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Abstract

Numerical simulations are used to investigate the influence of heterogeneity in grain-boundary diffusivity and sliding

resistance on the creep response of a polycrystal. We model a polycrystal as a two-dimensional assembly of elastic grains,

separated by sharp grain boundaries. The crystal deforms plastically by stress driven mass transport along the grain

boundaries, together with grain-boundary sliding. Heterogeneity is idealized by assigning each grain boundary one of two

possible values of diffusivity and sliding viscosity. We compute steady state and transient creep rates as functions of the

diffusivity mismatch and relative fractions of grain boundaries with fast and slow diffusion. In addition, our results show

that under transient conditions, flux divergences develop at the intersection between grain boundaries with fast and slow

diffusivity, which generate high local stress concentrations. The stress concentrations develop at a rate determined by the

fast diffusion coefficient, and subsequently relax at a rate determined by the slow diffusion coefficient. The influence of the

mismatch in diffusion coefficient, loading conditions, and material properties on the magnitude of this stress concentration

is investigated in detail using a simple model problem with a planar grain boundary. The strain energy associated with

these stress concentrations also makes a small fraction of the plastic strain due to diffusion and sliding recoverable on

unloading. We discuss the implications of these results for conventional polycrystalline solids at high temperatures and for

nanostructured materials where grain-boundary diffusion becomes one of the primary inelastic deformation mechanisms

even at room temperature.

r 2007 Published by Elsevier Ltd.
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1. Introduction

Grain-boundary (GB) diffusion and sliding are the dominant mechanisms of plastic deformation in
polycrystalline metals and ceramics at high homologous temperatures. They also contribute to room-
temperature plastic flow in nanocrystalline materials, where the fine grain size tends to suppress plastic flow by
e front matter r 2007 Published by Elsevier Ltd.
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dislocation motion while the high density of GBs accelerates diffusional creep. In addition, GB diffusion plays
an important role in stress generation and relaxation in polycrystalline thin films.

GB diffusional creep in macroscopic polycrystals has been extensively studied. Nabarro (1948) and Herring
(1950) first pointed out that self-diffusion can cause crystals to change shapes and induce macroscopic plastic
deformation at elevated temperatures. Coble (1963) studied the dependence of macroscopic strain rates _� on
grain size l and applied tensile stress s due to collective GB diffusion and showed that

_� ¼ a
dDO
kBT

s

l3
, (1)

where a is a geometrical constant, D is the GB diffusivity and d is the thickness of a layer in which interface
diffusion is supposed to take place; kB, T and O are the Boltzman constant, the absolute temperature and the
atomic volume, respectively. Ashby and Verrall (1973) considered a geometrical model of creep flow taking
into account strains due to GB diffusion and sliding, to reflect the fact that both GB diffusion and sliding
plays an increasingly important role in the inelastic deformation of polycrystalline solids as the temperature
rises or the grain size decreases. More recent work has extended the original Coble model by accounting for
phenomena such as interface reactions (Ashby, 1969, 1972; Arzt et al., 1983; Cocks, 1992). In general, these
models predict a nonlinear relationship between stress and strain rate.

Numerical methods have been developed to study GB diffusion and associated mechanical behavior in
polycrystalline solids. Needleman and Rice (1980) have first applied the finite-element method in modeling GB
diffusion and creep. Pan and Cocks (1993) developed finite-element formulations for modeling GB diffusion in
arbitrary networks of grains with straight GBs. They applied the numerical techniques, combined with a time
integration algorithm, to study microstructure evolution during superplastic deformation in polycrystalline
materials. Bower and Wininger (2004) extended the work of Pan and Cocks (1993) by using an advancing
front algorithm to generate a sequence of adaptive, evolving finite-element meshes to solve the evolution of
two-dimensional geometries. Sethian and Wilkening (2003) and Wilkening et al. (2004a,b) have used
techniques from semigroup theory to study mass transport in microelectronic circuits due to electromigration
and GB diffusion.

GB diffusion is also an important stress relaxation mechanism in thin films based on experimental
observations (Thouless et al., 1996; Kobrinsky and Thompson, 1998) and theories (Gao et al., 1999; Weiss
et al., 2001; Guduru et al., 2003). Meanwhile, it has been observed to act in combination with other
deformation mechanisms in thin films. For example, recent studies on the mechanical behaviors of
polycrystalline thin films on substrates (Gao et al., 1999) have indicated that constrained GB diffusion1

induces crack-like singular stress fields which leads to novel dislocation mechanisms that are driven by locally
induced, rather than globally applied, stresses. In situ TEM experiments (Balk et al., 2003), atomistic
simulations (Buehler et al., 2003) and discrete dislocation simulations (Hartmaier et al., 2005) have shown that
such constrained GB diffusion and the associated dislocation mechanisms dominate plastic deformation
mechanisms in unpassivated films thinner than a few hundred nanometers. These studies are calling for
broader investigations on the general importance of constrained GB diffusion mechanisms in polycrystalline
materials. Coble-type GB diffusional creep, together with GB sliding accommodated by GB diffusion, have
been considered as major deformation mechanisms in nanocrystalline materials by many authors (e.g., Gleiter,
1989). Although diffusion-controlled processes are typically activated only at high homologous temperatures,
Yamakov et al. (2002) have argued, based on their molecular dynamics simulations, that Coble-creep should
be a dominating mechanism in nanocrystalline materials even at low homologous temperatures. An important
feature of plastic deformation controlled by GB diffusion is that it gives rise to a strain-rate sensitivity on the
order of 1. Although strain-rate sensitivity around 1 is rarely observed in regular tensile and compressive tests
for nanocrystalline materials, significantly enhanced strain-rate sensitivity has been reported in both h.c.p. and
f.c.c. nc materials. Nc Cu synthesized by Jiang et al. (2006) showed a rate sensitivity about m ¼ 0:104 at room
1In columnar grain structures in thin films on substrates, diffusion tends to generate stress singularities at the ends of GBs that terminate

perpendicular to the substrate, if diffusion between thin films and substrates are constrained. These stress singularities may lead to

dislocation emission and initiate delamination. GB diffusion in such a situation is termed as ‘constrained GB diffusion’.
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Fig. 1. Stress–strain curves of brush-plated nanocrystalline Cu at different strain rates. Data replotted from Jiang et al. (2006).
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temperature in the strain rate range of 10�6=s to 4� 10�1=s, Fig. 1. The authors have attributed the high
strain-rate sensitivity to the dominant unstructured high-angle GBs in the material.

