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Abstract

An iterative optimization method for measuring material properties that combines digital image
correlation and the finite element method is applied to hyperelastic materials. The method is tested by
measuring material properties for a neo-Hookean material loaded in uniaxial tension. Preliminary results
show that the method can successfully measure material properties when given a suitable initial guess
for the properties of interest.

1 Method for finding best-fit properties

Consider a tensile specimen of arbitrary geometry which is deformed by an external load of known magnitude.
The displacement of a finite set of points on the surface of the specimen can be measured using a method
like digital image correlation (DIC).

The deformation, in general, may be inhomogeneous. This prevents one from directly inferring the stress
distribution from the loading imposed on the specimen. One method for determining the stress field is to
perform a finite element simulation of the tensile test; unfortunately this requires a priori knowledge of the
material properties which are currently unknown.

For a set of given of material properties, however, it is possible to compute the displacement field and
external loads using a finite element simulation. These calculated quantities can then be compared to the
experimentally observed displacement field and external load. The input material properties can then be
refined so that they give finite element results that best-fit the observed experimental results.

To penalize differences between experiment and finite element simulations, define an objective function

Π =
1

2|ũ|2
∑

∆t

∫

S

(∆u(x)−∆ũ(x)) · (∆u(x)−∆ũ(x)) dA+
1

2|Φ̃|2
∑

∆t

(

∆Φ−∆Φ̃
)2

(1)

where u denotes the finite element displacement field, ũ denotes the experimental displacement field, Φ
denotes the finite element stress power, Φ̃ denotes the experimental stress power, and ∆ denotes an increment
of the aforementioned quantities during a time step ∆t. The domain S that defines the bounds of integration
is a surface on the experimental specimen where displacements are measured. In addition,

|ũ|2 =
∑

∆t

∫

S

∆ũ ·∆ũdA (2)

|Φ̃|2 =
∑

∆t

∆Φ̃2 (3)

are normalization factors. The best-fit material properties can be obtained by minimizing the objective
function. This is done in an iterative fashion using the Newton-Raphson method. The correction dQβ to
material property Qβ can be solved for from the equation

∂2Π

∂Qα∂Qβ
dQβ = − ∂Π

∂Qα
(4)
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and then the material property can be corrected

Qn+1

β = Qn
β + dQβ (5)

where the superscript n and n + 1 denote material properties at Newton-Raphson iteration n and n + 1,
respectively.

After introducing the usual finite element interpolations for the displacements, the necessary derivatives
can be written as

∂Π

∂Qα
=

1

|ũ|2
∑

∆t

(

M∆u− M̃∆ũ

)

·MHα +
1

|Φ̃|2
∑

∆t

[(

K̂Hα − pα

)

·∆u+ R̂ ·Hα

] (

∆Φ−∆Φ̃
)

(6)

and

∂2Π

∂Qα∂Qβ
=

1

|ũ|2
∑

∆t

[

MHα ·MHβ +
(

M∆u− M̃∆ũ

)

·MHαβ

]

+
1

|Φ̃|2
∑

∆t

[(

K̂Hα − pα

)

·∆u+ R̂ ·Hα

] [(

K̂Hβ − pβ

)

·∆u+ R̂ ·Hβ

]

+
1

|Φ̃|2
∑

∆t

[(

∂K̂

∂Qβ
Hα +

∂K̂

∂Qα
Hβ +

∂K̂

∂u
HβHα + K̂Hαβ − ∂pα

∂Qβ

)

·∆u

]

(

∆Φ−∆Φ̃
)

+
1

|Φ̃|2
∑

∆t

[(

K̂Hα − pα

)

·Hβ +
(

K̂Hβ − pβ

)

·Hα +R ·Hαβ

] (

∆Φ−∆Φ̃
)

. (7)

where K̂ is the unconstrained finite element stiffness matrix, R̂ is the unconstrained finite element residual
vector, M is the finite element mass matrix for the surface S, and M̃ is the experimental mass matrix for
the surface S. The vectors Hα and Hαβ represent first and second derivatives of the displacement u with
respect to material properties Qα. They are calculated by solving the following systems of equations:

KHα = pα (8)

and

KHαβ =
∂pα

∂Qβ
− ∂K

∂Qα
Hβ − ∂K

∂Qβ
Hα − ∂K

∂u
HβHα (9)

where pα = −∂R/∂Qα is the derivative of the constrained finite element residual vector, and K is the
constrained finite element stiffness matrix.

