

EN234: Computational methods in Structural and Solid Mechanics

Homework 9: Explicit Dynamics: modeling dynamic ductile fracture

Due Wed Nov 18, 2015

School of Engineering
Brown University

Background problem The following preliminary coding exercise will be helpful in completing this weeks
homework. Let

1/22
* *2

1 2 32
3(,) 2 cosh (1)
2

e
e

pp q f q q f
YY

s
f s

   = + − +  
   

Where *
1 2 3, , , ,q q q f Y are constants. Let

* *3
2 (1) 3(1 2)e e e v

E Ee p pσσ e
ν ν

= − ∆ = − ∆
+ −

where * *, , ,e p Eσ ν are constants.

Write a MATLAB code to solve the following equations for ee∆ vε∆ by Newton-Raphson iteration (write
your own Newton-Raphson loop, don’t use the matlab equation solvers. The goal is to get the Newton loop
to work so you can transfer it into your Fortran code)

1/22 2

1
0

1/22 2

2
0

2(,) 0
9

2(,) 0
9

me
e v

e e

mv
e v

e

eF e e
p t

F e e
p t p

φφφ φ
σ e σ

eφφφ φ
σ e

        ∆∂ ∂ ∂ ∆ ∆ = + − =      ∂ ∂ ∆ ∂        

       ∆∂ ∂ ∂ ∆ ∆ = + − =      ∂ ∂ ∆ ∂        





where 0 , ,m tε ∆ are constants. Use the following values for the constants (you can check with other values
too but note that solutions only exist for * *(,) 0e pφσ >):

0

1 2 3
* * *

1000, 0.33, 8000, 0.01, 5,
1.25, 1.0, 1.25,

0.05, 8500, 1000, 0.01e

E Y m
q q q

f p t

ν e

σ

= = = = =

= = =

= = = ∆ =



The Newton iterations require repeatedly solving the following linear equations for corrections ,e vd e d e∆ ∆

1 1

1

22 2

e v e

v

e v

F F
e e d e F

d e FF F
e e

∂ ∂ 
 ∂∆ ∂∆ ∆     = −     ∆∂ ∂   
 ∂∆ ∂∆ 

The hard part of this problem is calculating and typing in the derivatives of F correctly (note that φ is a
function of ,e ve e∆ ∆ so the derivatives of F contain second derivatives of φ). You need to be extremely
organized in both your calculations and designing the code to make the steps transparent. Fortunately as long
as the iterations converge sufficiently rapidly (4-5 iterations are typical) you can sometimes get away with a
few small errors, as long as F is correctly calculated!

In the remainder of this homework you will implement an explicit dynamic simulation of ductile fracture in a
polycrystalline metal, using the famous ‘Gurson’ plasticity model, which accounts for nucleation and growth
of voids in a metal. You can find a short discussion of the Gurson model here, and some more detail of the
model that will be implemented here in the ABAQUS theory manual.

Implicit dynamics with finite strains: Because ductile fracture generally involves large plastic strains, we
must implement a finite strain version of the explicit dynamic finite element method. The procedure
followed here is somewhat similar to ABAQUS/Explicit, except that we will use the Jaumann rather than
Green-Naghdi measure of stress rate (a more extensive discussion of stress rate measures and the difference
between them can be found here)

The finite-strain version of explicit dynamics is based on the principle of virtual power

0 0 2

0 0i
ij ij i i i

V V A

vL dV v t v
t

t d ρ d d
∂

+ − =
∂∫ ∫ ∫

where ijτ is the Kirchhoff stress; ivδ is a virtual velocity (a test function) and /ij i jL v yδδ = ∂ ∂ is the virtual
velocity gradient. Since we are solving a metal plasticity problem we interpolate displacement and virtual
velocity fields using the finite-strain version of the B-bar method, which yields a system of equations for the
accelerations

0 0

2

2

0 0[]

b
a ai

ab i i

a a amja b a
ab i mj kl im

j i iV V

d uM R F
dt

N N NM N N dV R F dV
y n y y

d
t d

= − +

  ∂ ∂ ∂  = = + −
  ∂ ∂ ∂

  
∫ ∫

Where n =2 for a 2D problem and n=3 for a 3D problem. EN234FEA integrates these equations with
respect to time using a Newmark scheme, with lumped mass matrix, 2 0β = and 1 1β = . This gives the
following algorithm:

At time t=0 the velocities (0)a
iv and accelerations (0)a

ia are initialized (the user can specify the
velocity; the accelerations are zero).
The time incrementation loop proceeds as follows:

1. Calculate
2

() ()
2

a a a
i i i

tu t v t a t
 ∆

∆ = ∆ + 
 

 ; impose any prescribed displacements.