With the current technological trends in continuing miniaturization of structures in electronic devices and
materials, a thorough understanding of the inelastic deformation mechanisms by GB diffusion and GB sliding
is becoming increasingly important. On the other hand, existing experiments and theories have not been able
to fully capture the complex interplay between different deformation mechanisms in GBs. In particular, the
following issues are of interest for the present study.
�
 Most existing theories have assumed homogeneous diffusivity in GBs. In reality, most material properties are
heterogeneous at the scale of individual grains; high angle, relatively unstructured GBs usually have higher
diffusivities compared to low angle, structured GBs. GB diffusivity in a polycrystalline solid could differ by
several orders of magnitude from one grain to another. Constrained GB diffusion due to heterogeneous
diffusivities can affect not only deformation mechanisms in GBs, but also those in grain interiors.

�
 Diffusional deformation in GBs is a kinetic process but existing theories are usually developed for steady-

state creep which neglects transient effects in GB diffusion. On the other hand, a number of important
phenomena, such as stress concentration at GB junctions, could occur in a transient time period and
disappear at steady state. In such cases, further progress will be required for more rigorous modeling of
stresses induced by heterogeneous GB diffusion.

�
 GB sliding accommodated by diffusion is not considered in most theoretical models; GBs are either

assumed to slide freely or not allowed to slide at all. These two extreme cases cannot represent real
deformation behaviors in GBs.

�
 Constitutive laws for creep in polycrystalline solids have been based on simple boundary-value problems. In

the presence of heterogeneous diffusive behaviors at the scale of individual grains, there is strong coupling
of localized deformation mechanisms which cannot be predicted by a macroscopic analysis. An example is
the constrained GB diffusion and the associated dislocation mechanisms in thin films (Gao et al., 1999;
Balk et al., 2003; Buehler et al., 2003; Hartmaier et al., 2005).

Motivated by these issues, the objective of the present study is to address the mechanical behavior associated
with heterogeneous GB diffusion and diffusion accommodated GB sliding. The plan of the paper is as follows.
The computational method of investigation will be discussed in Section 2 and used to investigate deformation
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behaviors induced by heterogeneous GB diffusion in Section 3. A generalized Maxwell model is adopted to
interpret the numerical results in Section 4. Section 5 closes the paper with some concluding remarks.

2. Problem formulation and numerical method of investigation

We model a polycrystal as a two-dimensional assembly of elastic grains, separated by sharp GBs. The
polycrystal is subjected to plane strain deformation with infinitesimal strains. Deformation in grains is
modeled with anisotropic elasticity and dislocation mechanisms are suppressed. The crystal deforms
plastically by stress driven mass transport along the GBs, together with GB sliding. Heterogeneity is idealized
by assigning each GB one of two possible values of diffusivity and sliding viscosity. We compute steady state
and transient creep rates as functions of the diffusivity mismatch and relative fractions of GBs with fast and
slow diffusion. In the following, we briefly discuss the numerical method to investigate constrained GB
diffusion. The reader is referred to Bower and Wininger (2004) for a detailed description of a more general
formulation for modeling migration, diffusion, sliding of GBs as well as plastic deformation in grain interiors.
The discussions below will focus on GB diffusion and GB sliding.

2.1. GB diffusion

For the GB shown in Fig. 2, the chemical potential per atom can be expressed as a function of time t and
position s along the GB as (Herring, 1950)

mðs; tÞ ¼ m0 � snðs; tÞO, (2)

where snðs; tÞ denotes the normal traction at s, and m0 is a reference potential which can be taken as zero for
the present study. Contributions from strain energy terms to the chemical potential are ignored in the above
equation because they are small. The Nernst–Einstein equation for atomic flux jðs; tÞ at s is

jðs; tÞ ¼ �
dD

kBTO
qmðs; tÞ
qs
¼

dD

kBT

qsnðs; tÞ
qs

(3)

and Ojðs; tÞ gives the volumetric rate of diffusion in the GB for jðs; tÞ denoting number of atoms crossing unit
length of the GB. Mass conservation requires that the rate of material accumulation at s is related to the
divergence of volumetric flux as

qun

qt
¼ �

qOjðs; tÞ

qs
, (4)
m

n

grain+

grain−grain−

Γ

τs

u−

j

u+

σn

t

Fig. 2. A GB G with displacement u� and uþ at two sides, atomic flux is denoted by j . Here (m, n) defines a local coordinate with

n ¼ ðn1; n2Þ along the GB normal and m ¼ ðm1;m2Þ along the tangential direction, and t denotes the traction exerted on the surface

belonging to grain�. It has a normal part sn and a shear component ts, i.e., t ¼ snnþ tsm.
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where un ¼ ðu
þ � u�Þ � n is the width of new material being inserted at point s due to diffusion. Combining

with Eq. (3), the above equation could be rewritten as

qun

qt
¼ �

dDO
kBT

q2snðs; tÞ
qs2

. (5)

Using ~un ¼ un=l; ~s ¼ s=l, ~t ¼ t=t0; ~s ¼ s=E�, Eq. (5) can be normalized as

q ~un

q~t
¼ � ~D

q2 ~snð~s; ~tÞ
q~s2

with ~D �
D

D0
, (6)

where l is the averaged grain size, and t0 ¼ kBTl3=dD0OE� is a characteristic time controlling diffusional
process in a GB with diffusivity of D0, and E� ¼ E=ð1� n2Þ is the plane strain modulus. In contrast to D,
which represents the diffusivity of any GB in a heterogeneous system, D0 is usually taken as a characteristic
GB diffusivity in the system. Real physical data for D0, E, and n used in this paper are listed in Table 1.

