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1 Project introduction 

This project will study an interesting project – the Galilean Cannon. This is a multiple ball system 

where several balls are stacked aligning their centers along the same axis as shown in Fig. 1. 

These balls, heavier ones in lower positions, will drop down to the ground under gravity enforce-

ment after they are set free. The surprising phenomenon will happen when these balls rebound: 

the top ball will go up to the height that is much higher than its original height. Basically the 

more balls we use, the higher the top ball can reach. Therefore, this system can launch a ball like 

a cannon, which may indicate the source of its name.  

This phenomenon can be explained by various mechanical and physical methods and models [1-

3]. For example, the balls can be regarded as perfect elastic bodies who will not lose any energy 

after collision and whose deformation is neglected. In this way, the motions of balls can be 

predicted by principles of energy and linear momentum conservations. Alternatively, linear 

elastic and finite deformation material models can also be used to analyze this problem, which 

will be more complex.  

 

Fig. 1 Schematic illustration of the Galilean Cannon 

 

This project is going to study and simulate the hyperelastic behavior of this stacking balls system 

both theoretically and numerically, predict the final height the top ball can reach under different 

conditions and optimize the optimal mass distribution of balls to make the height as large as 

possible. The rest of the project will be organized as follows. In Section 2, perfect elastic collision 

theory will be used to analyze this system, and prediction on the final height considering energy 

loss during collision can be given. In Section 3, finite element analysis by using hyperelastic 
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material in ABAQUS is implemented for different cases. Optimization problems will be 

investigated in Section 4 for both rigid model and finite element model. Finally, some concluding 

remarks will be made in the last section. 

 

2 Elastic analysis and prediction 

Since what we care about most is the final height of the top ball which is only determined by the 

velocity of the ball after collisions, the intermediate movement and deformation processes can 

be modeled in different ways. In this section, we first study this stacking ball system by 

theoretical analysis which can approximately give us an understanding to this problem and help 

us find out some intrinsic mechanisms from the phenomenon by simplifying complex collisions.  

Before using any theoretical tools to resolve this problem, we should make some assumptions 

for our physical/mechanical model in order to simplify the problem so that analytical solutions 

are possible to obtain. The assumptions include:  

1) All the balls are dropped from a certain height with initial velocities 0; 

2) Gravity is the only force imposed on the balls except during collision processes; 

3) During collisions, the gravity is neglected comparing with contact forces between balls; 

4) Diameters of these balls can be neglected compared with the height of them from the 

ground, namely they are in the same height when dropped;   

5) At the beginning of the moment of any collision, velocities of all balls are the same;  

6) The energy dissipation ratio of every collision (includes collision between balls as well as 

the collision between balls and the ground) is an invariant;  

7) The collision between the largest ball and the ground happens first, then the collision 

between the largest ball and the second largest ball, and so on;  

8) After each collision between two balls, the velocity of the smaller ball will change its 

direction no matter whether the velocity of the other one will or not.  

Next let us consider two cases: one is the collision between the heaviest ball and the ground, 

and the other one is the collision between two adjacent balls. Suppose the energy dissipation 

ratio of every collision is 𝛼. The two adjacent balls included in the collision are labelled as 𝑝 and 

𝑞, so their masses are 𝑚𝑝 and 𝑚𝑞 (𝑚𝑝 > 𝑚𝑞), respectively. Velocities of the two balls before 

collision are 𝑣𝑝0 and 𝑣𝑞0, respectively, and after collision 𝑣𝑝1 and 𝑣𝑞1, respectively.  

We can do some scaling treatment for variables in the model. Suppose the mass, velocity of the 

largest ball before collision with the ground and velocity after collision with the ground are 

𝑚𝑎 , 𝑣𝑎0 and 𝑣𝑎1, respectively. Then let  

�̂�𝑝 =
𝑚𝑝

𝑚𝑎
, �̂�𝑞 =

𝑚𝑞

𝑚𝑎
,                                                          (2.1𝑎) 



𝑣𝑝0 =
𝑣𝑝0

𝑣𝑎0
, 𝑣𝑞0 =

𝑣𝑞0

𝑣𝑎0
, 𝑣𝑝1 =

𝑣𝑝1

𝑣𝑎1
, 𝑣𝑞1 =

𝑣𝑞1

𝑣𝑎1
.                                   (2.1𝑏) 

I. For the first case, namely the collision between the heaviest ball and the ground, we have  

1

2
�̂�𝑝𝑣𝑝0
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2 ,                                                         (2.2) 

thus,  

𝑣𝑝1 = −√𝛼𝑣𝑝0.                                                                 (2.3) 

