
Finite Strain Elastic-Viscoplastic Model

Pinkesh Malhotra
Mechanics of Solids,Brown University

1 Introduction

The main goal of the project is to model finite strain rate-dependent plasticity using a model compatible
for high strain rates. In such scenarios, Johnson-Cook model is very useful. The model is used in adi-
abatic dynamic simulations, for example, pressure-shear plate impact experiments and machining. The
model incorporates temperature effects as well, using a power-law dependence. Temperature dependence
is ignored in the present study.

In the present study, the model is developed keeping in mind the future use for pressure-shear im-
pact simulations. Kinematics of pressure-shear experiment is introduced to give an idea about the type
of deformation involved. This is followed by introduction to the model and simulations on two elements.
The FEA formulation is done in EN234FEA.

2 Governing Equations

2.1 Kinematics

Deformation in a pressure-shear experiment can be written as:

x1 = λ(t)X1 (1)

x2 = X2 − κ(t)X1 (2)

x3 = X3 (3)

The deformation gradient and velocity gradients are, therefore:

F =

 λ(t) 0 0
−κ(t) 1 0

0 0 1

 (4)

L = ḞF−1 =

 λ̇λ 0 0
−κ̇/λ 0 0

0 0 0

 (5)

2.2 Finite Strain Viscoplastic Material Model

F = FeFp (6)

L = Ḟ
e
(Fe)−1 + FeḞ

p
(Fp)−1(Fe)−1 (7)

= Le + Lp = (De + We) + (Dp + Wp) (8)

Here, Wp = 0 is considered. Consider the Kirchoff stress (τ = J ∗ σ) as the stress-measure for this
study. Rate of change of Kirchhoff stress is defined as:

τ̇ = τ̂ e + (W eτ − τW e) (9)
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where τ̂ is Jaumann stress rate and is given as:

τ̂ = Ce : De + (Deτ + τDe) (10)

The second term of the Kirchoff stress rate is usually taken care of by ABAQUS, so we need to find the
Jaumann stress rate only.

Plasticity Equations

Dp =
3

2

ε̇e
τe
τD (11)

τe =

√
3

2
τDij τ

D
ij (12)

ε̇e =

√
2

3
Dp
ijD

p
ij (13)

A constitutive law governing ε̇e is required. One of the laws particularly useful for impact problems
is the Johnson/Cook model, where the yield stress is given as:

σy = (A+Bεne )

[
1 + C ln

(
ε̇e
ε̇0

)][
1 −

(
T − T0
Tm − T0

)m]
(14)

where σe =
√

3
2sijsij = 1

J

√
3
2τ

D
ij τ

D
ij . A is the static shear strength, B is the strain-hardening mod-

ulus, C is the rate-sensitivity coefficient, m is the thermal-softening exponent, n is the strain-hardening
exponent, T is the current temperature, T0 is the room temperature and Tm is the melting temperature.
Ignoring the effects of temperature, i.e. assuming T = T0,

ε̇e = ε̇0e

[
1
C

(
σe

A+Bεne
−1
)]

(15)

Since the strain rate grows exponentially with effective shear stress, it is necessary to limit the strain
rate to deal with high stresses during initial elastic response. A limiting strain rate ε̇lime is used as follows
to define the actual plastic strain rate:

ε̇effe =
ε̇lime ε̇e
ε̇e + ε̇lime

(16)

Johnson-Cook Dynamic Failure Criterion
A damage parameter is calculated at the integration points and failure is assumed to occur when this
parameter is equal to 1. The damage parameter,ω is given as:

ω =
∑ ∆εe

εe,f
(17)

where εe,f is the failure plastic strain. The summation is performed over all the time increments in
the analysis. The failure plastic strain is assumed to be dependent on the plastic strain rate in similar
fashion as the yield stress and is formulated as below:

εe,f = (d1 + d2 e
(d3

p
σe

))

[
1 + d4 ln

(
ε̇e
ε̇0

)][
1 + d5

(
T − T0
Tm − T0

)]
(18)

The parameters d1 to d5 are failure parameters determined using experiments.
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Simplification of the Jaumann stress rate:

τ̂ eij =

[
E

1 + ν
Dij +

Eν

(1 + ν)(1 − 2ν)
Dkkδij

]
−

[
3

2

E

(1 + ν)

ε̇effe

τe
τDij

]
+ Mij (19)

Mij = Dikτkj + τimDmj −
3

2

ε̇effe

τe
(τDikτkj + τimτDmj) (20)

Hence, the Kirchoff stress rate, calculated explicitly is given as:

τ
(n+1)
ij = τ

(n)
ij +

[
E

1 + ν

∫ tn+1

tn

Dijdt+
Eν

(1 + ν)(1 − 2ν)

∫ tn+1

tn

D
(n)
kk δijdt

]

−

[
3

2

E

(1 + ν)

∆t ε̇
eff(n)
e

τe
τ
D(n)
ij

]
+

∫ tn+1

tn

M
(n)
ij dt+

∫ tn+1

tn

Q
(n)
ij dt

(21)

where
Qij = Wikτkj − τimWmj (22)