2.2. GB sliding

There are two types of GB sliding. One of them is a thermally activated, rate-dependent process; the other
may be referred as athermal GB sliding, which is a temperature independent process involving relative sliding
of two GBs when the resolved shear stress overcomes a threshold resistance. The athermal GB sliding differs
from thermally activated sliding in that it is essentially rate-independent. In our analysis, only thermally
assisted GB sliding is taken into consideration. A Newtonian viscous type of GB sliding is assumed with

Z
qus

qt
¼ ts. (7)

The dimensionless expression of Eq. (7), with ~us ¼ us=l, ~t ¼ t=t0 and ~ts ¼ t=E�, is given as

q ~us

q~t
¼ ~Z~ts with ~Z �

kBTl2

dD0OZ
. (8)
Table 1

Material parameters used for grain-boundary diffusion, grain-boundary sliding and grain interior deformation

Parameters for GB diffusion in Eq. (5) Frost and Ashby (1982)

NA Avogadro constant 6:022� 1023=mol

kB Boltzman constant 1:38� 10�23 J=K
T Absolute temperature 500K

O Atomic volume of Cu 1:18� 10�29 m3

d Effective GB thickness involving diffusion �10�9 m

Dc Pre-coefficient of GB diffusivity 5:0� 10�6 m2=s
Qv Activation energy for GB diffusion 1:04� 103 J=mol

l Grain size 100 nm

D0 GB diffusivity of Cu
Dc exp �

Qv

NAkBT

� �
Parameters for GB sliding in Eq. (7)

Z Viscosity to GB sliding

Elastic constants for Cu (isotropic)

E Young’s modulus 135GPa

n Poisson’s ratio 0.30

Elastic–plastic constants for Cu (anisotropic) Simmons and Wang (1971)

C11 Elastic constant 170GPa

C12 124GPa

C44 75GPa
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The dimensionless coefficient ~Z corresponds a normalized inverse viscosity and will be referred to as the
normalized GB fluidity. For calculations in this paper, we will assign one or two possible values of GB
diffusivity D and sliding viscosity Z to GBs to study mechanical behaviors induced by heterogeneous GB
properties.

2.3. Diffusion in GB junctions

In a microstructure composed of multiple grains, a junction of three or more grains is usually a site of high
stress concentration due to severely mismatched elastic properties of adjacent grains, in which cavitation or
damage could be initiated. In the scope of this paper, no damage or GB decohesion will be considered. GB
junctions serve as bridges for atoms to transfer between interconnected boundaries. Mass conservation in the
junction requires that the sum of fluxes from all GBs meeting at the junction be zero. A strong constraint is
applied in our numerical implementation to satisfy mass conservation and chemical potential continuity in any
junction.

2.4. Finite-element implementation

For a body V with internal boundaries G, displacement discontinuities crossing boundaries may exist, as
seen in Fig. 2. Let t be the traction along a GB and (vþ � v�) be the relative velocity between two sides of the
GB (Fig. 2), the variation of generalized internal virtual power dP for the body is given as 2

dP ¼
Z

V

r: d_edV þ

Z
G
t � ðdvþ � dv�Þds, (9)

where dv is a kinematically admissible virtual velocity field, (dvþ � dv�) is the jump in virtual velocity across
the GB, and d_e is a virtual strain rate

d_e ¼ 1
2
ð½rdv	 þ ½rdv	TÞ. (10)

To enforce displacement jumps due to GB diffusion in Eq. (6) and GB sliding in Eq. (8), we augment the
virtual internal power principle with Lagrange multipliers dsn and dts (Bower and Wininger, 2004),
corresponding to variations in normal and shear stress along G. They must be continuous along GBs but may
have discontinuities across junctions. The internal virtual power can be rewritten as

dP ¼
Z

V

r: d_edV þ

Z
G
t � ðdvþ � dv�Þds

þ

Z
G

Dun

Dt
þD

q2sn
qs2

� �
dsn dsþ

Z
G

Dus

Dt
� Zts

� �
dts ds, ð11Þ

where the D prefix of a variable indicates its change from one time step to the next. We separate the variation
of virtual internal power in Eq. (11) into two parts

dP ¼ dPv þ dPgb (12)

with

dPv ¼

Z
V

r: d_edV (13)

representing the contribution by continuum elements in grain interiors and

dPgb ¼

Z
G
t � ðdvþ � dv�Þdsþ

Z
G

Dun

Dt
þD

q2sn
qs2

� �
dsn dsþ

Z
G

Dus

Dt
� Zts

� �
dts ds (14)
2Here equations are written in dimensionless format. The ‘�’ used in Eqs. (6) and (8) indicating dimensionless parameters is removed for

convenience.
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being the variation of virtual internal power contributed by boundaries. Integrating Eq. (14) by parts and
using Eq. (3), we obtain

dPgb ¼

Z
G
t � ðdvþ � dv�Þdsþ

Z
G

Dun

Dt
dsnds�

Z
G

D
qsn
qs

qdsn
qs

dsþ

Z
G

Dus

Dt
� Zts

� �
dts ds|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

by GB elements

þ
X
a2qG|{z} jadsn

by junction elements

. ð15Þ

Hence the variation of virtual internal power can be further divided into three parts

dP ¼ dPv þ dPG þ dPJ , (16)

where

dPG ¼

Z
G
t � ðdvþ � dv�Þdsþ

Z
G

Dun

Dt
dsnds�

Z
G

D
qsn
qs

qdsn
qs

dsþ

Z
G

Dus

Dt
� Zts

� �
dts ds, (17)

dPJ ¼
X
a2qGI

jadsn þ
X
a2qGO

jadsn (18)

correspond to the contribution from continuum elements in grain interiors, GB elements, and elements in
boundary junctions, respectively. Here qG denotes all ends of GBs, which includes both junctions in the body
(qGI) and those in a sample’s surfaces (qGO). Unless stated otherwise, a symmetry boundary condition will be
applied for GB junctions of the latter case, i.e., ja ¼ 0 in qGO. The normal stress sn must be equal at the ends
of the three GBs that meet at a triple junction for chemical potential continuity. This condition is enforced
using a constraint.

The coupled grain interior and GB deformation problem satisfies the following variational principle:

dP ¼ 0 (19)

to first order in dv, {dsn; dts}. Using the Galerkin method, the variations of internal power components, dPG

and dPJ , can give the stiffness and residual for GB elements and junction elements, respectively. We have
implemented the above numerical procedure in the commercial finite-element computer program ABAQUS/
Standard (Abaqus Reference Manuals, 2005) via user element subroutines. In the next section, we will apply
the constitutive models and numerical scheme introduced above to study the effects of heterogeneity in GB
diffusivity and sliding resistance on the creep response of a polycrystal.

