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1 Introduction

Timoshenko beam theory is applied to discribe the behaviour of short beams when the cross-sectional dimensions of
the beam are not small compared to its length. Here in this project, we develop the theoretical formulation for three-
dimentional Timoshenko beam element undergoing axial, torsional and bending deformations. Then we implement it
into EN234FEA.

2 The kinemation relations

Consider a typical two-node beam element of length l, where each node has six degrees of freedom. In local reference
system, the beam is along with x-axis. The elastic deformation vector of the beam element is d = [U V W ]T that can
be expressed as:

U = u − y
∂v

∂x
− z

∂w

∂x
,

V = −zθx + v,

W = yθx + w.

(1)

where u is the axial stretch displacment, v,w consist of contributions vb ,wb and vs ,ws due to bending and transverse
shear, that is

v = vb + vs , w = wb + ws . (2)

The relationships between total slope, bending rotation and transverse shear are

∂v

∂x
=
∂vb
∂x

+
∂vs
∂x

= θz + γxy ,

∂w

∂x
=
∂wb

∂x
+
∂ws

∂x
= −θy + γxz ,

(3)

where γxy and γxz are shear strains in the (xy)- and (xz)-planes, respectively. The two rotations θy , θz are related to
the bending deformations vb ,wb by the expressions

θz =
∂vb
∂x

, θy = −
∂wb

∂x
(4)
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The strain components are

εxx = ux − y
dθz
dx

+ z
dθy
dx

, γxy =
dv
dx
− θz , γxz =

dw
dx

+ θy (5)

3 Derivation of shape functions

Shape function matrices for axial and torsional deformation are given by[1]

[Nu] = [Nθx ] = [(1 − ξ) ξ], (6)

where ξ = x/l is the dimensionless axial coordinate. Shape functions for bending deformation in the (xy)-plane are
derived as follows:

v(x) = a0 + a1x + a2x2 + a3x3 (7)

The shear strain is assumed to be constant along the finite element γxy = γ0.[2] Thus the slope due to bending can be
obtained:

θz = a1 + 2a2x + 3a3x2 − γ0 (8)

and the moment-curvature relationship is

Mz = −EIzz
∂θz
∂x

= −EIzz (2a2 + 6a3x) (9)

the shear force is related to the transverse shear strain by

Qy = κGAγxy (10)

where κ is the shear correction factor that accounts for the non-uniform distribution of the shear stress over the cross-
section A; E is the modulus of elasticity, and G is the shear modulus, Izz is the second moment of area about the z-axis.
The bending moment Mz and the shearing force Qy are related by

dMz

dx
−Qy = 0 (11)

Combining which equation (9) and (10), we get the expression of γ0

γ0 = −6
EIzz
κGA

a3 = −6Λza3 , Λz =
EIzz
κGA

(12)

The following boundary conditions must be satisfied:

v(0) = v1 , v(l) = v2 , θ(0) = θz1 , θ(l) = θz2 (13)

This can be written in matrix form




v1

θz1

v2

θz2




=



1 0 0 0
0 1 0 6Λz

1 l l2 l3

0 1 2l (3l2 + 6Λz )






a0

a1

a2

a3




(14)
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Or in more compact form
d = Aa (15)

Sloving for a and substituting the values of a j into the expression of v(ξ = x/l) and simplifying, we obtains

v(ξ) = Nv1v1 + Nv2θz1 + Nv3v2 + Nv4θz2 (16)

where
Nv1 = Φz

(
1 − 3ξ2 + 2ξ3 + Φz (1 − ξ)

)
,

Nv2 = lΦz

(
ξ − 2ξ2 + ξ3 + Φz (ξ − ξ2)/2

)
,

Nv3 = Φz

(
3ξ2 − 2ξ3 + Φz ξ

)
,

Nv4 = lΦz

(
−ξ2 + ξ3 + Φz (−ξ + ξ2)/2

)
.

(17)

Hence θz (ξ) can be written in the form

θz (ξ) = Nθz1v1 + Nθz2θz1 + Nθz3v2 + Nθz4θz2 (18)

where

Nθz1 = 6
Φz

l

(
−ξ + ξ2

)
,

Nθz2 = Φz

(
1 − 4ξ + 3ξ2 + Φz (1 − ξ)

)
,

Nθz3 = −6
Φz

l

(
−ξ + ξ2

)
,

Nθz4 = Φz

(
−2ξ + 3ξ2 + Φz ξ

)
.