II. For the second case, namely the collision between two balls, according to the conservation of 

linear momentum and conservation of kinematic energy, we have  

�̂�𝑝𝑣𝑝0 + �̂�𝑞𝑣𝑞0 = �̂�𝑝𝑣𝑝1 + �̂�𝑞𝑣𝑞1,                                              (2.4) 
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2 .                                 (2.5) 

From Eqs. (2.4) and (2.5) we can get 

(�̂�𝑝 + �̂�𝑞)�̂�𝑞𝑣𝑞1
2 − 2�̂�𝑞(�̂�𝑝�̂�𝑝0 + �̂�𝑞𝑣𝑞0)𝑣𝑞1 + (1 − 𝛼)�̂�𝑝

2�̂�𝑝0
2                         

                                   +(�̂�𝑞 − 𝛼�̂�𝑝)�̂�𝑞�̂�𝑞0
2 + 2�̂�𝑝�̂�𝑞�̂�𝑝0𝑣𝑞0 = 0.                     (2.6) 

Eq. (2.6) is a quadratic equation with respect to 𝑣𝑞1 which is the rebounded velocity of the ball 𝑞 

which is the smaller ball. The solution of Eq. (2.6) can be written in the following form: 

𝑣𝑞1 =
(�̂�𝑝�̂�𝑝0 + �̂�𝑞�̂�𝑞0) ± √(�̂�𝑝�̂�𝑝0 + �̂�𝑞�̂�𝑞0)

2
− (�̂�𝑝 + �̂�𝑞)𝛽

�̂�𝑝 + �̂�𝑞
,                (2.7𝑎) 

where  

𝛽 =
1

�̂�𝑞
[(1 − 𝛼)�̂�𝑝

2𝑣𝑝0
2 + (�̂�𝑞 − 𝛼�̂�𝑝)�̂�𝑞�̂�𝑞0

2 + 2�̂�𝑝�̂�𝑞�̂�𝑝0�̂�𝑞0].                (2.7𝑏) 

In solution (2.7), only the one that satisfies the Assumption (8) is the true velocity of the ball 𝑞. 

Now suppose the initial height of these stacking balls from the ground is 𝐻0, so the final scaling 

height that the ball 𝑞 can reach after collision is  

�̂�𝑞 =
𝐻𝑞

𝐻0
= 𝑣𝑞1

2 .                                                                (2.8) 



If we have a three-ball system (balls are marked as A, B and C) and choose 𝛼 = 0.8, �̂�𝐴 = 1.0, 

�̂�𝐵 = 0.25, �̂�𝐶 = 0.0625, 𝑣𝐴0 = 𝑣𝐵0 = 𝑣𝐶0 = −1.0 and 𝑣𝐵0 = 1.0, from Eq. (2.3), (2.7) and 

(2.8) we can get �̂�𝑑 = 𝑣𝐶1
2 = 8.39 which is much higher than the original height.  

 

3 Finite element simulations 

Although we introduce the energy dissipation factor 𝛼 in Eq. (2.7) to approach real model, the 

energy loss in each collision for balls with different sizes and masses does not keep such an easy 

relation with the total kinematic energy. To model the stacking ball system more accurately, in 

this section we will use finite element analysis to solve this problem in ABAQUS.  

We assume the balls to be made of hyperelastic material (i.e., rubber) which is able to bear large 

elastic deformation. In addition, the balls are modeled as spherical shells but not solid spheres in 

order to save computational costs. As the seventh assumption in Section 2, we consider the 

collisions happen in sequence but not at the same time, which is helpful for us to make clear the 

propagation of stress wave and transmission of linear momentum.  

For the parameters of material, we choose those similar to parameters of rubbers. The density 

of the material is 𝜌 = 1000. The constitutive law is chosen as Neo-Hookean relation: 

𝑤 = 𝐶10(𝐼1 − 3) =
𝜇

2
(𝐼1 − 3),                                                   (3.1) 

thus we have 𝐶10 = 𝜇/2 = 𝐸/(1 + 𝜈)/4, where 𝐸 and 𝜈 are Young’s modulus and Poisson’s 

ratio of the material, respectively. Noting that rubber is considered as incompressible material 

in most cases, so 𝜈 ≈ 0.5 and 𝐶10 ≈ 𝐸/6. According to Young’s modulus of rubber, we usually 

choose 105 ≤ 𝐶10 ≤ 1010.  

 

                (a)                                  (b)                                 (c)                                 (d)                                 (e)  

Fig. 2 The collision process of a three-ball case 

Fig. 2a-2e shows a three-ball case where the radii of balls are 3.0, 2.0 and 1.0, and thicknesses 

0.3, 0.2 and 0.1, respectively. The coefficient 𝐶10 = 1.0 × 105, and initial velocities of all balls 



(velocity at the moment before collisions with the ground) are 𝑣0 = −1.0. From these figures 

we can find this hyperelastic model can basically simulate the collision process. After all 

collisions the top ball will obtain the largest launch velocity.   