2. Calculate ()a b
i kR u∆

http://solidmechanics.org/Text/Chapter9_2/Chapter9_2.php
http://www.civil.northwestern.edu/people/bazant/PDFs/Papers/531.pdf

3. Calculate () () /a a a
i i i aaa t t R F M+ ∆ = − +

4. Update () () ()a a a
i i iv t t v t ta t t+ ∆ = + ∆ + ∆

5. Update () ()a a a
i i iu t t u t u+ ∆ = + ∆

This procedure is already coded in EN234FEA (the code is in explicit_dynamic_step.f90). You only need
to write code to calculate ()a b

i kR u∆ , through the user subroutine.

To implement any new material model, you must calculate the Kirchhoff stress []mj klFτ given a

displacement increment a
iu∆ , and hence calculate the nodal forces ()a b

i kR u∆ . Once []mj klFτ has been

found, you can find ()a b
i kR u∆ using the usual method.

In this homework, the stress will be calculated from the displacements using the constitutive relations for a
porous plasticity model known as the ‘Extended Gurson’ model. This is very similar to the rate-dependent
viscoplastic constitutive equation discussed in class, except that it also accounts for the nucleation, growth
and coalescence of voids.

Summary of the Gurson model: Following the standard procedure in finite strain plasticity, we decompose
the deformation gradient into elastic and plastic parts, which then allows us to decompose the total strain rate
into elastic and plastic parts

1 1() ()

pe
ij ik kj

ij ik kj ij ik kj
pe

ij ij ij

F F F

sym F F W skew F Fe

e e e

− −

=

= =

= +

 



  

The plastic strain rate is related to the Kirchoff stress by

 0
2 2

0 0

3 1 0
2 32

9

Dm
ijp

ijij
e e

e

p

p

φ

τe φ φφ δφ e σσ φφ
σ

<


 ∂ ∂ + > =   ∂ ∂    ∂ ∂
+    ∂ ∂  



 (1)

where Y is the yield stress of the matrix (we neglect strain hardening, so Y is constant), 0 ,mε are two
material constants (a characteristic strain rate and the stress exponent), and

1/22
* *2

1 2 32
32 cosh (1)
2

/ 3 3 / 2 / 3

e

D D D
ij ij kk ij e ij ij kk

pq f q q f
YY

p

s
f

τττδ s τττ

   = + − +  
   

= − = =

Here, 1 2 3, ,q q q are three material properties, and *f is a function that quantifies the loss of strength resulting
from void growth. It is related to the volume fraction of voids in the material fV by

 * ()

f f c

F c
c f c c f F

F c

F f F

V V f
f ff f V f f V f
f f

f V f

 <


−= + − < <
−

 >

 (2)

Here, ,c Ff f are two material parameters that represent the critical void volume fraction when voids start to
coalesce, and when the material ultimately fails entirely, and

2
1 1 3

3
F

q q q
f

q
+ −

=

The volume fraction of voids is zero in the initial material. As the material is plastically deformed, voids
nucleate and grow, which causes fV to increase. It is governed by

2

1(1) exp
22

f p matrix N matrix N
f kk

NN

dV d fV
dt dt ss

e e e
e

p

  − = − + −     
 (3)

where , ,N N Nf s ε are material properties controlling the rate of void nucleation with plastic strain (voids
nucleate rapidly when the strain reaches Nε), and matrixε is the total accumulated plastic strain in the matrix,
which evolves according to

1/22 2
0 2 1

1 9 3
mmatrix

e
f e e

d p
dt V p p
e e f f f ff σ

σσ

−
     ∂ ∂ ∂ ∂ = + +    − ∂ ∂ ∂ ∂      



The elastic strain rate is related to the so called ‘co-rotational’ stress rate by

1 1 2
e e

ij ij kk ij
E ντ e e δ
ν ν

∇  = + 
+ − 

 

where
ij

ij ik kj ik kj
d

W W
dt
t

t t t
∇
= + −

(for a more detailed discussion of rate forms of constitutive equations for elastic-plastic solid see here)

