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Simulating Cardiac Electromechanics using 
Abaqus UEL 

Introduction 
From a finite elements point of view, modeling the complex beating of heart tissues involves solving strongly 

coupled electromechanical equations. The field variables that govern the overall evolution of cardiac 

electromechanics are the transmembrane potential         (difference between intracellular and extracellular 

electrical potential), extracellular potential          and the deformation         . The electromechanical coupling 

occurs as the cardiac tissue responds mechanically to induced electrical excitations and the flow of ions through the 

heart membranes is partially influenced by the current state of tissue deformation.  

The process involved in implementing the fully coupled electromechanical equations can be segregated into steps as 

follows: 

1. Monodomain (Electrical only): 

Field variable:         

The only solution variable is the intracellular electrical potential  . The general evolution of the potential is 

governed by higher order ODEs and is generally recast into two first order ODEs with an equation for a 

recovery variable that needs to be solved internally at every integration point.  

Field Equations: 
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2. Bidomain (Electrical only): 

Field variables:          
         

The equations now account for an additional transmembrane potential. 

Field Equations:  
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3. Monodomain and Bidomain Electromechanical Coupling: 

Field variables:          
                 

For these cases, the RHS of mono and bidomain electrical equations are extended to include contributions 

from mechanical deformation and the mechanical deformation itself is solved separately. This represents the 

fully coupled behavior. 

Field Equations: 
      

                     ⃗   ̃   ⃗   ⃗                          {
 ̃   ̃     ⃗    ̃     ⃗                          

  ̇                             
                    

                 {
 ⃗   ̅                                

 ̃   ̂    ̅                            
                                                                                    

 



2 
 

 

                               ̇   ⃗                              {

     ̃  ⃗   ⃗                                                      

        
            

   ⃗                     

 ̇                                  

        

                        
    

                            {
 ̇   ⃗       ⃗         

    ⃗       ⃗       
                      

{
  
 

  
 
{

      ̃   ⃗   ⃗     

       ̃   ⃗   ⃗   

      ̃  ⃗   ⃗      

                                                                     

          
            

   ⃗                                                  

   ̇                                                              
                                                                                                

 

 

Project Scope 
Though the final objective of this work is to implement the fully coupled electromechanical equations 

through an Abaqus UEL, due to limited time available, the scope of the project was restricted to implementing only 

the first step of the process (monodomain electrical equations only). concentrating on modeling the FitzHugh-

Nagumo type pacemaker cells responsible for generating and transmitting the electrical signals leading to heart beat 

and the Aliev-Panfilov type muscular cells that are both excitable and contractile.  

 

Finite Element Implementation of Monodomain electrical equations 
The governing monodomain electrical equations are 

 
  

  
 

   

   
           

   

   
 

  

  
    

                   

                          

                      

                           

                           

Applying the principle of virtual work to the above set of equations and following the usual procedure of integrating 

over volume, multiplying by   , applying divergence theorem, assuming          and       , and 

approximating 
  

  
 

    

  
 , the final expressions for the residual vector and stiffness matrix using consistent 

linearization are as follows (with the absence of any flux terms for simplicity): 
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FitzHugh-Nagumo Pacemaker Cells 

These cells are self-excited, do not contract and are primarily responsible for generating and transmitting the 

electrical signals responsible for heart beat. The flux terms for the primary and the recovery variables along with its 

derivative and the update formula for the recover variable are as follows: 

 

                    

 

          

 

  
          

     
 

 

   

  
 

   

  
 

   

  

  

  
 

   

  
                   

   

     
 

A 2D Abaqus UEL was developed to model the pacemaker cells implementing the stiffness matrix and force vectors 

after incorporating the flux term and its derivative. The UEL implementation was validated by leaving a square grid of 

these cell elements with an initial potential condition and left to see if the self-oscillatory response could be 

predicted. The figures below compare the oscillatory response of these cells discussed in [1] and what the Abaqus 

UEL predicted. Note that in the referred paper [1], the plot was of a normalized entity but for the UEL 

implementation this normalization was not performed and hence the difference in the scales.  

  

Aliev-Panfilov Muscular Cells 

Contrary to the pacemaker cells, the Aliev-Panfilov musclular cells make up the cardiac musculature and are 

responsible for causing the heart beat through muscle contraction. The potential inputs for these cells are given from  
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the pacemaker cells and the electric charge flowing through them causes these muscles to contract. In actuality, 

solving equations for these muscles entail incorporating a loading term to the electrical equation that is influenced by 

tissue deformation and on the mechanical side, the muscle contracts due to the current electrical potential. However, 

for this project only the electrical response of these cells is considered. The flux terms for the primary and the 

recovery variables along with its derivative and the update formula for the recover variable are as follows: 
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Since the choice of flux term for the recovery variable makes the governing equation non-linear, a Newton-Raphson 

scheme is implemented at each iteration for the global variable to solve for the update for recovery variable. The 

residual and tangent terms for solving the recovery variable update are as follows: 
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And the derivative of the flux term appearing in the stiffness matrix is given as  
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As opposed to the oscillatory nature of the pacemaker cells, the muscular cells show a steady decline to original 

potential state when subject to excitation. The Abaqus UEL developed prior was enhanced to include the modified 

flux terms and the Newton-Raphson iteration items for the recovery variable. The implementation was validated 

using a 2D grid of these muscular cells subject to initial excitation against the results discussed in [1]. The results from 

the reference paper and from Abaqus UEL are compared below. As mentioned earlier, the plot from the reference 

paper was normalized for potential and time but this was not done for the Abaqus implementation and hence the 

difference in scales. 
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Future Work 
The topics covered for this project is a part of ongoing work to implement the fully coupled electromechanical 

equations through Abaqus UEL. The next steps in accomplishing that would be to implement the electrical bidomain 

equations followed by adding the coupling terms on both mechanical and structural sides.  
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