Similarly we can also solve the problems including more stacking balls, for example Fig. 3a-3e 

shows the case where four balls with radii 4.0, 3.0, 2.0 and 1.0 are considered. Their thicknesses 

are 0.4, 0.3, 0.2 and 0.1, respectively. The coefficient in the constitutive law is 𝐶10 = 1 × 107, 

and the initial velocity is 𝑣0 = −1.0. 

 
                (a)                                  (b)                                 (c)                                 (d)                                 (e)  

Fig. 3 The collision process of a four-ball case 

 
Fig. 4 The velocity history of the top ball in the four-ball case 

Next we compare results from the analytical mode in Section 2 (𝛼 = 0.8) and results from 

numerical simulation in ABAQUS. Based on the three-ball case, we change the initial velocity to 

get different launch velocities of the top ball as shown in Table 1. Since the height the top ball 

can reach is proportional to the launch velocity squared, we plot the relation between the 

launch velocity squared and the initial velocity in Fig. 5. If the energy dissipation rate is the same 



in each collision, we can expect the ratio of launch velocity is independent on the initial velocity, 

however, which is not the case shown in Fig. 5. Therefore, the energy dissipation rate is a 

function of mass and incident velocity of balls included in a collision, which indicates introducing 

energy dissipation rate 𝛼 is an approximate treatment.  

It should be noted that in these numerical cases the smallest value of the final height that the 

top ball can reach is about 6 times the corresponding original height, which shows the feature of 

the stacking ball system known as Galilean Cannon.  

 

Table 1 Launch velocities for different initial velocities 

Init Vel 
Laun Vel 

-1.0 -1.5 -2.0 -2.5 -3.0 

Analytical 2.704 4.056 5.408 6.760 8.112 

Numerical 3.013 4.110 5.057 6.566 7.302 

Vel
2
 Ratio 𝜏 1.242 1.027 0.874 0.943 0.810 
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Fig. 5 The ratio of launch velocity squared 

 

4 Optimization 

Further study on this problem will focus on how to optimize the launch velocity of the top ball 

under certain condition. There are many factors that can influence the launch velocity, and the 

influence of initial velocity can be seen from Table 1. The launch velocity will monotonously 

change as the initial velocity, which can be an intuitive knowledge. However, how other factors 

affect the stacking ball system can be more complex. In this section, we will again use both 

theoretical and numerical tools to investigate this topic.  

 



4.1 Optimization of rigid model 

Since in our theoretical model described in Section2 has no relation with material parameters, 

the mass of balls can be a significant argument that will influence the launch velocity. Here we 

only study a simple three-ball case where the masses of the heaviest and lightest balls are fixed 

and the mass of the intermediate ball is variable. In the following we can prove there is an 

optimal mass of the intermediate ball to make the launch velocity largest.  

Suppose one ball with mass 𝑚1 and initial velocity 𝑣10 collides with another ball with mass 𝑚2 

and initial velocity 𝑣20. After collision, the velocities of the two balls become 𝑣1 and 𝑣2 , 

respectively. According to principles of linear momentum and kinematic energy conservation we 

have 

𝑚1𝑣10 + 𝑚2𝑣20 = 𝑚1𝑣1 + 𝑚2𝑣2,                                                (4.1) 

1

2
𝑚1𝑣10

2 +
1

2
𝑚2𝑣20

2 =
1

2
𝑚1𝑣1

2 +
1

2
𝑚2𝑣2

2.                                         (4.2) 

The solution to the above equations is 

𝑣1 =
(𝑚1 − 𝑚2)𝑣10 + 2𝑚2𝑣20

𝑚1 + 𝑚2
,                                                (4.3𝑎) 

𝑣2 =
(𝑚2 − 𝑚1)𝑣20 + 2𝑚1𝑣10

𝑚1 + 𝑚2
.                                                (4.3𝑏) 

Here we consider this simplified three-ball case where the first ball with velocity 𝑣 collides with 

the second ball with velocity −𝑣, after which the second ball collides with the third ball with 

mass 𝑚3 and velocity −𝑣. Substituting 𝑣10 = 𝑣 and 𝑣20 = −𝑣 into Eq. (4.3b), we can get  

𝑣2 =
3𝑚1 − 𝑚2

𝑚1 + 𝑚2
𝑣.                                                              (4.4) 

Then applying Eq. (4.3b) to the collision process of the second and third balls leads to the 

velocity of the third ball after collision 

𝑣3 =
−𝑚2

2 + (7𝑚1 − 𝑚3)𝑚2 − 𝑚1𝑚3

(𝑚1 + 𝑚2)(𝑚2 + 𝑚3)
𝑣.                                          (4.5) 

Now suppose 𝑚1 and 𝑚3 are fixed and we need to find such an 𝑚2 to make 𝑣3 to be maximum. 