(19)

where
Φz =

1
1 + Φz

, Φz =
12Λz

l2 =
12EIzz
κGAl2 (20)

Shape functions for bending in the (xz)-plane are obtained in a similar manner

Φy =
1

1 + Φy
, Φy =

12EIyy
κGAl2 (21)

Nw1 = Φy

(
1 − 3ξ2 + 2ξ3 + Φy (1 − ξ)

)
,

Nw2 = −lΦy

(
ξ − 2ξ2 + ξ3 + Φy (ξ − ξ2)/2

)
,

Nw3 = Φy

(
3ξ2 − 2ξ3 + Φy ξ

)
,

Nw4 = −lΦy

(
−ξ2 + ξ3 + Φy (−ξ + ξ2)/2

)
.

(22)

Nθy1 = 6
Φy

l

(
−ξ + ξ2

)
,

Nθy2 = −Φy

(
1 − 4ξ + 3ξ2 + Φy (1 − ξ)

)
,

Nθy3 = −6
Φy

l

(
−ξ + ξ2

)
,

Nθy4 = −Φy

(
−2ξ + 3ξ2 + Φy ξ

)
.

(23)
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By the above shape functions, the kinematic relation can be expressed as

{d}6×1 = [U V W Θx Θy Θz ]T = [N]6×12{e}12×1 (24)

4 Element stiffness and residual force

The total potential energy

ΠP =

∫ l

0

1
2

EIyy (
dθz
dx

)2dx +

∫ l

0

1
2

EIzz (
dθy
dx

)2dx +

∫ l

0

1
2

GAκ(γ2
xy + γ2

xz )dx

+

∫ l

0

1
2

E Aκ(
du
dx

)2dx +

∫ l

0

1
2

GJρ (
dθx
dx

)2dx −
∫ l

0
qvvdx −

∫ l

0
qwwdx

−Q∗vv ��l −Q∗ww ��l −M∗yθy ��l −M∗z θz ��l −T∗x θx ��l −N∗xu ��l

(25)

Do finite element discretization. We get the local element stiffness matrix and the residual force vetcor formed as

K =

∫ 1

0

(
EIyyBby

TBby + EIzzBbz
TBbz + GAκ(Bsy

TBsy + Bsz
TBsz)

)
dξ +

∫ 1

0

(
E ABs

TBs + GJρBr
TBr

)
dξ (26)

R =

∫ 1

0
qNT dξ , F = NTf ��10 (27)

The degrees of freedom are found by solving the linear equation

Ku = R + F (28)

Where K can be sloved out analytically[3]



EA
l

0 12ΦzEIzz
l3

0 0 12ΦyEIyy
l3

0 0 0 GJρ
l symmetry

0 0 −
6ΦyEIyy

l2 0 (4+Φy )ΦyEIyy
l

0 6ΦzEIzz
l2 0 0 0 (4+Φz )ΦzEIzz

l

− EA
l 0 0 0 0 0 EA

l

0 −
12ΦzEIzz

l3 0 0 0 −
6ΦzEIzz

l2 0 12ΦzEIzz
l3

0 0 −
12ΦyEIyy

l3 0 6ΦyEIyy
l2 0 0 0 12ΦyEIyy

l3

0 0 0 −
GJρ
l 0 0 0 0 0 GJρ

l

0 0 −
6ΦyEIyy

l2 0 (2−Φy )ΦyEIyy
l 0 0 0 6ΦyEIyy

l2 0 (4+Φy )ΦyEIyy
l

0 6ΦzEIzz
l2 0 0 0 (2−Φz )ΦzEIzz

l 0 − 6ΦzEIzz
l2 0 0 0 (4+Φz )ΦzEIzz

l


(29)

For uniformly distributed load qv0,qw0, the residual vector yields

R =
l

12
[0 6qv0 6qw0 0 − lqw0 lqv0 0 6qv0 6qw0 0 lqw0 − lqv0]T (30)
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5 The transformation between local reference system and global reference
system

The above formulation is only valid in local reference system. For every element, we need to do coordinate transforma-
tion from global reference system to local reference system. The degree of freedom of one element in global reference
system is

u = [u1 v1 w1 θx1 θy1 θz1 u2 v2 w2 θx2 θy2 θz2] (31)

The degree of freedom of one element in local reference system is

u′ = [u′1 v′1 w′1 θ ′x1 θ ′y1 θ ′z1 u′2 v′2 w′2 θ ′x2 θ ′y2 θ ′z2] (32)

