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The main goal of the homework is to get comfortable with the book-keeping operations needed perform 
the various FEA tasks.   
 
You can use the constant strain linear elastic finite element MATLAB code posted on the Notes page of 
the class website as a general template for your calculations.    
 
The goal is to develop a simple finite element code to predict the velocity field in an incompressible fluid, 
in the quasi-static (Stokes flow) limit. Suppose that the fluid occupies a two-dimensional area A in the 

1 2( , )x x  plane.   Let 1 2( , )iv x x  denote the velocity field in A.   The velocity field satisfies 
2

0ji

j j i j

vv M
x x x x

∂∂
+ =

∂ ∂ ∂ ∂
 

Where M is a (large) penalty coefficient that enforces approximately the incompressibility condition 
/ 0i iv x∂ ∂ =  .   

 
It can be shown that (if body forces and tractions on the exterior surface vanish) the velocity field 
minimizes the functional 
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In this problem you will develop a two-dimensional FEA code in 
MATLAB to solve this equation.   The procedure follows the basic 
scheme for linear elasticity discussed in class (see also chapter 7 of 
http://solidmechanics.org ): 
1. We identify a set of ‘nodes’ in the solid where we want to calculate 

v 
2. Divide the solid into triangles with the nodes at the corners 
3. Interpolate the velocity field iv  in each triangle linearly between values 

at the nodes.  So, for a generic triangle with corners a,b,c 
a a b b c c

i i i iv N v N v N v= + +  
where the interpolation functions are exactly the same as those used for 
the elasticity problem.  
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4. We now need to calculate the contribution to Π  from each element. We must express this in matrix 
form 
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where elemk   is a matrix that you must determine, as described below. 
 

5. Add up the contributions from each element to express the total potential Π  in terms of the 
displacements at each node, where 
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where U  is a big vector consisting of the unknown transverse displacements at each node in the 
entire mesh. 

6. Minimize the functional – follow the procedure discussed in class for linear elasticity 
7. Solve the linear system, and post-process the results to display them. 
 
 
With this preamble, please work through the following problems: 
 
1. Find a matrix [ ]B  and a vector b  (in terms of derivatives of , ,a b cN N N  ) that have the following 

properties 
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2. Hence, find an expression for the element stiffness matrix elemk   in terms of [ ]B , b  the area of the 

element, and the constant M. 
 
3.   Modify the constant strain triangle MATLAB FEA code provided in class to compute elemk  
 
 
 



 
4.   Modify the MATLAB FEA code provided in class to generate the mesh shown in the figure (you 
don’t need to duplicated it exactly – just generate something similar).  To do this you will need to: 
(1) Generate the array coord(a,i) that specifies 
the ith coordinate of the ath node in the mesh 

a
ix   

(2) Generate the connectivity array 
connect(lmn,a), which specifies the ath node 
attached to element number lmn.   You can use 
the matlab function Delaunay() to do this, as 
follows 
connect = 
   delaunay(coord(:,1),coord(:,2)); 
This will generate elements to connect all the 
nodes in the mesh (and will fill the hole at the 
center of the mesh with elements).  You can 
then loop over all the elements and delete the 
ones which have centroids inside the hole. 
 
The exact location of the nodes and the number 
of elements in your mesh is not important, but make the mesh fine enough to give a reasonable resolution 
in both the radial and hoop directions.  The mesh shown in the figure has 80 nodes in the hoop direction 
and 20 in the radial direction. 

 
 
5. Generate boundary conditions corresponding to  
(i) a unit prescribed radial velocity on the inner boundary (r=a) and zero traction on r=b 
(ii) a unit prescribed tangential velocity on r=a and prescribed velocity of zero on the outer boundary 
r=b.   
You can specify boundary conditions in the array fixednodes() in the code, which stores data as follows: 
fixednodes(n,1) specifies the node number for the nth constraint 
fixednodes(n,2) specifies the degree of freedom number (1 or 2) that is to be constrained 
fixednodes(n,3) specifies the value of the degree of freedom. 
Zero traction is the ‘natural’ boundary condition so you don’t need to do anything to create a traction free 
surface. 
 
6. For 5(i) and 5(ii) respectively, plot (i) the radial velocity and (ii) the tangential velocity as a function of 
radius.  Compare the numerical solution to the analytical results (i) /rv a r=  and (ii) 

2 2 2 2( ) / ( )v b r a b a rθ  = − −    .  You can try various values for M, but values in the range 5 500M< <  

give a reasonable compromise between enforcing the incompressibility constraint and producing (for 
large M) an ill-conditioned stiffness matrix. 
 
 
As a solution to this homework, please (1) Upload your MATLAB code to Canvas; and (ii) upload a 
typed or scanned pdf file with your solutions to problems 1,2 and 6 to Canvas. 
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