Implementing the dynamic fracture/plasticity model requires three steps:

(1) Given the displacement increment a
iu∆ and the displacement a

iu at the start of the step, you must
calculate the strain increment ijε∆ , the spin increment ijW∆ and the rotation increment ijR∆

(2) Given ijε∆ , ijR∆ , the stress, and state variables at the start of the increment, calculate the stress and
state variables at the end of the increment

(3) Calculate the element residual forces
0

0[]
a a amja

i mj kl im
j i iV

N N NR F dV
y n y y

d
τ d

  ∂ ∂ ∂  = + −
  ∂ ∂ ∂

  
∫ ∆

These steps are described in more detail below, with a rough code template:

http://solidmechanics.org/Text/Chapter3_9/Chapter3_9.php

Loop over the integration points:

1. Calculate the increment in deformation gradient
a

a
ij i

j

NF u
x

∂
∆ = ∆

∂
 (note there is no identity added,

since this is the change in F)

2. Calculate the mid-point deformation gradient (/2) 1()
2

a
t t a a

ij ij i i
j

NF u u
x

δ+∆ ∂
= + + ∆

∂
 and the associated

Jacobian J= (/2)det()t t+∆F
3. Compute the contribution from the current integration point to the volume averaged Jacobian and the

average volumetric strain increment

(/2) 1

1

1
el

el

el V

t t
kk ij ik kj

el V

JdV
V

J L dV L F F
V

η

η
η

+∆ −

=

∆ = ∆ ∆ = ∆

∫

∫

4. Compute the contribution from the current integration point to the volume averaged spatial shape

function derivatives

(/2) 11

el

a a a a
t t

ki
i el i i kV

N N N NJ dV F
y V y y xη

+∆ −∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂∫

5. Compute the contribution from the current integration point to the element volume.

End integration point loop

Divide the volume averaged quantities by the element volume

Loop over the integration points a second time

1. Calculate the increment in deformation gradient
a

a
ij i

j

NF u
x

∂
∆ = ∆

∂

2. Calculate the mid-point deformation gradient (/2) 1()
2

a
t t a a

ij ij i i
j

NF u u
x

δ+∆ ∂
= + + ∆

∂

3. Compute the corrected velocity gradient increment
(/2) 1 (/2) 1() / 3t t t t

ij ik kj lk kl ijL F F F Fη δ+∆ − +∆ −∆ = ∆ + ∆ − ∆

4. Compute the strain and spin increments () / 2 () / 2ij ij ji ij ij jiL L W L Lε∆ = ∆ + ∆ ∆ = ∆ − ∆

5. Calculate the rotation increment associated with the spin, which is given by
t t

ij ij ik kj
t

R W R dtd
+∆

∆ = + ∫ .

The integral can be approximated using a mid-point rule
1

1

()
2

()
2 2

−

−

∆ + ∆
= ⇒ ∆ ≈ +

∆ ∆ ⇒ ∆ ≈ − + 
 

W I RRR W R I

W WR I I



where I is the identity matrix.
6. Calculate the Kirchoff stress at the end of the increment (1)n

ijτ
+ and calculate the values of the

updated material state variables for the current integration point (do this inside a subroutine – see
below for the steps)

7. Calculate the contribution to the element force vector from the current integration point

0

0
T

V

dV= − ∫R B τ

where B can be assembled as

1 1 1 1 1 1 1 2 2 2 2

1 1 1 2 2 3 3 1 1 1 2

1 1 1 1 1 1 1

1 1 2 2 2 3 3

1 1 1 1 1
3 3 3 3 3

1 1 1
3 3 3

1
3

N N N N N N N N N N N
y y y y y y y y y y y

N N N N N N N etc
y y y y y y y

N

       ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂       + − − − + − −
       ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
       

     ∂ ∂ ∂ ∂ ∂ ∂ ∂     − + − −
     ∂ ∂ ∂ ∂ ∂ ∂ ∂
     

= ∂B 1 1 1 1

1 1 2 2

1 1

2 1

1
3

0

N N N
y y y y

N N
y y

 
 
 
 
 
 
 
 
    ∂ ∂ ∂    − −    ∂ ∂ ∂ ∂

    
 

∂ ∂ 
 ∂ ∂
 
 
 
 



This is the same B-bar matrix you used earlier, except that the derivatives are with respect to y
instead of x.

