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1. Introduction of the Problem 

 

 This project deals with the stress-strain response of a 2-dimensional periodic wavy 

filamentary network under uniaxial finite displacement loading from arbitrary direction 

with ABAQUS, as shown in the figure above. Black and red refer to curved beams made 

of material I and II respectively. Beams of material I form a periodic honeycomb structure, 

whereas material II subdivide each “honeycomb” into 6 parts. All the beams are 

geometrically identical, and the width is much smaller than the curvature radius of beams. 

The arc angle of curved beam is fixed at 180°. It is assumed that the geometric scale of a 

single beam is much smaller than the macroscopic network. To simplify the modeling of 

this problem, one representative unit cell is picked from the network on which the 

simulation is conducted. To ensure that the behavior of the unit cell is the same as the 

behavior of full-scale network, periodic boundary conditions are applied on corresponding 

boundaries of the unit cell. 



Previous research[1] has shown that when material II does not exist (
II I/ 0E E  , 

where Eα is the Young’s Modulus of material α), the pure honeycomb network is has the 

smallest stiffness under vertical loading and largest stiffness under horizontal loading. On 

the contrary, when material II is the same materials as material I (
II I/ 1E E  ), the triangular 

network has the largest stiffness under vertical loading and the smallest stiffness under 

horizontal loading. Therefore, it may be postulated that there exist a (0,1)  , such that for 

II I/E E   this anisotropy of (nominal) normal stress-strain response reaches the 

minimum. 

With different values of β, different stress-strain behavior can be obtained with the 

setup of ABAQUS with periodic boundary conditions. The final aim of this project is to 

find the β that minimize the anisotropy in terms of stress-strain behavior of the material. 

 

2. Setup of Problem with ABAQUS 

Although the macroscopic network is applied with finite displacement loading. 

However, due to the wavy microstructure of the network, the intrinsic strain of material is 

small. Therefore, the basic constitutive model of plain stress linear elasticity in ABAQUS 

is used in this simulation. A static step is set, and the network is meshed with quadrilateral 

quadratic 2D plain stress elements. To ensure the accuracy of simulation, the number of 

elements along the direction of width is no less than 4. 

 In this problem, establishing boundary conditions will be the most complicated and 

time-consuming step, compared to the simple constitutive model. In the following, three 

necessary types of boundary conditions will be discussed: (i) periodic boundary conditions, 

(ii) uniaxial displacement loading (iii) constraints of closed polygon. 

Parameters in this problem include material modulus EI, EII, Poisson’s ratio ν, curvature 

radius of beam R, width of beam w, prescribed macroscopic strain ε, loading angle θ.

I II1000, 100, 0.25, 5, 1E E R w     . 



 

2.1 Periodic Boundary Conditions 

 To simplify the simulation, a representative cell in the network, which repeats 

periodically in the material, is picked up. To make corresponding cross sections able to join 

together, it is necessary to apply periodic boundary conditions on the unit cell. With this 

method, the deformation of the unit cell can represent that of the full-scale network. The 

unit cell is picked as shown in the following figure: 

 

where the corresponding cross sections are: (1) and (10), (2) and (9), (3) and (8), (4) and 

(13), (5) and (12), (6) and (11), (7) and (14). The following equations must be satisfied as 

periodic boundary conditions (cross sections 1 and 10, for example): 
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where the subscript i denotes the ith node on the cross section. The same subscript means 

that the two nodes are at the same location on the cross sections. ux and uy refer to 

displacement in x (horizontal) and y (vertical) directions respectively. n is the number of 

nodes on the cross section. This can be realized in ABAQUS by using “Equations” in 

Interaction. To add a large number of equations in this problem, I used MATLAB code to 

modify the “.inp” file from ABAQUS to add the periodic boundary conditions. 

 

2.2 Uniaxial Displacement Loading 

 Uniaxial displacement loading: prescribe displacement only at the center node of each 

cross section, with direction along the desirable loading direction. The periodic boundary 

conditions will automatically spread the prescribed displacement at the center node to other 



nodes on the cross section. According to my previous research[1] analyzing the deformation 

of simple unit cell, for periodic curved beam network with simple unit cells, the value of 

prescribed displacement on cross sections should linearly depend on the location of the 

cross section in the direction of loading so that the mechanical behavior of the unit cell can 

approximately represent the behavior of full network. 

However, the structure of unit cell in this project is more complex than a simple unit 

cell in either honeycomb or triangular network, but the displacement loading is still doable 

in a similar way. Here, the displacement loading is applied explicitly on the boundary cross 

section (1), (4), (10), and (13), which are on the material I and are regarded as “master” 

cross sections. Specifically, to apply a macroscopic strain ε in the direction θ to the network, 

the following displacement loading should be applied to a center node of cross sections 

with number i with initial coordinates (x0, y0): 

0 0( )cos ( )sin ( ( )cos ( )sin ), 1,4,10,13x yu i u i x i y i i         

which can be realized in ABAQUS using “Equation” in Interaction and reference points. 

Although this displacement loading is applied explicitly only on the cross sections of 

material I, it will be automatically spread to other cross sections of material II (regarded as 

“slave” cross sections) after the constraints described in the following paragraph are 

applied. In addition, the node (18) is fixed in both directions as the original point. Equations 

in this part are applied by writing Python script. 

 

2.3 Constraints of Closed Polygon 

 (iii) Constraints of closed polygon: a closed triangle always keeps closed after elastic 

deformation. In this network, there are 6 types of fundamental triangles, in which 

deformation of cross section nodes related to 5 of the triangles must be constrained to keep 

the triangles closed. The equation of the remaining one triangle is the linear combination 

of the first 5 equations, so it can be omitted. Specifically, the following constraints must be 

applied by ABAQUS equations: 
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where all the constraints are applied on the center nodes of each cross section, and the 

coordinates also refer to those of center nodes of each cross section. Equations in this part 

are also applied by writing Python script. 

