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In this homework you will develop a code to predict how the stress and concentration evolves in a binary 
solution of two atomic species A and B, which diffuse by mutual exchange on an elastically deforming 
lattice.   We describe the composition of a point in the solid using the fraction c of B atoms: 0c =  
corresponds to pure A, while  1c =  corresponds to pure B.  We take the Gibbs free energy of the solution to 
have the form 
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where W  and k are material properties (W quantifies the energy cost of deviating from a composition of 
pure A or pure B, while k  determines the energy per unit area of an interface between A and B); ijklC  are 
the elastic constants (which we assume to be independent of composition, for simplicity), ijε  is the strain (a 
lattice occupied by pure A is taken to be the zero strain state), and W  is the ratio of the volume of an atom of 



B to that of A.  A stress free solid has minima at 0, 1c c= =  .   It is therefore energetically favorable for the 
solid solution to phase separate into A- and B-rich regions.     Moreover, it is energetically favorable for the 
system to minimize concentration gradients.  As a result, a material that starts with c close to zero phase 
separates into regions of A and B, which then gradually coarsen, as shown in the figure.  Externally applied 
forces, or self-stress caused by changes in composition, will also influence the process. 

 
The evolution of concentration is governed (approximately – we have neglected a small contribution from 
the elastic strain energy to the chemical potential µ  ) by the Cahn-Hilliard equation 
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where D is a diffusion coefficient (which we will assume is constant, but could depend on c).   The stress and 
strain fields satisfy the usual linear elastic field equations.    

 
Our goal is to solve this system of equations for concentration c(t) and displacement u(t), given some initial 
conditions and boundary conditions.   To keep things simple, we will consider a 2D rectangular region of 
material (shown in the figure), with symmetry boundary conditions (so 0c µ∇ ⋅ = ∇ ⋅ =n n  on all 
boundaries). 

 
The first step is to set up a finite element approximation to the PDEs.  The displacement, strain and stress 
fields satisfy the usual finite element equations 
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We also need to solve the Cahn-Hilliard equation. This is usually done by solving simultaneously for µ  and 
c (this avoids having to solve a fourth-order PDE).  Introducing variations of , cδµ δ  , you should be able to 
show that the weak form of the governing equations is 
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Introducing finite element interpolation functions for µ  and c in the usual way 
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then yields the discrete system of equations 
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Finally, we need a way to integrate this discrete system of equations with respect to time.   As in all FEA 
problems, we use a time-marching scheme: given values ,a acµ at time t,  we find the increments ,a acµ∆ ∆  
during the next time interval t∆ , and then update the solution.   A backward-Euler integration is used for µ   



( ) ( ) 0b b a b b
ab abM H P c cµ µ k+ ∆ − − + ∆ =  

while a generalized mid-point time integration scheme is used to integrate the equation for the concentration 
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where 0 1θ< <  is a numerical parameter.  Choosing 0θ =  gives a forward-Euler scheme; choosing 1θ =  
gives a backward-Euler scheme, and 0.5θ =  (the usual choice) gives a mid-point scheme. 

 
We now have a system of nonlinear equations to solve for ,u∆  ,a acµ∆ ∆  and are on familiar territory. 
 
Some care is required to implement the procedure, however.   We have already seen that standard linear 
elastic elements are not able to accommodate an arbitrary volume change at all integration points.  This 
means that changes in concentration at the integration points can generate large spurious stresses. We could 
use any of the various approaches discussed in class to avoid this kind of locking, but (for 2D simulations) 
the easiest one to implement in practice is to interpolate the displacement fields using 8 noded quadratic 
elements, and the concentration field using linear interpolation between the 4 nodes at the corners of the 
element.   The stiffness and right hand side vectors should be assembled using a 4 point integration scheme. 
• Note that each node in the finite element mesh will have two degrees of freedom: the value of µ  and the 

value of c.   At a generic time-step, we will be solving for ,a acµ∆ ∆  at each node. 
• Instead of the usual B matrix that maps displacements to strains, we can introduce a modified B matrix 
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Here, aN  are the quadratic interpolation functions for an 8 noded element, and aN  are the linear 
interpolation functions for a 4 noded element. 
 

• The finite element stiffness matrix and residual vector can then be expressed as 
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Your goal is to implement this as an ABAQUS UEL, and run it in EN234FEA.   Some guidelines: 

(1) You will use 8 noded planar quadrilateral elements with straight sides.   Nodes 1-4 will have four 
DOF (displacements, chemical potential, and concentration); nodes 5-8 will have two DOF 
(displacements only) 

(2) Use 4 integration points. 
(3) Assume isotropic elastic constants and plane strain deformation 
(4) Three sample input files are provided for you in EN234FEA to run your code.  These assume that 

the element properties are stored in the following order: , , ,W, ,D,E ν k θW  , where ,E ν  are Young’s 
modulus and Poisson’s ratio. 

(5) Remember that an ABAQUS UEL (and EN234FEA) provides the degrees of freedom at the end of 
the step in the variable U.   You will have to take this into account when computing the residual and 
stiffness. 

(6) Store the stresses at each integration point 11 22 33 12, , ,σ σ σ σ  as state variables (in the SVARS 
vector), so EN234FEA can plot stress distributions for you. 

(7) You will find that you can solve the problem with rather minor changes to the 2D elasticity code you 
wrote for Homework 3 – you merely need to re-define the B matrix and D matrix (note that D 
depends on concentration, and so must be evaluated inside the integration loop), and implement a 
procedure to calculate the vector  q .  

(8) You will need to define an initial value for the concentration.  The solution shown in the figure was 
generated with 

1 2( 0) 0.5 0.01sin(15 )sin(15 )c t x x= = +  
EN234FEA has a user-subroutine that can be used to define initial values of degrees of freedom, and 
this function has already been coded for you.   Feel free to change it – the pattern you get is 
determined by the initial conditions. 
To save you some time, three input files setting up this problem has been provided for you: 

 Abaqus_uel_phasefield_1el.in runs a simple problem with one element with zero initial 
concentration, and stretched horizontally 

 Abaqus_uel_phasefield_coarse.in runs a simulation showing spinodal decomposition in 
a crystal stretched horizontally with a coarse mesh (this simulation runs quickly 

 Abaqus_uel_phasefield_fine.in runs the same simulation with a finer mesh (this has 
30000 DOF so takes a few minutes to run all 100 steps in debug mode.  It will run much 
faster in release mode, particularly with Parallel Studio) 

You can change these files, or generate your own,  to test your code and to explore how the system 
behaves (you could try repeating the simulation with 0W =  , in which case there is no interaction 
between the mechanics (stress) and chemistry (diffusion) 

 
 
As a solution to this homework: 

(1) Upload a description of tests you have run to check your code on CANVAS.  Please include a link to 
your Github fork of EN234FEA 

(2) Push your code to Github 
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