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Problem Definition and Shape Functions

Although there exist many analytical solutions to the Euler-Bernuolli beam equations for simple
geometries and loading scenarios, complex geometries must be solved numerically. In the following
sections, I derive the equations necessary for implementing an Euler-Bernuolli beam element. I then
implement the discretized equations in MatLab in order to compare the finite element solution to the
analytical result for several simple problems. The finite element code is then used to calculate the
deformation of a simply-supported parabolic arch with a point load at its crest.

Finally, I derive the finite element equations for an Euler-Bernuolli beam that is modified to account
for finite deformations due to large rotations. In this case the strains are still assumed to be small, but
the problem is geometrically nonlinear. The finite deformation model is implemented in MatLab and
used to verify that for small loads, the finite deformation and linear model produce the same result.
A two-node planar beam element has 4 degrees of freedom, which are defined as

u =
[
u1 θ1 u2 θ2

]
where ui represent transverse nodal displacements and θi = dui

dx represents the slope of the beam at
each node. We will see later that we must be able to take second derivatives of the shape functions used
for interpolating nodal values, therefore we express the displacements in terms of a cubic polynomial
in order for the degrees of freedom to be continuous across elements.

u = c0 + c1x+ c2x2 + c3x
3

θ =
du

dx
= c1 + 2c2x+ 3c3x

2

at the nodal positions x1 and x2, the displacements and angles take the nodal values ui and θi.
Applying these boundary conditions to the form of u and θ to solve for ci yields the shape functions
N (i) in terms of the global coordinates
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N1 = −(x− x2)2(2(x1 − x)− L)/L3

N2 = (x− x1)(x− x2)2/L2

N3 = (x− x1)2(L+ 2(x2 − x))/L3

N4 = (x− x1)2(x− x2)/L2

From here we map the element to a set of dimensionless local coordinates that vary from −1 to 1

ξ =
2x

L
− 1

This allows us to rewrite the shape functions in terms of ξ as

N1 =
1

4
(1− ξ)2(2 + ξ)

N2 =
1

8
L(1− ξ)2(1 + ξ)

N3 =
1

4
(1 + ξ)2(2− ξ)

N4 =
−1

8
L(1 + ξ)2(1− ξ)

In order to calculate the derivatives of the shape functions with respect to the global coordinates we
simply apply chain rule, noting that dξ

dx = 2
L .

dN1

dx
=
dξ

dx

dN1

dxi
=

3(ξ2 − 1)

2L
dN2

dx
=
dξ

dx

dN2

dxi
=

1

4
(ξ − 1)(1 + 3ξ)

dN3

dx
=
dξ

dx

dN3

dxi
=
−3(ξ2 − 1)

2L
dN4

dx
=
dξ

dx

dN4

dxi
=

1

4
(ξ + 1)(3ξ − 1)

and
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d2N1

dx2
= (

dξ

dx
)2
d2N1

dxi2
=

6ξ

L2

d2N2

dx2
= (

dξ

dx
)2
d2N2

dxi2
=

3ξ − 1

L
d2N3

dx2
= (

dξ

dx
)2
d2N3

dxi2
=
−6ξ

L2

d2N4

dx2
= (

dξ

dx
)2
d2N4

dxi2
=

3ξ + 1

L

The integration points and weights used are ξI =
[
−c c

]
and wI =

[
1 1

]
, where c = 0.5773502692.

Small Deformation FE Equations

The equilibrium equation for a small deformation (classical) Euler beam in strong form is

EI
d4u

dx4
+ q(x) = 0

With boundary conditions M∗ = EI d
2u
dx2

and V ∗ = −EI d3u
dx3

. We introduce a test function η and
integrate to get

∫
L
EI

d4u

dx4
ηdx+

∫
L
q(x)ηdx− (V ∗ + EI

d3u

dx3
)η
∣∣∣
L
− (M∗ − EI d

2u

dx2
)
dη

dx

∣∣∣
L

= 0

Integrating by parts, this reduces to

∫
L
EI

d2u

dx2
d2η

dx2
dx+

∫
L
q(x)ηdx− V ∗η

∣∣∣
L
−M∗ dη

dx

∣∣∣
L

= 0

We now introduce an interpolation scheme (Galerkin type) using the previously derived shape functions

η = Naηa

dη

dx
=
dNa

dx
ηa

d2η

dx2
=
d2Na

dx2
ηa

d2u

dx2
=
d2Na

dx2
ua

We write the discretized weak form of the equilibrium equations as

[∫
L
EIua

d2Na

dx2
d2N b

dx2
dx+

∫
L
q(x)Nadx− V ∗Na

∣∣∣
L
−M∗dN

a

dx

∣∣∣
L

]
ηa = 0 ∀ηa
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Converting the integrals to the non dimensional local coordinates, we define a stiffness matrix, Kab,
residual vector, Ra, and load vector, Fa, as

Kab =
L

2

∫ 1

−1
EI

d2Na

dξ2
d2N b

dξ2
dξ

Ra =
L

2

∫ 1

−1
qNadξ

Fa = V ∗Na
∣∣∣1
−1

+M∗dN
a

dξ

∣∣∣1
−1

The degrees of freedom are found by solving the linear equation

ua = K−1
ab (Fa −Ra)

Comparison to Analytical Solutions

The linear EB FE code was first tested on two simple problems

1. A cantilever with a constant distributed transverse load (Figure 1).

2. A simply supported beam with a point moment applied to the right end (Figure 2).

These two example problems encompass the full range of loading options (point, and distributed)
as well as both types of boundary condition (encastre and simple support). It is clear from these
tests that the implementation of the FE beam element provides a very accurate approximation to the
analytical solutions.