 

3. Post-processing: method for calculating the averaged normal stress 

 

 After FEA with ABAQUS, we can get the stress response at the cross sections of the 

unit cell by exporting related data from ABAQUS. The schematic diagram of the network 

structure is shown as above, where the wavy microstructure is simplified as a straight beam 

to help understand. Material I and II are shown in black and red respectively. The boundary 

of one unit cell is marked with blue dashed line. We can distribute the stress on all the cross 

sections on the macroscopically “continuous” material network. 

 To study the anisotropy of mechanical properties, we can calculate the macroscopically 

averaged normal stress with displacement loading along the 2 principle axes (Loading 



angle θ=0°, 30° respectively. Note that θ=30° and θ=90° are completely the same because 

of the 6-fold symmetry.). In this two directions, the anisotropy is the most obvious. We 

need to properly cut the material network and sum the nodal forces on the cut. The dashed 

line in yellow and green in the diagram above shows how to cut the network for calculating 

averaged normal stress with θ=0°, 30° respectively. All of the cut is along the boundary of 

unit cells. The straight line connecting the two ends of yellow and green line is 

perpendicular to loading direction θ=0°, 30° respectively. After summing up the force 

component in the loading direction on all of the cut along each dashed line, we need to 

divide the value by the area of the cut, which is exactly the distance between two ends of 

each dashed line. 

This postprocessing is conducted with MATLAB code after getting output data from 

ABAQUS. With the method proposed above, the normal stress response under the 

prescribed displacement (strain) will be known. With the stress output for a certain loading 

direction and different strain values, we can get the nominal normal stress-strain curve. By 

comparing the curve in the two loading directions, we can know the degree of anisotropy 

for the given 
II I/E E  . By comparing the anisotropy for different β, we can know the 

value of β that can minimize the anisotropy of stress-strain curve. In this way, the aim of 

this project can be reached. 

 

4. Results 

4.1 Verification of Correctness of the Model 

To ensure that the FEA give convincing results rather than garbage, I verified the 

correctness by checking continuity of boundary displacement and stress. 

Continuity of displacement requires that neighbor unit cells can join together to form 

the network. This is assured by the periodic boundary conditions and constraints of closed 

polygons. As long as these equations are correct, the continuity of displacement should be 

satisfied. Here I simply show a figure with a number of deformed unit cell joined together 



as follows, as an intuitive verification of displacement continuity: ( 0.6, 15    ) 

 

 

 

The next step is to verify the continuity of stress. Using the same example as above, I 

compared the stress S11 on the 9 nodes on the corresponding cross sections (1) and (10). 

The result is shown as follows: 

Node # (from top to bottom) S11 on (1) S11 on (10) 

1 2.65 2.59 

2 3.51 3.49 

3 4.33 4.33 

4 4.48 4.48 

5 4.68 4.68 

6 4.48 4.48 

7 4.33 4.33 

8 3.49 3.51 

9 2.59 2.65 

From the table above we learn that the continuity of stress is satisfied with very small 

error of ~2%. 



 

4.2 Stress-strain Curve and Optimization of Isotropy 

 The nominal normal stress-strain curve with loading angle θ=0°, 30° and different 

values of II I/E E   are shown as follows. The first two figures with 0.001,1   

correspond to simple honeycomb and triangular network in the previous research[1]. The 

curve is consistent with the curve in the previous work. 

 

 



 

 

 

 From the stress-strain curves above, we can know that high isotropy is obtained with 

0.0175  , where the stress-strain response in 0°, 30° are almost the same for strain under 

60%. In comparison, network with only one material in simple honeycomb ( 0.001 0   ) 

or triangular ( 1  ) structure is approximately isotropic for strain under ~30% because of 



strict isotropy at small deformation for structure with 6-fold symmetry. The network 

material combining two materials with different Young’s modulus can greatly reduce the 

anisotropy, and the strain limit for approximate isotropy can be doubled to ~60% by 

choosing proper material property. With 0.0175  , the maximum stress difference 

under the same strain (<60%) is less than 5%. To better visualize the extent of isotropy, an 

enlarged figure of stress-strain curve of 0.0175   is shown as follows 

 

 For practical application, it may be difficult to fabricate such network with wavy 

structure by two different materials. However, similar effect can be achived in other 

methods. For example, we can use only one material in the network, but choose 2 different 

values cross section areas to substitute the “material I” and “material II” in this project. We 

can estimate that by changing the ratio of cross section area II I/A A  , similar 

improvement on the isotropy of mechanical properties can be obtained. 

 

5. Conclusion 

In this project, I solved a problem about optimizing isotropy of mechanical properties 

of 2D network materials by using ABAQUS and writing MATLAB and Python code. To 

simplify this problem about periodic structure, a representative unit cell was modeled. 

Corresponding periodic boundary conditions, displacement loading, and other geometric 



constraints were applied by coding in MATLAB and Python in order to make the behavior 

of unit cell resemble that of the full-scale network. A simple verification of the correctness 

of this model was shown. The stress-strain curves were be obtained with computation of 

ABAQUS and post-processing with MATLAB. By adjusting the modulus ratio of two 

materials to a proper value, the stress-strain responses in the loading direction of two 

principal axes were made almost the same, which means that apprximate isotropy of stress-

strain behavior was achieved. It was found that the network we studied reached the 

maximum isotropy of stress-strain response when the ratio of Young’s modulus of the two 

materials is around 0.0175. With this parameter, approximate isotropy of stress-strain 

behavior can be ensured for the network material I designed with applied strain up to 60%. 
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