Calculating pα, ∂pα/∂Qβ , and ∂K/∂Qα requires taking derivatives of the Kirchhoff stress τij . The
necessary derivatives are

∂τij/∂Qα (10)

∂2τij/∂Qα∂Qβ (11)

∂Cijkl/∂Qα. (12)

A common technique for implementing a nearly incompressible hyperelastic element in a finite element
code is the F-bar method. This formulation increases the complexity of the the derivative ∂K/∂u. Once
implemented correctly, evaluating the derivative adds significant overhead to the computation of derivatives
of Π (note that the derivative is a rank 6 tensor, though full use of symmetry should reduce the number of
unique entries).

Because the derivation, implementation, validation, and computational cost of this particular derivative
appears large, it is ignored. The optimization method will not be a true Newton-Raphson method, as the
Hessian ∂2Π/∂Qα∂Qβ will be approximate, but instead will be a Quasi-Newton method.
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2 Application to hyperelastic materials

With the framework for the optimization procedure already established, the focus of this investigation will
be to implement the material model and the necessary derivatives in order to find best-fit properties for
hyperelastic materials.

2.1 General hyperelastic material

Consider a hyperelastic material with a strain energy density Ū . The strain energy density can be written
as a function

Ū = Ū(Ī1, Ī2, J) (13)

where Ī1, Ī2, and J are the invariants of the left Cauchy-Green deformation tensor Bij = FikFjk:

Ī1 =
Bkk

J2/3
(14)

Ī2 =
1

2

(

(Ī1)
2 − BikBki

J4/3

)

(15)

J =
√
detB. (16)

Given a strain energy density of this form, the Cauchy stress σij can be written as

σij =
2

J

[

1

J2/3

(

∂Ū

∂Ī1
+ Ī1

∂Ū

∂Ī2

)

Bij −
(

Ī1
∂Ū

∂Ī1
+ 2Ī2

∂Ū

∂Ī2

)

δij
3

− 1

J4/3

∂Ū

∂Ī2
BikBkj

]

+
∂Ū

∂J
δij (17)

The finite element implementation of the material requires the Kirchhoff stress τij , which is defined as

τij = Jσij . (18)

The elastic stiffness Cijkl is also needed; it can be calculated from the expression

Cijkl =
∂τij
∂Fkm

Flm. (19)

2.2 Application to a neo-Hookean material

The strain energy potential for a neo-Hookean material is

Ū =
µ1

2

(

Ī1 − 3
)

+
K1

2
(J − 1)

2
. (20)

Combining this potential with equations 17 and 18 gives the following expression for the Kirchhoff stress:

τij =
µ1

J2/3

(

Bij −
Bkk

3
δij

)

+K1J (J − 1) δij . (21)

This expression can then be differentiated (cf. equation 19) to give the tangent stiffness

Cijkl =
µ1

J2/3

[

δikBjl +Bilδjk − 2

3
(Bijδkl +Bklδij) +

2

3

Bqq

3
δijδkl

]

+K1 (2J − 1) Jδijδkl. (22)
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These expressions can be then be differentiated with respect to Qα to obtain the necessary derivatives (cf.
equations 10 - 12) for the iterative property optimization. The results are as follows:

∂τij
∂µ1

=
1

J2/3

(

Bij −
Bkk

3
Jδij

)

(23)

∂τij
∂K1

= J (J − 1) δij (24)

∂2τij
∂µ2

1

= 0 (25)

∂2τij
∂µ1∂K1

= 0 (26)

∂2τij
∂K2

1

= 0 (27)

∂Cijkl

∂µ1

=
1

J2/3

[

δikBjl +Bilδjk − 2

3
(Bijδkl +Bklδij) +

2

3

Bqq

3
δijδkl

]

(28)

∂Cijkl

∂K1

= (2J − 1) Jδijδkl. (29)

(30)

3 Implementation and verification

3.1 Material

A hyperelastic neo-Hookean element was implemented in FEACHEAP. The element was verified using the
“CHECK STIFFNESS” command in FEACHEAP and by comparing the results of stretching a single element
to the Matlab code provided in the course programming notes.

