatives you are using in 
the Newton-Raphson loop (but hopefully you caught any problems in the preliminary MATLAB 
code you wrote, so this part should work. 

3. If step (2) works repeat the 2 element test with void nucleation – try parameters 
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(suppress element deletion for this test).  Check the convergence of your Newton iterations.  In this 
simulation you should see the stress in the elements drop as the material fails. 

4. If test (3) works, you can try running the simulation shown in the figure.  An input file called 
notch_fracture_dynamic.in has been provided for this purpose.   You may need to change the order 
of the material property definition to be consistent with your code. 

5. Optional: if you are curious you can make your own fracture specimen and (virtually) break it.  The 
simulation will run faster if you compile and run your code in release mode instead of debug mode. 
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