Derivation

τ̂ e = Ce : De + M (23)

Ce : De = Ce : D−Ce : Dp (24)

(Ce : D)ij = Ce
ijklDkl =

[
E

2(1 + ν)
(δikδjl + δilδjk) +

Eν

(1 + ν)(1 − 2ν)
δijδkl

]
Dkl (25)

=

[
E

(1 + ν)
Dij +

Eν

(1 + ν)(1 − 2ν)
Dkkδij

]
(26)

(Ce : Dp)ij =
E

2(1 + ν)

3ε̇e
2τe

(τDij + τDji ) =
E

(1 + ν)

3ε̇e
2τe

(τDij ) (27)

Mij = De
ikτkj + τikD

e
kj (28)

3 Newton-Raphson for ∆εe

Here, ∆εeffe is addressed simply as ∆εe and εpij and Dp
ij are the same thing.

ε̇ij = ε̇eij + ε̇pij (29)

This leads to

ṡij =
E

1 + ν
ėeij (30)

s
(n+1)
ij = s

(n)
ij +

E

1 + ν
(∆eij − ∆εpij) (31)

Elastic Predictor

s
∗(n+1)
ij = s

(n)
ij +

E

1 + ν
∆e

(n)
ij (32)

σ∗(n+1)
e =

√
3

2
s
∗(n+1)
ij s

∗(n+1)
ij (33)



4 FE FORMULATION 4

Correction: Let s
(n+1)
ij = βs

∗(n+1)
ij . On solving, β can be found to be

β = 1 − 3E

2(1 + ν)

∆εe

σ
∗(n+1)
e

(34)

Now we try to solve for ∆εe.

∆εe =
∆tε̇limε̇0e

1
C

(
σ

(n+1)
e

A+Bε
(n+1)n
e

−1

)

ε̇lim + ε̇0e

1
C

(
σ

(n+1)
e

A+Bε
(n+1)n
e

−1

) =
ε̇lim∆t

1 + ε̇lim

ε̇0
e

1
C

(
1− σ

(n+1)
e

A+Bε
(n+1)n
e

) (35)

F = 1 − ε̇lim∆t

∆εe
+
ε̇lim

ε̇0
e

1
C

(
1− σ

(n+1)
e

A+Bε
(n+1)n
e

)
(36)

dF

d∆εe
=
ε̇lim∆t

∆ε2e
+
ε̇lim

ε̇0
e

1
C

(
1− βσ

∗(n+1)
e

A+B(ε
(n)
e +∆εe)n

)  1

C

(
3E

2(1 + ν)

1

A+B(ε
(n)
e + ∆εe)n

+
βσ

∗(n+1)
e Bn ∗ (ε

(n)
e + ∆εe)

n−1

(A+B(ε
(n)
e + ∆εe)n)2

)
(37)

F can also be formulated as:

F = σ(n+1)
e − (A+B ε(n+1)n

e )

[
1 + C ln

(
ε̇e
ε̇0

)]
(38)

4 FE Formulation

Finite Element formulation used is similar to Gurson model implemented in Assignment-10. The UEL
is written for finite strain using L-bar method.

Maximum time step that can be used is given by:

∆tmax =
Le

c
(39)

where Le is length of the element and c is longitudinal wave speed in the material. The material param-
eters used in the simulations correspond to Al-6061-T6: E =70 GPa, A =324.1 MPa, B =113.8 MPa,
C =0.002 MPa, n =0.42, ε̇0 =1,ε̇lim =1, d1 =-0.77, d2 =1.45, d3 =0.47, d4 =0. Similarly, for Steel
4340, the following parameters are available: E =200 GPa, A =792 MPa, B =510 MPa, C =0.014 MPa,
n =0.26, ε̇0 =1,ε̇lim =1, d1 =0.05, d2 =3.44, d3 =2.12, d4 =0.002.

A new subroutine, stress update pressureshear is written and the plastic strain increment is solved
implicitly using Newton-Raphson. It can be solved by either of the two formulations of F presented
above. Damage variable, ω is stored as the ninth of the 10 state variables (the first six being Kirch-
hoff stresses followed by the old accumulated plastic strain, new accumulated plastic strain and e11).
NOTE:Element deletion is included in the subroutine el pressureshear. The values at integration
points are projected onto the nodes using fieldvars pressureshear. The corresponding input files are
PressureShear 3D.in and notch fracture dynamic.in

5 Results

The model is tested on two-elements. A unit displacement is applied in x-direction at t = 0. Stress
and strain in x-direction,damage and accumulated plastic strain are plotted in Figure 1. The time step
chosen is 1.d− 5.
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Newton-Raphson checks are performed using a 1D MATLAB code prior to these simulations. The
model is also applied to Mode-I notch fracture problem for Gurson Model as shown in Figure 2.
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(a) s11 (b) e11

(c) Damage parameter, ω

(d) Accumulated Plastic Strain

Figure 1: 80,000 time steps. Each time step equal to 1.d− 5
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(a) s11 (b) e11

(c) Damage parameter, ω

(d) Accumulated Plastic Strain

Figure 2: 3000 time steps. Each time step equal to 1.d− 5
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