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Introduction: 

In class we discussed the topic of volumetric locking problem. Consider a long hollow 

cylinder with an internal pressure and thus deforming in plane strain. When Poisson’s 

ratio   goes toward 0.5, the problem tends to an incompressible limit, and the finite 

element solution highly underestimates the exact solution. 

 

The basic reason for volumetric locking is that incompressibility imposes a constraint 

on deformation mode, and the easiest way to avoid the locking is to reduce the 

number of integration points. However, “Reduced Integration Method” fails for 

four-node quadrilateral elements and eight-node brick elements. It can be easily 

demonstrated that hourglassing would appear, due to the fact that the stiffness matrix 

is nearly singular, and the system of equations includes a weakly constrained 

deformation mode. 

 

Of course we can use “Selectively Reduced Integration” or “B-Bar Method” to solve 

hourglassing, but this project focuses on “Hourglass Control” in reduced integration. 

It is done by adding an artificial stiffness to the element in order to constrain the 

hourglass mode. 

 

 

Procedure: 

1. Define the “hourglass base vectors” ( )a i , which specifies the displacements of 

the ath node in the ith hourglass mode. 

For four-noded quadrilateral elements: 

a(1)   = (+1,-1,+1,-1)  

For eight-noded brick elements: 

a(1)   = (+1,+1,-1,-1,-1,-1,+1,+1)  

a(2)   = (+1,-1,-1,+1,-1,+1,+1,-1)  

a(3)   = (+1,-1,+1,-1,+1,-1,+1,-1)  

a(4)   = (-1,+1,-1,+1,+1,-1,+1,-1)  



2. For each mode, calculate the “hourglass shape vectors” ( )a i  as follows: 
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3. Modify the expression for element stiffness matrix: 
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Here Ve is element volume, Ve = dtm*w(i). 

Numerical parameter   controls the stiffness of the hourglass resistance. We can 

take 0.01
a a
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, with   being the elastic shear modulus. 

 

 

FEACHEAP Implementation: 

In the following, I implement the above scheme in FEACHEAP with linear elastic 

four-node 2D quadrilateral element and eight-node 3D brick element. 

 

Consider the same pressurized cylinder problem as in the B-bar homework. Set the 

inner pressure as 1 and use the same meshes. As for the material parameters, take 

Shear Modulus to be 1 and Poisson’s Ratio to be 0.499, which is a 

close-incompressible scenario. The initial mesh is plotted as below. 

 
Figure 1. Initial mesh 



Now calculate the deformation using Reduced Integration Method. The results look 

like complete garbage. 

 

Figure 2. Solution of displacements using Reduced Integration Method 

 

Scale the pressure down to one percent of the original value and plot the deformed 

meshes again, we can see hourglassing showing up here. This proves that Reduced 

Integration does not work for four-node quadrilateral elements. 

 

Figure 3. Hourglassing under scaled force using Reduced Integration Method 

 

 

Now implement the above Hourglass Control theory and plot again. Comparing the 

plots with those of B-bar method, we see almost exactly the same results. 

 



        

Figure 4. Comparison of deformed meshes 

(Hourglass Control on the left, B-bar method on the right. Same in the following) 

 

   

Figure 5. Comparison of 11  

 

   

Figure 6. Comparison of 22  

 



   

Figure 7. Comparison of 12  

 

Obviously hourglassing can be cured here, so “Hourglass Control” indeed eliminates 

hourglassing in four-node quadrilateral element. 

 

Same phenomena can be observed in 3D brick element. Below is the comparison 

before and after hourglass control 

      

Figure 8. Scaled hourglassing (left) and controlled results (right) for eight-node 3D brick element 
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