3. Heterogeneous GB diffusion and GB sliding

In a polycrystal with plastic deformation exclusively accommodated by GB diffusion and sliding, these two
processes occur concurrently. The macroscopic mechanical behavior of the solid is governed by the
cooperation and competition between diffusion and sliding in individual GBs. To define a local measure of
relative importance of diffusion versus sliding in a GB, we consider the ratio R between normalized GB
diffusivity (Eq. (6)) and GB fluidity (Eq. (8)), i.e.,

R ¼
~D

~Z
¼

dDOZ

kBTl2
. (20)

In a GB with R ¼ 1, for example, the local deformation rates by diffusion and sliding are comparable; while if
R ¼ 0:01, the local deformation rate by GB diffusion is about two orders of magnitude slower than that by
GB sliding. Macroscopically, GB sliding is expected to be the rate controlling mechanism if Rb1
(corresponding to fast diffusion or high viscosity to GB sliding), and GB diffusion is the rate-controlling
mechanism when R51. Note that the GB sliding velocity is directly proportional to the local shear traction
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(Eq. (8)) while diffusional creep is controlled by the gradient in local normal stress (Eq. (6)), with different
characteristic relaxation times for each process.

In order to illustrate the essential features of the mechanical behavior of a polycrystal deforming
plastically by GB diffusion and sliding, we present first a representative simulation for a model of
polycrystalline Cu with homogeneous GBs. In these simulations, uniform GB diffusion is assumed, i.e.,
D=D0 ¼ 1, D0 being the GB diffusivity for polycrystalline Cu at T ¼ 500K. The viscosity of GB sliding is
chosen to satisfy R ¼ 1. As a specific example, we simulate GB diffusion and sliding controlled plastic
deformation in polycrystalline Cu with an averaged grain size3 of l ¼ 100 nm and at temperature T ¼ 500K.
The parameters used are listed in Table 1. The microstructure used is shown in Fig. 3a. Nodes along the left
boundary are fixed in the horizontal direction and those along the bottom are fixed in the vertical direction. A
5% tensile strain is applied to the sample in the horizontal direction at a strain rate of 10�4/s, followed
by an unloading and subsequent compression at a strain rate of �10�4/s. Contours of the stress component s11
at a tensile strain of 1% during the transient stage is shown in Fig. 3b. Note the high stress concentrations near
triple junctions. The macroscopic stress–strain curve (computed from the relative displacement of the
boundaries of the specimen, and the resultant forces applied to the boundaries) is given in Fig. 3c, which
shows a transient period followed by steady-state creep. Our computations also allow us to calculate the
contribution to the total plastic strain arising from the various processes that contribute to the deformation
(we shall subsequently refer to these as ‘mechanism strains’). The plastic strain rates due to GB sliding and
3The size of the ith grain is estimated by equating the area of the grain to pl2i =4. The averaged grain size l of a sample is the numerical

average of li over all grains.
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diffusion can be computed from

_egbdij ¼
1

V

Z
G

ðDuþ � Du�Þ � n
Dt

ninj ds; egbdij ¼

Z t

0

_egbdij dt, (21a)

_egbsij ¼
1

V

Z
G

ðDuþ � Du�Þ �m
Dt

ðnimj þmjniÞ

2
ds; egbsij ¼

Z t

0

_egbsij dt, (21b)

where V is the total volume of the sample and G is the network consisting of all GBs. Under steady-state
conditions, the total strain rate is equal to the sum of these two quantities. Under transient conditions, there is
an additional contribution to the strain rate from the elastic deformation within the grains. Fig. 3d gives the
evolution of the strain rates along the loading direction (_egbd11 and _egbs11 ) due to GB diffusion and sliding.

The rectangular markers in Fig. 3d indicate a zero macroscopic stress at that point. In what follows, we will
further investigate steady state and transient creep rates as functions of the diffusivity mismatch and relative
fractions of GBs with fast and slow diffusion.

3.1. Coble creep

In this subsection, we investigate Coble creep in a homogeneous polycrystal, in which all GBs have the same
diffusivity and sliding resistance. In particular, our goal is to study the role of the relative rates of sliding and
diffusion on the macroscopic creep behavior of the solid. When GB diffusion is the rate controlling
mechanism in the material, stress s as a function of strain e can be expressed as a dimensionless function

sdDO

kBTl3 _e
¼ f

dDOE

kBTl3 _e
e;R

� �
, (22)

where _e is the applied strain rate. For a fixed R, it is expected that f will be a constant f ¼ 1=a at steady-state
creep as predicted in Eq. (1). In the case that GB sliding is the rate controlling mechanism, a similar
dimensionless equation could be written in the form of

s
Zl _e
¼ g

G

Zl _e
e;R

� �
, (23)

where G is the shear modulus. The microstructure shown in Fig. 4a is adopted to study the strain-rate
dependence of stress in polycrystals whereby plasticity is exclusively accommodated by GB diffusion and GB
sliding. A uniform diffusivity of D ¼ D0 is used and R ¼ 1 is chosen. Fig. 4b gives the stress strain curves at
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different strain rates. Strain for each curve is normalized by kBTl3 _e=dDOE, here _e is the respective strain rate
for each curve. Stresses in all curves have been normalized by kBTl3 _e=dDO with _e ¼ 10�5=s. The results show a
clear dependence of stresses on strain rates, as in Eq. (1). Interestingly, the parameter a we obtained in the
calculations is about 1, which is two orders of magnitude smaller than that given by Coble (1963) (a ¼ 148).
There are two reasons for the discrepancy: first, Coble’s result is based on a three-dimensional analysis of
spherical grains and second, the Coble result assumes free GB sliding. For a regular array of freely sliding two-
dimensional hexagonal grains, a ¼ 36 (Spingarn and Nix, 1978). In simulations with vanishing GB viscosity
(R ¼ 10�5) we obtain a ¼ 34 (Fig. 5b, De=D 
 34 at R ¼ 10�5), which is close to the result for freely sliding
grains.4 With R ¼ 1, the viscosity of the GBs substantially reduces the rate of creep. The dependence of
steady-state creep rate _e on grain size l is self-evident by taking the right side of Eq. (22) to be a constant.
4It can be shown that the creep rate calculated with an average grain size of l is overestimated in a polycrystal with nonuniform grain

size. To illustrate this with a simple model, consider N parallel dashpot elements, with the kth element representing the response of a grain

with a given grain size lk. Each element, based on Eq. (1), has a viscosity of Zk ¼ kBTl3k=adDO where a is taken as a constant for a material

of uniform grain size. Taking the macroscopic stress s as an average over all elements (s ¼
P

sk=N), we have

_e ¼ a
dDOs

kBTðð1=NÞ
PN

k¼1l3kÞ
oa

dDOs

kBTðð1=NÞ
PN

k¼1lkÞ
3

which suggests that a polycrystal with a random distribution of grain sizes should creep more slowly than a perfect array of hexagonal

grains. Here we have used the inequality (Hardy et al., 1934)