From here, we also demonstrate applicability to problems with greater geometric complexity via the
deformation of a parabolic arch. Figure 3 shows the deformation of a simply supported arch due to a
distributed load on the center element, while Figure 4 shows the asymmetric deformation of an arch
with an off-center load and an encastered left end.

While these two examples show the power of FEA in analyzing complex geometries, they also demon-
strate the limitations linear beam theory. Specifically, instabilities will not be present in the defor-
mations derived from geometrical linear beam theory. In Figure 3, the arch is shown to deform
uniformly downwards with no visible local bending near the loaded element and no evidence of snap-
through buckling even at higher loads. In order to capture events like snap-through buckling or local
instabilities, we must extend our analysis to include large rotations.

FE Equations Modified to Account for Large Rotations

For a slender uniform beam subjected to transverse loading (negligible axial deformation), the equi-
librium equation can be extended to include large rotations as discussed in Nonlinear Finite Element
Analysis (Reddy). In this case the strains are still considered to be small but geometric nonlinearities
are accounted for.

EI
d4u

dx4
− 3

2
EA

(
du

dx

)2 d2u

dx2
− q(x) = 0
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Figure 1: Finite element solution to a 10-element cantilever of unit length and EI = 1 with a
distributed load q = 0.1 applied in 10 steps.
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Figure 2: Finite element solution to a 10-element simply-supported beam of unit length and EI = 1
with a point moment applied to the last (on the right) node of M∗ = 0.1 applied in 10 steps.
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Figure 3: Finite element solution to a 10-element parabolic arch of unit span and EI = 1 with a
distributed load q = −2.50 applied to the center element in 10 steps. Both ends of the arch are simply
supported. The deformations are scaled by a factor of 100 in order to visualize the result.

Introducing a test function η as we did before, and integrating gives

∫
L
EI

d4u

dx4
ηdx−

∫
L

3

2
EA

(
du

dx

)2 d2u

dx2
ηdx−

∫
L
q(x)ηdx = 0

Integrating by parts leads to the weak form of the equilibrium equation

EI

∫
L

(
d3u

dx3
η

)
,x

dx− EI
∫
L

(
d2u

dx2
η,x

)
,x

dx+ EI

∫
L

d2u

dx2
η,xxdx−

3

2
EA

∫
L

d2u

dx2

(
du

dx

)2

ηdx−
∫
L
qηdx = 0

EI

d3udx3 η − d2u

dx2
η,x︸ ︷︷ ︸

Boundary terms

+

∫
L

d2u

dx2
η,xxdx

− 3

2
EA

∫
L

d2u

dx2

(
du

dx

)2

ηdx−
∫
L
qηdx = 0

Applying the shape functions from before using a Galerkin scheme, we get the FE equations

[
EI

∫
L
ua
d2Na

dx2
d2N b

dx2
dx− 3EA

2

∫
L
ua
d2Na

dx2

(
uc
dN c

dx

)2

N bdx−
∫
L
qN bdx− V ∗N b

∣∣∣
L
−M∗dN

b

dx

∣∣∣
L

]
ηb = 0 ∀ηb

This needs to be linearized and solved using Newton-Raphson iterations. Taking ua + dua to be a
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Figure 4: Finite element solution to a 10-element parabolic arch of unit span and EI = 1 with a
distributed load q = −2.50 applied to the element located at 3

4 span in 10 steps. The left side of the
arch is encastered while the right is simply supported. The deformations are scaled by a factor of 100
in order to visualize the result.
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solution to the equation, we can expand the nonlinear terms as taylor series keeping only the terms
linear in dua.

∫
f(ub + dub)Cadx ≈

∫ (
f(ub) +

∂f

∂ub
dub
)
Cadx

The FE equation can be expressed as

dubKab +Ra = Qa

Ra =

∫
L

[
EIuc

d2N c

dx2
d2Na

dx2
− 3EA

2

(
uc
dN c

dx

)2 d2Nd

dx2
udNa

]
dx

Kab =

∫
L

[
EI

d2N b

dx2
d2Na

dx2
− 3EA

2

d2N b

dx2
Na

(
uc
dN c

dx

)2

− 3EA
d2N c

dx2
uc
dNd

dx
ud
dN b

dx
Na

]
dx

Qa =

∫
L
qNadx+ V ∗Na

∣∣∣
L

+M∗dN
a

dx

∣∣∣
L

Following implementation in MatLab, I compared the solution of a cantilever beam with a distributed
transverse load (Figure ??) to the solution from the linear code given in Figure 1. The displacements
agree with the linear solution for small loads. Although this could be interpreted as a validation of
the code, there are convergence problems when applying larger loads that would result in finite scale
deformations. This has prevented me from getting solutions for instabilities commonly associated with
nonlinear mechanics such as snap-through buckling.
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Figure 5: Finite element solution to a 10-element cantilever of unit length and EI = 1 using a nonlinear
beam formulation. A distributed load q = 0.001 is applied over 10 steps.