End integration point loop

Stress update algorithm
The stress is updated using the approach discussed in class for small-strain plasticity problems (some of you
may have implemented a small strain plasticity model in HW6 already). Given () () (), , ,n n n

ij ij matrix fVε t ε∆ , we

wish to determine (1) (1) (1), ,n n n
ij matrix fVt ε+ + + , as follows:

1. Compute the elastic predictors for the deviatoric and hydrostatic stress

()()* *

() ()

1
1 3 3(1 2)

1/ 3
3

nDn
ij ij ik kl jl kkkk

n nDn
ij ij kk ij ij ij kk

E ES e R R p

e

ττ e
nn

e e δτττ

= D + DD = + D
+ −

D = D − D = −

2. Calculate
1/2*2 *

* *2
1 2 32

* * *

32 cosh (1)
2

3 / 2

e

e ij ij

pq f q q f
YY

S S

s
f

s

   = + − +  
   

=

() ()

* () ()

()

()

n n
f f c

n nF c
c f c c f F

F c
n

F f F

V V f
f ff f V f f V f
f f

f V f

 <


−
= + − < <

−
 >

If 0φ < , the increment is elastic, and the stress follows immediately as

1 * *n
ij ij ijS pτδ + = +

3. If 0φ > , solve the following two equations for the magnitudes of the deviatoric and volumetric
plastic strains ,e ve e∆ ∆ (using Newton-Raphson iteration – you did this in MATLAB already)

1/22 2

0

1/22 2

0

2 0
9

2 0
9

me

e e

mv

e

e
p t

p t p

φφφ φ
σ e σ

eφφφ φ
σ e

        ∆∂ ∂ ∂ + − =      ∂ ∂ ∆ ∂        

       ∆∂ ∂ ∂ + − =      ∂ ∂ ∆ ∂        





where φ is computed using the void volume fraction at the start of the increment, together with the
following expressions for p and eσ

* *3
2 (1) 3(1 2)e e e v

E Ee p pσσ e
ν ν

= − ∆ = − ∆
+ −

4. The stress at the end of the increment can then be calculated from
*

1 * *
*

3
1 2 3(1 2)

ijn
ij ij e v ij

e

SE ES e pτ e δ
nn σ

+  
= − ∆ + − ∆ + − 

5. Finally, the void volume fraction and matrix strain can be updated as
(1) ()

2()
1 ()

1/22 2
0

()

11 (1)exp() exp
22

0 0

2 1 0
9 31

n n
matrix matrix matrix

n
n n N matrix matrix N
f f v

NN

matrix m
en

e ef

fV V
ss

t p
p pV

e e e

e e e
e

p

f

e e f f f ff s f
s s

+

+

−

= + ∆

  ∆ − = + − −∆ + −     
<

 ∆ =      ∆ ∂ ∂ ∂ ∂ + + >    ∂ ∂ ∂ ∂−       








Implementation Notes

• To implement an explicit dynamic element in EN234FEA, you must write two user-subroutines
(i) a routine to compute the element residual force (there is an example in the el_linelast_3dbasic.f90
file). This routine must also compute values for the updated material state variables. The subroutine
arguments are shown below.

subroutine el_linelast_3dbasic_dynamic(lmn, element_identifier, n_nodes, node_property_list, &
 n_properties, element_properties,element_coords, length_coord_array, &
 dof_increment, dof_total, length_dof_array, &
 n_state_variables, initial_state_variables,
 updated_state_variables,element_residual,element_deleted) ! Output variables

(ii) the usual routine to project stresses and other field variables (eg the void volume fraction) to the
nodes.

• The Gurson material has 13 material properties: 0 1 2 3, , , , , , , , , , , ,N N N c FE Y m q q q f s f fν εε 
• The material has the following state variables: stress components ijτ , the matrix strain matrixε and

the void volume fraction fV . The values of these variables need to be stored, and updated, for at
each integration point in the element. In EN234FEA, all state variables for an element are stored in
two 1-D vectors: the user subroutine will provide the values of state variables at the start of the step
in a vector called initial_state_variables; your user-subroutine must return their values at the end of
the step in a variable called updated_state_variables. You can use any storage scheme you like for
your variables as long as they are consistent. For example, in my code I extract the state variables
for the first integration point as
 stress0 = initial_state_variables(1:6) ! Stress at start of increment
 ematrix = initial_state_variables(7)

 Vf = initial_state_variables(8)
The data for the second integration point starts at initial_state_variables(9), and so on.