1

N

XN

k¼1

lk

 !3

o
1
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XN

k¼1

l3k
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The collective plastic deformation by GB diffusion and sliding at grain level results in a macroscopic creep
rate which can be written in the form of

_� ¼
dDeO
kBT

s

l3
, (24)

where De is a macroscopic ‘‘effective diffusivity’’ representing contributions from both diffusion and sliding at
the grain level. Indeed, experimentally measured GB diffusivity is an ‘‘effective diffusivity’’ since diffusion and
sliding may need to cooperate for compatible deformation, especially when dislocation activities are
suppressed. We will justify this conclusion at the end of this subsection. We will find De in a polycrystal with
specific GB properties through numerical experiments. Using a simple formula for elastic–viscoplastic solids
that _s ¼ Eð_e� _�Þ, together with Eq. (24), we can derive the following stress–strain behavior for a polycrystal
with GB diffusion and sliding being the exclusive plastic deformation mechanisms,

s
sss
¼ 1� exp �

dDeOE

kBTl3 _e
e

� �
, (25)

where

sss ¼ kBTl3 _e=dDeO

denotes the corresponding steady-state stress as t!1. Once a stress–strain curve in a polycrystal with
specific material properties is obtained, we can extract sss and De by fitting the stress–strain curve to Eq. (25).
Indeed, a very good match is found between stress–strain curves from our numerical simulations and that
described by Eq. (25) with appropriate sss and De.

In the preceding calculations, we have assumed the GB diffusivity–fluidity ratio R ¼ 1. Now we take R as a
variable while fixing the GB diffusivity. We vary the viscosity associated with GB sliding to identify the rate
controlling mechanism in the polycrystal at different R. With the stress–strain curve from our calculation for a
given R, we can determine sss and De by curve fitting using Eq. (25). Fig. 5a plots the relationship between
steady-state stress (normalized by kBTl3 _e=dDO with _e ¼ 10�5=s) and R, while Fig. 5b plots that between De

and R. Interestingly, Fig. 5b shows a negative slop of �1 indicating a linear relationship between De and 1=R

for R410�2, indicating that GB sliding remains to be the rate controlling mechanism even when GB fluidity is
two orders of magnitude larger than GB diffusivity. In this region, the ‘‘effective diffusivity’’ could be related
to the uniform GB diffusivity D by De ¼ D=R. Further reducing GB sliding viscosity will shift the rate-
controlling mechanism from GB sliding to GB diffusion. Our analysis suggests that the rate-controlling
mechanism is GB sliding for R410�2 and GB diffusion for Ro10�2.

Despite the difference in R for the above calculations, the normalized mechanism strain rates shown in Fig.
5d indicate that GB diffusion and sliding play almost equally important roles in accommodating deformation
at steady state.

A qualitative understanding of the roles of GB sliding and diffusion in controlling the macroscopic stress in
the polycrystal can be obtained by representing the deformation mechanisms as two parallel spring–dashpot
elements, to be discussed in more detail in Section 4. Under steady-state conditions the stress in the two
elements is given by

_e ¼
Adsed diffusion element;

Asses sliding element;

(

where sed and ses denote stresses in the diffusion and sliding element, respectively, and Ad and As are two
coefficients that can be determined from the limiting cases of sliding and diffusion controlled deformation.
Then the macroscopic response is

_e ¼
2AdAs

Ad þ As
s, (26)

where s ¼ ðsed þ ses)/2 is the average macroscopic stress. The numerical results in Fig. 5b with R in the range
of (10�4; 104) can be fit by Eq. (26) with Ad ¼ 10, and As ¼ 0:1=R, as shown in Fig. 5c. Eq. (26) is able to
represent the trends in Fig. 5b reasonably well.
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The investigations in this section indicate that creep in a polycrystal requires cooperative GB sliding and GB
diffusion. Such a constraint may explain the limited ductility of polycrystalline materials where dislocation
mechanisms are largely suppressed and plastic deformation is mainly accommodated by GB diffusion and
sliding, e.g., ceramics and nanocrystalline materials.
3.2. Scaling behavior by heterogeneous GB diffusion and sliding

We next turn to investigate the influence of heterogeneous diffusivity on the macroscopic mechanical
behavior. We will show that the saturation in stress–strain curves that commonly occurs in Coble creep
changes character if there is no continuous fast diffusion path across the GB network. Heterogeneous GB
diffusion in polycrystals is somewhat analogous to bond percolation. The flow of atoms in GBs can be
compared to the flow of electricity through a network of resistors represented by GBs. Atoms (electricity)
diffuse easily along paths of high diffusivity (low resistors) but may be blocked by low diffusivity GBs (high
resistors). If there is no trans-system diffusive path in the sample, the Coble-type creep may not be achieved in
the time scale of interest. We consider the microstructure shown in Fig. 6a. GBs with a square marker have a
slow diffusivity of 10�10D0 and the rest have D0. There is no cross-sample high diffusive path in this
microstructure. The corresponding stress–strain curves at different strain rates, as shown in Fig. 6b, do not
exhibit a Coble-type steady-state behavior.

Mechanical deformation in a polycrystal with heterogeneity in GB diffusion and sliding can be better
understood by defining a dimensionless parametric function

sdDfO

kBTl3 _e
¼ f

dDfOE

kBTl3 _e
e;R;

Df

Ds
;f

� �
, (27)

where Df=Ds is the ratio of fast diffusivity over slow diffusivity and f is the fraction of fast diffusion GBs. If
we adopt Eq. (25) to describe overall stress–strain curves in the polycrystal, the ‘‘effective diffusivity’’ De may
be represented by

De ¼ gðDs;Df ;f;RÞ, (28)

where g is an undetermined function. The relationship between s and fDs;Df ;f;Rg is condensed to its
dependence on De. The microstructure in Fig. 4a is used to construct the dependence of De on these
parameters in function g.