The tranformation matirx is

Q =

*.....
,

T
T

T
T

+/////
-12×12

, T =



cos(x ′x) cos(x ′y) cos(x ′z)
cos(y′x) cos(y′y) cos(y′z)
cos(z′x) cos(z′y) cos(z′z)



(33)

where T satisfies



u′i
v′i
w′i




= [T]




ui
vi

wi




,




θ ′xi
θ ′yi
θ ′zi




= [T]




θxi

θyi

θzi




, i = 1,2 (34)

Thus, the transformation from global reference system to local reference system of displacment, force and element
stiffness matrix can be expressed as

u′ = Qu , F′ = QF , K′ = QKQT (35)

The method to determine T is discussed as below. Firstly, we need to slove the components of axial vector i in the
global reference system. Given the global coordinates of the beam (x1, y1, z1, x2, y2, z2), the first row of T is

T11 =
x2 − x1

l
, T12 =

y2 − y1

l
, T13 =

z2 − z1

l
(36)

where
l =

√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 (37)

Then given the cross-section direction vector in global reference system k′ = (k ′1, k
′
2, k
′
3) (This is define in the input

file along with the second moment of area Iyy , Izz ), the local (xz)-plane is formed by vectors i and k′. we can slove
vector j = −i × k′, thus the second row of T is

T21 = −
T12k ′3 − T13k ′2

A
, T22 = −

T13k ′1 − T11k ′3
A

, T23 = −
T11k ′2 − T12k ′1

A
(38)

where
A =

√
(T12k ′3 − T13k ′2)2 + (T13k ′1 − T11k ′3)2 + (T11k ′2 − T12k ′1)2 (39)

Now the normal vector k of local (xy)-plane is given by k = i × j. Therefore the third row of T is given by

T31 =
T12T23 − T13T22

B
, T32 = −

T13T21 − T11T23

B
, T33 = −

T11T22 − T12T21

B
(40)
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where
B =

√
(T12T23 − T13T22)2 + (T13T21 − T11T23)2 + (T11T22 − T12T21)2 (41)

6 EN234FEA implement

The twelve properties we difined for one beam element is

• E,G Young’s modulus and shear modulus

• A The area of cross section

• k ′ The position vector of local z-direction

• Izz , Iyy , Jρ The second moments of area about the z-axis and the y-axis, polar moment of area

• κ Shear correction factor depending on the shape of the cross section, typically 5/6 for rectangular section

• ly ,hz The maxima distance from the edge to the center of the cross section in y-direction and z-direction

• qv0,qw0 Uniformly distributed load on y-direction and z-direction

In our code, we plan to calculate the following state variables and output them by user_print subroutine:

• S1 Normal stress due to stretch

• T1 Maximum shear stress due to torsion

• S2 Maximum Normal stress due to bending in y-direction

• T2 Shear stress due to bending in y-direction

• S3 Maximum Normal stress due to bending in z-direction

• T3 Shear stress due to bending in z-direction

They can be calculated from the following formulas,

S1 =
E(u2 − u1)

l

T1 =
G(θx2 − θx1)

l
max(ly ,hz )

S2 =
Ely (θz2 − θz1)

l

T2 = Gγ0y =
−GΦzΦz (2v1 + θz1l − 2v2 + θz2l)

2l

S3 =
Ehz (θy2 − θy1)

l

T3 = Gγ0z =
−GΦyΦy (2w1 + θy1l − 2w2 + θy2l)

2l

(42)
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7 The test problems

To verify the code, I’ll do several tests with axial, torsional and bending deformations. The bending loads contain
distributed force, focus shear force and force moment.

(a) Axial stretch test (b) Tortion test

(c) bending test with point load (d) bending test with moment

(e) bending test with distributed load (f) Test with all the above load

(g) Test with all the above load in 3d space (h) Complex Test in 3d space

Figure 1: Test models

In the first step, different kinds of forces are applied seperatelly. The analytical solution can be derived easily and
the numerial solutions agree with them very well.

In the second step, these loads are applied on the elements at the same time. The deformation and stresses also
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superpose linearly since it is under small deformation.

In the third step, I make a rotation to let the beam not along with x-axis. By appling the same loads, I verify that
the stresses in local coordinate system of the beam do not change.

In the fourth step, I build a complex model without analytical solution. By plotting the deformation configures in
Tecplot, I infer that the result is reasonable qualitatively.

The input files and result data files of all the tests are available in the beam file directory.

(a) Initial configure (b) Second configure

(c) Third configure (d) Final configure

Figure 2: Tecplot visualization of the solution of the last test
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