• It is best to separate the calculations into element operations (calculating shape function derivatives,
deformation measures, etc) and material operations (calculating the stress). There are various ways
to do this, but the basic idea is to write a subroutine that calculates the updated stress and updated
state variables for just one integration point, given values of the state variables, the strain increment,
and the rotation increment , with a subroutine of the form

subroutine gurson(element_properties,n_properties,n_state_variables,initial_state_variables, &
updated_state_variables,dstrain,dRot,stress1)
 use Types
 use ParamIO
 use Globals, only : TIME, DTIME

 implicit none

 integer, intent(in) :: n_properties
 integer, intent(in) :: n_state_variables

 real (prec), intent(in) :: element_properties(n_properties)
 real (prec), intent(in) :: initial_state_variables(n_state_variables)
 real (prec), intent(in) :: dstrain(3,3)
 real (prec), intent(in) :: dRot(3,3)

 real (prec), intent(out) :: stress1(6)
 real (prec), intent(out) :: updated_state_variables(n_state_variables)

Note that n_state_variables here is the number of state variables for ONE INTEGRATION POINT, not
all of them, and you must slice the vector that stores the full set of variables for all the integration points
to pass the correct set to this subroutine.
• The condition 0φ > is best checked numerically as epsφ > , where eps is a small number (10-8) to

avoid divide by zero errors.
• The ‘Element Utilities’ module in EN234FEA defines a function to compute Dn

ik kl jlR RτDD
 stress1 = rotatesymvec(stress0,dR)
Here dR is a 3x3 orthogonal matrix and stress0 is a vector containing components of a symmetric
tensor s= [s11,s22,s33,s12,s13,s23].

• Both EN234FEA and ABAQUS allow elements to be deleted during an explicit dynamic
computation, to simulate material failure. In EN234FEA this is accomplished by setting the

‘element_deleted’ variable to .true. inside the user-element subroutine. You could delete elements
when f FV f> for all the integration points in the element.

• You are coding and running a fairly sophisticated FEA model in this homework, so debugging might
take a bit of work. The following procedure will test your code in stages:

1. Run your code with only two elements (eg with the mesh in Gurson_3d_dynamic.in), and parameter
values that will produce an elastic material, eg

0

1 2 3

1000, 0.33, 8000, 0.01, 5,
1.25, 1.0, 1.25,
0, 0.05, 0.05, 0.15, 0.25N N N c F

E Y m
q q q
f s f f

ν ε

ε

= = = = =

= = =

= = = =



Use a mass density 10ρ = and a time-step of 0.01 units. You can apply any sensible boundary
conditions. Your code should reproduce the results in linear_elastic_dynamic_3d.in (with the same
boundary conditions).

2. Run your 2 element test with plasticity, but no void nucleation, eg.
0

1 2 3

1000, 0.33, 0.8, 0.01, 5,
1.25, 1.0, 1.25,
0, 0.05, 0.05, 0.15, 0.25N N N c F

E Y m
q q q
f s f f

ν ε

ε

= = = = =

= = =

= = = =



Check the convergence of the Newton iterations in the plasticity model – they should converge after
2-4 iterations. If this does not happen there is probably an error in the derivatives you are using in
the Newton-Raphson loop (but hopefully you caught any problems in the preliminary MATLAB
code you wrote, so this part should work.

3. If step (2) works repeat the 2 element test with void nucleation – try parameters
0

1 2 3

1000, 0.33, 0.8, 0.01, 5,
1.25, 1.0, 1.25,
0.05, 0.05, 0.05, 0.15, 0.25N N N c F

E Y m
q q q
f s f f

ν ε

ε

= = = = =

= = =

= = = = =



(suppress element deletion for this test). Check the convergence of your Newton iterations. In this
simulation you should see the stress in the elements drop as the material fails.

4. If test (3) works, you can try running the simulation shown in the figure. An input file called
notch_fracture_dynamic.in has been provided for this purpose. You may need to change the order
of the material property definition to be consistent with your code.

5. Optional: if you are curious you can make your own fracture specimen and (virtually) break it. The
simulation will run faster if you compile and run your code in release mode instead of debug mode.

	EN234: Computational methods in Structural and Solid Mechanics
	Homework 9: Explicit Dynamics: modeling dynamic ductile fracture
	Due Wed Nov 18, 2015