The influence of heterogeneity in GB diffusion and sliding on deformation in the microstructure has been
investigated at three different cases: (a) Each GB is randomly assigned either a fast diffusivity Df or a slow
diffusivity Ds, with Df=D0 ¼ 1 and Ds=D0 ¼ 10�3. The viscosity of GB sliding is taken to make R ¼ 1 in each
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boundary, in which case GB sliding is the rate-controlling mechanism. (b) The same GB diffusivity as in (a)
except R ¼ 10�4 in each boundary. In this case, GB diffusion is the controlling mechanism. (c) The same
arrangement with the fast diffusivity GBs as in (a) but the diffusion in slow diffusivity GBs is completely
turned off. A loading rate of _e ¼ 10�5=s is applied to all calculations.

Fig. 7 shows the stress–strain curves for different f for case (a). The results show that higher stresses and
larger strains are required to reach steady-state diffusion as f decreases. (Similar behaviors exist for cases (b)
and (c).) We then extracted the steady-state stress sss and ‘‘effective diffusivity’’ De by fitting the calculated
stress–strain curves to Eq. (25). Fig. 8a shows the steady-state stress versus f for the three cases. When GB
sliding is the rate controlling mechanism (case (a) with R ¼ 1), there is no abrupt transition for steady-state
stress as fast diffusion GB fraction f increases. When GB diffusion is the rate-controlling mechanism, there is
a region around 0:4ofo0:7 with a quick transition from deformation controlled by fast diffusion GBs to that
by slow diffusion GBs as f increases, resembling a percolating system. In case (c), some GBs are completely
constrained and the system shifts from GB accommodated creep to purely elastic deformation below a critical
diffusive GB fraction. Fig. 8b plots the ‘‘effective diffusivity’’ De versus f for the three cases.

The influence of Df=Ds in Eq. (27) is also studied numerically. Fig. 9a shows the trends of steady-state stress
versus Df=Ds for several f. Based on Eq. (25) and the known steady-state stress for each f, Fig. 9b shows the
relationship between ‘‘effective diffusivity’’ De and Df=Ds for several f.
3.3. Transient stress concentration by heterogeneous diffusivity and sliding

In this section, we focus on the influence of heterogeneous diffusivity on the microscopic stress field in the
polycrystal. The main observation in this subsection is that, if the diffusivity changes abruptly at a point in the
GB network, an applied load on the body induces transient crack-like stress concentrations at the time scale
controlled by the fast diffusivity, which subsequently relax out of the system at a rate governed by the slow
diffusivity. Similar behavior will be shown in the presence of heterogeneous GB sliding. We consider the
simple idealized microstructure illustrated in Fig. 10: the polycrystal is approximated as an assembly of
rectangular grains, with GBs oriented parallel and transverse to the loading direction. The GBs that are
normal to the loading axis have a position-dependent diffusivity as indicated in the figure: the region between
�1oxo0 has a fast diffusion coefficient Df , while the region between 0oxo1 has a slow diffusion coefficient
Ds. R ¼ 1 is maintained in the GB at any position. The vertical GBs are not modeled explicitly: instead, we
assume that they act as perfect sources of flux, by enforcing the condition that the normal stress on the
horizontal GB at x ¼ �1 equals zero. The solid may be subjected to either stress or strain loading in the
vertical direction. Our main objective is to compute the variation of normal stress that acts on the horizontal GB.
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In particular, we shall show that the jump in diffusivity and viscosity at x ¼ 0 generates a severe transient
stress concentration.

The normal traction s in the GB can be expressed in terms of a dimensionless function as

s
s1
¼ f

dDfOE

kBTl3
t;

Df

Ds
;
Zh
Zl

� �
, (29)

where s1 is the applied stress and t is time.
To avoid introducing an extra time scale in the system using strain controlled loading, we use stress

controlled loading to study the dependence of s on time t in Eq. (29). We assign Df=Ds ¼ 104 and Df=D0 ¼ 20
in the GB. A constant tensile stress of s1 is applied to the sample at t ¼ 0. The GB traction profiles at
different snapshots are plotted in Fig. 11a. The history of normal traction in the GB shows four stages: (a) at
t ¼ 0 the stress is uniform; (b) a stress peak develops at very early times near x ¼ �1 and propagates towards
x ¼ 0; (c) the stress drops to a very low value in the region �1oxo0, and simultaneously a stress
concentration develops near x ¼ 0 in the region 0oxo1; (d) the stress concentration gradually attenuates as
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the stress approaches the steady-state distribution. The two transients evolve with different characteristic time
scales: the characteristic time for stress evolution in the region �1oxo0 is tf 
 kBTl3=E�dDfO, while that in
0oxo1 for relaxation to steady state is ts 
 kBTl3=E�dDsO. Long term diffusion over the time scale of ts is
similar to that in classical steady-state creep models. The steady-state stress profile is well described by the
analytical solution given in Eq. (31) in Appendix A. With s1 ¼ 500MPa, Fig. 11b plots several steady-state
normal traction profiles for different ratios of Df=Ds based on Eq. (31).
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Similar phenomena could be seen in the presence of heterogeneous GB sliding. We apply a constant shear
stress t1 at t ¼ 0 to the top surface of the sample. In the low viscosity region, Zl ¼ kBTl2=dD0O and in the
high viscosity region, Zh ¼ 103Zl. GB diffusivity in both regions is Df ¼ Ds ¼ D0. Fig. 12 plots shear traction
profiles in the GB at different times, which resembles the normal traction profiles in the case of heterogeneous
GB diffusion. The stress evolution shows three characteristic stages: (I) at very early times, relative high shear
stress emerges over the entire boundary �1oxo1; (II) the stress drops to a very low value in the low viscosity
region �1oxo0, and simultaneously an increasing stress concentration develops near x ¼ 0 in the region
0oxo1; (III) this stress concentration gradually attenuates as the stress approaches the steady-state
distribution. The two transients evolve with different characteristic time scales: the characteristic time for
stress evolution in the region �1oxo0 is tl 
 Zll=G, while that in 0oxo1 for relaxation to steady state is
th 
 Zhl=G.