3.2 Material derivatives

The derivatives in equations 10 - 12 were verified using numerical differentiation. The analytic first derivative
of the Kirchhoff stress was verified against numerical derivatives of the Kirchhoff stress. Once the analytic
first derivative agreed with the numerical first derivative, the analytic second derivative was verified; it was
compared to the numerical derivative of the analytic first derivative. The analytic derivative of the material
stiffness Cijkl was verified against numerical derivatives of the material stiffness.

4 Model problem for testing the method

The boundary value problem used to test the iterative method was a simulation of a uniaxial tension test.
The bar was arbitrarily assigned a gage length of 57, a gage width of 12.7, and a gage thickness of 4. The
focus of the investigation is the performance of the iterative optimization procedure, so the physical units
(nominally millimeters, to make the dimensions of the bar similar to standard tensile specimens) are of little
interest.

The mesh of the tensile bar is shown below in figure 1. Symmetry boundary conditions were used reduce
the model to one-eighth of the specimen. A displacement in the y-direction of u2 = 20 was applied to the
top face of the bar to simulate the pulling action of a test machine gripper. For simplicity the displacements
in the x- and z-direction (u1 and u3, respectively) were fixed at zero. A plot of the deformed configuration
of the tensile bar is shown in figure 2.
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Figure 1: The reference configuration of the bar. Symmetry boundary conditions were applied to the three
opposite faces of the bar to reduce the number of degrees of freedom.
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Figure 2: The deformed configuration of the bar after imposing a vertical displacement u2 = 20 on the top
face.

The general procedure for testing the optimization procedure is outlined below:

1. Choose target properties µ∗

1, K
∗

1 (giving an associated Poisson’s ratio ν∗ = (3K∗

1 − 2µ∗

1)/[3(K
∗

1 +µ∗

1)])
and generate a displacement and load history using a finite element simulation. This data will serve
as the “experimental” data set.

2. Choose some initial guess for the material properties µ1 6= µ∗

1, K1 6= K∗

1 .

3. Run the property optimization procedure to refine the guess properties. This will eventually recover
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the best-fit properties to the experimental data. These best-fit properties should match the target
properties used to generate the experimental data set.

The optimization procedure was tested using two sets of target properties. The first set of target prop-
erties was used to investigate a nearly incompressible material. The target properties used were µ∗

1 = 1 and
K∗

1 = 10, corresponding to a Poisson’s ratio of ν = 0.45161. The second set of target material properties
was used to approach the fully incompressible limit. The target properties used were µ∗

1 = 1 and K∗

1 = 1000.
The corresponding Poisson’s ratio for this set of properties is ν = 0.4995.

Again, since the performance and robustness of the iterative optimization procedure is the primary
concern of this investigation, the physical units for µ1 and K1 (nominally MPa) are of little importance.

5 Results

5.1 µ∗

1
= 1, K∗

1
= 10 ⇐⇒ ν∗ = 0.45151

The solution for a single initial guess will be analyzed to determine if the property optimization is working.
The solution for each Newton-Raphson iteration for a guess of 10% of the target properties is summarized
below in table 1. It is clear that the properties µ1 and K1 are quickly refined to best-fit properties that
match the target properties.

Iteration µ1 K1

1 0.100000 1.000000
2 0.968235 9.682360
3 0.998879 9.988788
4 0.999960 9.999613

Table 1: Best-fit material properties µ1 and K1 after each Newton-Raphson step in the optimization pro-
cedure. The optimization procedure was stopped after 4 iterations by a convergence criterion based on the
norm of the Newton-Raphson correction.

It is also helpful to compare the load-displacement curve from the experimental data set with the load-
displacement curve from the finite element simulation at each subsequent best-fit property iteration. This
serves as a simple check to see how well the finite element solution reproduces the experimental results.