Derive 𝑣3 with respect to 𝑚2 and we can get 

d𝑣3

d𝑚2
=

−8𝑚1𝑚2
2 + 8𝑚1

2𝑚3

(𝑚1 + 𝑚2)2(𝑚2 + 𝑚3)2
𝑣.                                               (4.6) 

Let d𝑣3/d𝑚2 = 0 we can get  



𝑚2 = √𝑚1𝑚3.                                                                 (4.7) 

We can further easily prove that 𝑚2 = √𝑚1𝑚3 is the optimal mass to make the launch velocity 

of the top ball largest and thus the final height largest.  

 

4.2 Optimization of hyperelastic model 

In this subsection, we will investigate how the constitutive coefficient, the relative thickness and 

the mass of balls influence the launch velocity by using finite element analysis and the 

hyperelastic Neo-Hookean model in ABAQUS.  

Based on the three-ball system in Section 3, we change the coefficient 𝐶10 from 1.0 × 105 to 

2.0 × 109 to see how the launch velocity varies. Fig. 6 shows the influence of constitutive 

coefficient 𝐶10 on the launch velocity of the top ball. We can see that when the material of balls 

is relatively soft, the launch velocity is not the smallest. As the material gets stiffer, the launch 

velocity will first decrease to a minimum value at 𝐶10 = 1.0 × 108, and then increase to obtain 

larger launch velocities. The possible reason may be the combined action of energy dissipation 

inside the ball and momentum transmission between balls. The soft material has larger elastic 

deformation and thus can transmit linear momentum to the next ball better, while the stiff 

material has less energy dissipated inside the ball. However, the material with intermediate 

value of 𝐶10 has bad behavior on both sides.  
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Fig. 6 The influence of coefficient 𝐶10 on launch velocity 

Next the effect of relative thickness of spherical shells is studied. Here the relative thickness 

means the shell thickness normalized by radius of the ball, namely  



�̂� =
𝑑𝑖

𝑟𝑖
,                                                                         (4.8) 

where 𝑑𝑖  and 𝑟𝑖 are the thickness and radius of the 𝑖-th ball, respectively. From Fig. 7 we can see 

the launch velocity of the top ball has maximum value at �̂� = 1.0. This phenomenon can also be 

understood by the combined action of energy dissipation and momentum transmission as in the 

last case. However, the difference in this case is that the thin shells have less energy dissipation 

but are not good at transmitting momentum because they are too light. On the other hand, the 

thick shells have too much energy dissipated in the solid material. However, the shells with 

intermediate values can obtain a good balance on the two aspects and thus lead to larger launch 

velocities.  
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Fig. 7 The influence of relative thickness on launch velocity 
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Fig. 8 The influence of relative mass of the middle ball on launch velocity 



At last, we will use the numerical model to verify the optimization result given by the theoretical 

model in subsection 4.1 (i.e., Eq. (4.7)). Still based on the three-ball system, we can get the 

relation of launch velocity with relative mass of the middle ball as shown in Fig. 8. Here the 

relative mass of the middle ball is the mass of this ball normalized by the mass of the top ball. 

From Fig. 8 we can see there is really an optimal mass of the middle ball. Eq. (4.7) gives the 

optimal solution when the relative mass �̂�2 = 5.2, while the peak in Fig. 8 corresponds to 

�̂�2 = 6.4. Different physical models and analysis methods can account for this difference.  

 

5 Concluding remarks 

In this project, we use both theoretical model and finite element model to study the behavior of 

stacking ball system, usually called as Galilean Cannon, and relevant optimization problems 

associated with several key parameters including the coefficient in Neo-Hookean law, relative 

thickness of balls and relative mass of the middle ball.  Our theoretical model and numerical 

model both exhibit the ability of the stacking ball system to launch a light ball to an extraordi-

nary height, and reveal that this ability comes from transmission of kinematic energy and linear 

momentum from heavy balls to the light one. The results of relevant optimization problems 

indicate that the energy dissipation inside the ball and momentum transmission between balls 

can be two significant factors that influence the launch velocity of the top ball. In addition, for a 

three-ball system, the theoretical model gives the optimal mass of the middle ball as the square 

root of the product of masses of the other two balls.  
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