The influence of the diffusivity ratio Df=Ds on stress concentration is investigated by varying Ds while
keeping Df=D0 fixed at unity. Since most experiments are conducted using strain controlled loading, we apply
a constant strain rate of _e ¼ 10�4=s to the sample shown in Fig. 10. Fig. 13a plots the normal traction along
the GB in which Df=Ds ¼ 100. Severe stress concentration due to heterogeneous diffusion is observed in Fig.
13b when Df=Ds ¼ 104. Deformation in the low diffusivity GB cannot be accommodated by diffusion during
the process, consequently giving rise to high stresses. As the difference in diffusivity in the two regions
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becomes larger, the high diffusivity GB essentially becomes a crack over the characteristic time associated with
diffusion on this boundary, inducing high stress concentration in the low diffusivity GB. Larger Df=Ds and/or
Zh=Zl gives rise to higher s.

Also, higher strain rates induce higher stress concentrations under the present assumption of no plastic
deformation in the grain interiors, as indicated by Figs. 13a and c. These two calculations are performed with
the same GB properties but at different loading rates.

We further simulated stress evolution in a polycrystal sample with heterogeneous GB diffusivity.
The structure shown in Fig. 6a is adopted. GBs with square markers have diffusivity of Ds and the
rest have Df , with Df=Ds ¼ 104 and Df=D0 ¼ 20. The diffusivity–fluidity ratio R ¼ 1 is maintained
for each GB. A constant tensile stress s1 is exerted on the right side. Normalized GB normal traction
along black arrows in Fig. 6b at several snapshots are shown in Fig. 14a. Small stress peaks develop
in some fast diffusion GBs at very early stage (t=tf ¼ 0:05). These peaks dissipate quickly as loads are shifted
to low diffusivity GBs. At the end, most loads are carried by the slow diffusion GBs. Note the high stress
fluctuation along GBs. Fig. 14b plots the evolution of the maximum GB normal traction in the polycrystal.
A peak at the early stage is observed in slow diffusion GBs. For such a large system, we have not taken the
mesh size and time step sufficiently small to fully capture the transient stress concentration. In this sense,
we expect a higher stress concentration if the mesh size and time step are taken to be smaller. The saturated
peak stress indicates that the system is approaching steady-state creep in slow diffusion GBs. The transient
stress concentration shown in the polycrystal is qualitatively consistent with the analysis for a single GB
shown in Fig. 10.

The behaviors of transient stress concentration for deformation accommodated by heterogeneous GB
diffusion and sliding provide an explanation why nanostructured materials tend to be more ductile at lower
strain rates (Cheng et al., 2005; Wei and Anand, 2007). If GB diffusion and sliding are dominant plastic
deformation mechanisms, materials deformed at lower strain rates have lower risks of crack initiation and
growth in GBs. In contrast, high strain rates tend to induce severe stress concentrations at GB junctions and
give rise to higher risks of GB fracture, rendering the materials more brittle.

3.4. Recoverable creep deformation by diffusion and sliding

In this section, we will show that inelastic deformation by heterogeneous GB diffusion and sliding in
polycrytalline solids can be partially recoverable. As seen in Section 3.2, there may be severe stress
concentration in a polycrystal with heterogeneous GB diffusion and sliding viscosity. The strain energy
associated with these stress concentrations can make a fraction of the plastic strain due to diffusion and sliding
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recoverable on unloading. A simple grain structure is chosen to show mechanical behavior by heterogeneous
GB diffusion in individual GBs (Fig. 15b). The structure has three GBs, Df and Ds represents fast and slow
diffusion regions, respectively. Normal tractions nearby the two free surfaces in GB ‘a’ and GB ‘c’ and that at
the middle point in GB ‘b’ are set to be zero. A stress boundary condition is applied to the top surface with a
load–time profile shown in the inset in Fig. 15a. Corresponding stress–strain behavior is shown in Fig. 15a.
Stress contours syy at ‘II’ and ‘III’ marked in Fig. 15a are shown in Figs. 15c and d, respectively. The traction
evolution with time in GB ‘a’ and GB ‘b’ are shown in Figs. 15e and f. During unloading, compressive stress
develops in high diffusivity regions; the gradient of chemical potential in these GBs drives matter to diffuse out
and recover a portion of plastic strain induced by GB diffusion.

Recovery of inelastic strain is further investigated using a more realistic microstructure shown in
Fig. 6a. GBs marked with a square have a diffusivity of Ds and all others have a diffusivity of Df ¼ D0.
The sample is loaded at a constant strain rate of 10�5=s to a nominal strain of 2:5% and then unloaded at
�10�5=s. We take the diffusivity–fluidity ratio R ¼ 1 for each GB. Stress–strain curves at different ratios of
Df=Ds are shown in Fig. 16a. Mechanism strains contributed by GB diffusion and GB sliding (defined in Eq.
(21)), in the case of Df=Ds ¼ 104, are shown in Fig. 16c. A significant fraction of inelastic strains contributed
by both GB diffusion and GB sliding is recovered. Constrained GB sliding also can induce recoverable
deformation. Here we assign the same diffusivity D0 to all GBs and increase R by increasing GB viscosity Z.
Fig. 16b shows several stress–strain curves at different values of R. Mechanism strains contributed by GB
diffusion and GB sliding are shown in Fig. 16d, for the case of R ¼ 100. Inelastic strain by GB diffusion is
found to be substantially recovered. Rajagopalan et al. (2007) have recently studied deformation in
freestanding f.c.c. nanocrystalline thin films and reported that ‘‘plastic’’ deformation in these films is
recoverable. The evidence that heterogeneous GB diffusion can induce recoverable ‘‘plastic’’ deformation may
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suggest that diffusion has played an important role in the observed recovery of ‘‘plastic’’ deformation in their
experiments.

3.5. Characteristic time for stress relaxation is controlled by low diffusivity GBs

The microstructure shown in Fig. 17a is also used to investigate the characteristic time for stress relaxation
under heterogeneous GB diffusivity, with Df=D0 ¼ 10. We apply displacement controlled boundary condition.
The sample is loaded at a strain rate of 7:5� 10�4=s in the first 12 s. The boundary is then fixed. Four
simulation cases are conducted, with diffusivity in the middle half of the GB taken to be
Ds ¼ D0; D0=10; D0=100; D0=10

5. Fig. 17 shows that stress relaxation is much slower in the presence of
heterogeneous GB diffusivity. For the case when Df=Ds ¼ 106, there is almost no stress relaxation in the time
interval of 12 s. The low diffusivity parts of GBs are the primary load carrying regions and control the
characteristic time scale for stress relaxation. Meanwhile, the deformation is mainly accommodated by the
high diffusivity GBs.