Consider the family of curves shown below in figure 3 for the series of iterations from table 1. The first
Newton-Raphson iteration, shown in figure 3 (a), corresponds to the initial guess of 10% of the target proper-
ties. The finite element simulation with a low initial guess for µ1 and K1 resulted in a low load-displacement
curve compared with experiment. The behavior from the second Newton-Raphson iteration is shown in
figure 3 (b). At this iteration the corrected material properties are much closer to the target properties,
making the finite element results nearly match the experimental results. By the third Newton-Raphson
iteration (part (c)), the finite element and experimental load-displacement behaviors are indistinguishable.
The behavior at the fourth Newton-Raphson iteration (part (d)) is identical to the third, indicating that the
property optimization has converged.
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Figure 3: Comparison between the load-displacement curve from the experimental data set and the load-
displacement curve from the finite element simulation using properties at each Newton-Raphson iteration.

Three different initial guesses were used to test the optimization procedure. Two initial guesses were
able to recover the target properties as the best-fit material parameters. The other initial guess diverged
to properties that caused excessive time step cutbacks when solving for equilibrium, eventually causing the
finite element simulation to fail. The results of all three initial guesses are summarized below in table 2.

Test No. µ1 K1 ν Recovers target props.? Notes

1 0.1 1 0.45161 Yes 4 Newton-Raphson iterations
2 0.1 100 0.49950 No Failed after 21 Newton-Raphson iterations
3 10 100 0.45161 Yes 5 Newton-Raphson iterations

Table 2: Results of the iterative property optimization for three different initial guesses, for a nearly incom-
pressible material.
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5.2 µ∗

1
= 1, K∗

1
= 1000 ⇐⇒ ν∗ = 0.49950

Four different initial guesses were tested using the iterative property optimization procedure. The results of
all four initial guesses are summarized below in table 3.

Test No. µ1 K1 ν Recovers target props.? Notes

1 0.1 100 0.49950 Yes 3 Newton-Raphson iterations
2 0.1 10000 0.50000 Yes 158 Newton-Raphson iterations
3 10 100 0.45161 Yes 626 Newton-Raphson iterations
4 10 10000 0.49950 Yes 134 Newton-Raphson iterations

Table 3: Results of the iterative property optimization for four different initial guesses, for a fully incom-
pressible material.

6 Discussion and Conclusions

The initial results of the property optimization procedure indicate that it is possible to find best-fit material
parameters for a neo-Hookean material, in both the case of a nearly incompressible material and a fully
incompressible material.

Unfortunately, the results also indicate that the optimization is sensitive to the initial guess for material
properties. It may be necessary to implement a trust-region algorithm to appropriately accept or reject
Newton-Raphson corrections for these cases.

Looking at tables 2 and 3 is is apparent that tests that were started with a Poisson’s ratio different from
the target value of ν∗ observed the poorest convergence behavior (or failed to converge at all). In the case of
the nearly incompressible material (table 2, test 2) the property optimization failed. In the case of the fully
incompressible material (table 3, test 3) the optimization took an excessive number of Newton-Raphson
steps. Conversely, initial guesses that had a Poisson’s ratio identical with the target ν∗ exhibited good
convergence.

In the cases where the initial property guess has a Poisson’s ratio identical to ν∗, the resulting finite
element displacement field is identical to the experimental displacement field. As such, there is no contri-
bution from the first term in the objective function given in equation 1. Contrast this with the cases where
the initial property guess has a Poisson’s ratio different from ν∗, where the finite element and experimental
displacement fields do not agree, making the first term in the objective nonzero.

The correlation between poor convergence and a presence of differences in displacement fields suggests
that it is the displacement penalty term that hurts the rate of convergence. The current formulation of
this term penalizes differences in displacement fields on a surface of the specimen. A simple reformulation
could be to penalize differences between displacement fields measured in a volume of the specimen (with
experimental fields measured by digital volume correlation) instead of on a surface:

Π =
1

2|ũ|2
∑

∆t

∫

V

(∆u(x)−∆ũ(x)) · (∆u(x)−∆ũ(x)) dV +
1

2|Φ̃|2
∑

∆t

(

∆Φ−∆Φ̃
)2

. (31)

This will allow the objective function to penalize differences between experimental and finite element defor-
mations that are volumetric, which may help the rate of convergence for the property K1. Further work will
be done to determine how this modification affects the rate of convergence.
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