4. A generalized Maxwell model for recoverable deformation

In order to develop simple intuitive understanding for recoverable inelastic deformation induced by
heterogeneous GB diffusion and sliding, we consider a generalized Maxwell model shown in Fig. 18a, in which
a high viscosity element Zh corresponds to a low diffusivity GB and a low viscosity element Zl corresponds to a
high diffusivity GB. One could easily derive the stress–strain relationship for a given loading rates, either in
strain or stress loading conditions.

We have taken the spring stiffness K ¼ 40GPa and dashpot viscosity Zh ¼ Zl ¼ 107 Pa s. The viscosity of
107 Pa s is obtained by matching the dimensionless equation for GB diffusion in Eq. (6) for polycrystalline Cu
with l ¼ 100 nm and at T ¼ 500K. A typical stress–strain curve for the structure under a constant strain rate
of 1:5� 10�3=s is shown in Fig. 18b, which resembles Fig. 3a obtained from polycrystalline aggregates with
uniform GB diffusivity. Fig. 18c shows the overall stress–strain behavior as well as that in each element in the
structure subjected to stress loading with Zh ¼ 5� 108 Pa s and Zl ¼ 107 Pa s. The sample is loaded at a stress-
rate of 5MPa/s and unloaded at �50MPa=s. In the presence of heterogeneous viscosity, we see that the
deformation is partially recoverable upon unloading. When the applied stress is fully removed, the element
with low diffusivity is still in tension but that with high diffusivity is in compression. These internal stresses
drive the structure to deform further while part of the strain is recovered, resembling the behavior shown in
Fig. 15.
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5. Conclusion

We have carried out a preliminary investigation of diffusional creep in polycrystalline solids
with heterogeneous GB diffusivities. The main observations from our analysis can be summarized
as follows.
�
 Heterogeneous GB diffusion leads to time-dependent creep deformation which is partially recoverable over
a characteristic time scale associated with diffusion on fast diffusion GBs. This recovery is driven by
internal stresses induced by mismatches in GB diffusivity.

�
 Heterogeneous GB diffusion leads to severe stress concentration over the characteristic time scale

associated with diffusion on high diffusivity GBs. However, over the long term, such stress concentration
tends to attenuate as steady-state creep is approached.
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�
 GB diffusion and sliding have to cooperate to allow compatible deformation field in polycrystals. A
macroscopic creep rate is controlled by the slower processing of these two mechanisms. At steady state,
each mechanism contributes half of the macroscopic creep rate.

�
 In polycrystals with bi-diffusivity, the deformation resembles that in a percolating system when GB

diffusion is the rate-controlling mechanism. The transition from fast diffusion-controlled deformation to
that by slow diffusion occurs in the region 0:4ofo0:7 as f decreases, here f is the fraction of fast diffusion
GBs. When deformation in slow diffusion GBs is completely constrained, an abrupt transition from GB
accommodated creep to elastic deformation is seen at f 
 0:6.

�
 Deformation is mainly accommodated by high diffusivity GBs while stress is primarily carried by low

diffusivity GBs.

�
 On an intermediate time scale before steady-state creep is reached, high diffusivity GBs behave like cracks

and result in severe stress concentration in low diffusivity GBs.

�
 The characteristic time scale controlling stress relaxation is determined by low diffusivity GBs.

Although GB diffusion is considered as the primary mechanism of mass transport in our analysis,
dislocation emission–absorption in GBs can lead to additional mass transportation in conventional
polycrystalline solids at high temperatures and for nanostructured materials even at room temperature. Such
a scenario raises an interesting question of how GB diffusion is coupled to dislocation emission–absorption.
GB migration can also influence mass transport and deformation in nanostructured materials, especially
during thermal cycling. The coupling of various alternative and competing mechanisms including GB
diffusion, GB migration, dislocation emission/absorption and GB sliding should play important roles in the
deformation and reliability of small structures, e.g., metallic interconnects in electric circuits and
nanocrystalline materials. Further studies of the coupling among different mechanisms are left to future work.

Acknowledgments

The research reported has been partially supported by the NSF MRSEC Program at Brown University
under Award DMR-0520651. This support is gratefully acknowledged.

Appendix A

The analytical solutions for steady-state creep along a bi-diffusivity GB shown in Fig. 10 can be easily
derived as follows. The diffusion equations in the two regions of the GB are

qu

qt
¼ _e ¼

�Df
q2s
qx2

for xo0;

�Ds
q2s
qx2

for x40:

8>>><
>>>:

At steady state, the left side of the above equations is constant, and the general solutions can be written as

s ¼
a1ðxþ 1Þ2 þ b1ðxþ 1Þ þ c1 for xo0;

a2ðx� 1Þ2 þ b2ðx� 1Þ þ c2 for x40

(

with boundary conditions:

s ¼ 0 at x ¼ �1, (30a)

s ¼ 0 at x ¼ 1, (30b)

j0þ ¼ j0� at x ¼ 0 flux continuity, (30c)

u0þ ¼ u0� at x ¼ 0 displacement continuity, (30d)
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m0þ ¼ m0� at x ¼ 0 chemical potential continuity, (30e)

2_e ¼ jx¼�1 � jx¼1 mass conservation, (30f)

s1 ¼
1

2

Z 1

�1

sdx force balance. (30g)

The normal traction profile along the GB can therefore be derived as

s ¼

�
_e

2Df
ðxþ 1Þ2 þ

_eð3Df þDsÞ

2Df ðDf þDsÞ
ðxþ 1Þ for xo0;

�
_e

2Ds
ðx� 1Þ2 �

_eðDf þ 3DsÞ

2DsðDf þDsÞ
ðx� 1Þ for x40

8>>><
>>>: (31)

and

s1 ¼
D2

f þ 14DfDs þD2
s

24DfDsðDf þDsÞ
_e. (32)

The maximum traction occurs at

xm ¼
Df �Ds

2ðDf þDsÞ
(33)

with value equal to

smax ¼ 3s1
Df ðDf þ 3DsÞ

2

ðDf þDsÞðD
2
f þ 14DfDs þD2

s Þ
. (34)

The steady-state solution for the bi-diffusivity GB can be reduced to that of a GB with uniform diffusivity5 if
Df ¼ Ds ¼ D0. At steady state, the stress concentration factor induced by heterogeneous GB diffusion for the
sample Fig. 10 is smax=s1 ¼ 3 if DfbDs.
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