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Many	soft	biological	tissues	have	viscoelastic	effects.		
In	1959,	Harkness	and	Harkness	measured	creep	response	of	rat	cervical	tissue	subjected	to	a	
constant	dilating	force	experimentally.	Below	is	a	modified	figure	borrowed	from	ENGN	2220.	

	
We	can	see	that	the	properties	of	rat	cervical	tissue	experience	a	dramatic	transformation	during	
pregnancy,	 in	 particular,	 the	 creep	 goes	 almost	 linear	 with	 time	 during	 childbirth.	 This	 is	 in	
accordance	to	its	function	–	to	help	the	passage	of	the	child.		
	
In	ENGN	2220,	we	modeled	this	viscoelastic	behavior	using	the	following	rheological	model	(the	
Burgers	model),	which	consists	of	a	Maxwell	element	in	series	with	a	Kelvin-Voigt	element:	

	
In	fact,	the	Burgers	model	could	also	capture	the	creep	for	a	viscoelastic	liquid.	For	simplicity,	we	
just	took	the	stiffness	of	both	springs	to	be	E	and	the	viscosity	of	both	dashpots	to	be	η.		
	



The	derivation	for	1D	governing	equation	is:	

	



For	simplified	1D	equation	(E1=E2,	η1=η2),	we	could	show	that	the	strain	and	creep	for	a	stress	
step	input	is:	

By	plotting	E	Jc(t)	versus	(E/η)t,	we	could	see	the	behavior	describe	earlier:	

	
Next	step	is	to	generalize	1D	to	3D.	The	derivation	for	3D	governing	equation	is	shown	below:	

	
However,	it	could	be	rather	hard	to	implement.		
	
	
	
So	I	switch	to	a	simpler	but	well-known	model,	the	standard	linear	solid	(SLS)	model,	see	above,	
and	successfully	implement	the	SLS	model	in	ABAQUS	UMAT.		
	
The	pages	below	show	the	derivation	of	the	theoretical	side	of	FEM	implementation.	























Results:	
	
First,	I	test	a	simple	2-element	model	with	prescribed	displacement	(time-dependant)	at	one	end,	
fix	the	other	end	and	let	the	rest	faces	be	free.	The	prescribed	displacement	would	increase	to	
0.1	from	t=0	to	t=10.	After	that,	it	will	stay	fixed.		

	
The	loading	curve	as	well	as	the	relaxation	curve	is	in	good	agreement	pure	theoretical	calculation	
(in	1D).		This	shows	that	the	way	I	implement	SLS	model	into	FEM	is	correct.		
	
	
	
	
	
	
	
	
	
	
	



Then	I	test	the	same	2-element	sample	with	force	loading	(also	time-dependent)	in	one	end,	fix	
the	other	end	while	letting	the	rest	faces	be	free.	The	prescribed	loading	would	increase	to	500	
from	t=0	to	t=1.	After	that,	it	will	stay	fixed.	This	setting	is	to	mimic	the	loading	condition	for	rat	
cervical	tissue	during	childbirth.		
	
The	result	is:	

	
	
Here,	we	could	see	after	a	sudden	increase	(which	corresponds	to	the	sudden	stress	increment),	
the	strain	level	will	increase	almost	linearly	with	time	(meanwhile,	the	stress	is	constant).		
This	strain-time	relation	is	in	good	agreement	with	the	experimental	result.		
	
Therefore,	I	conclude	that	SLS	model	is	able	to	capture	the	linear	creep	response	observed	in	rat	
cervical	tissue	during	childbirth.		
	
Link	to	my	Github	repo:	
https://github.com/monyxl/EN234_FEA	
	



Here	below	is	my	UMAT	code:	
	
! 
!    ABAQUS format user material subroutine for small strain hypoelastic material 
! 
! 
 
      SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD, 
     1 RPL,DDSDDT,DRPLDE,DRPLDT, 
     2 STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME, 
     3 NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT, 
     4 CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,KSTEP,KINC) 
! 
      INCLUDE 'ABA_PARAM.INC' 
! 
      CHARACTER*80 CMNAME 
      DIMENSION STRESS(NTENS),STATEV(NSTATV), 
     1 DDSDDE(NTENS,NTENS),DDSDDT(NTENS),DRPLDE(NTENS), 
     2 STRAN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(1),DPRED(1), 
     3 PROPS(NPROPS),COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3) 
      double precision :: KE, GE, KMe, GMe, GV, KV 
      double precision :: lambda1, lambda2, mu1, mu2 
      double precision :: phi1, phi2, psi1, psi2 
      double precision :: omega1, omega2, zeta1, zeta2 
      double precision :: A, B, C, D, F, G, H 
      double precision, dimension(NTENS,NTENS) :: ones, diag 
      double precision, dimension(NTENS,NTENS) :: DDSDE 
      double precision, dimension(NTENS,NTENS) :: DDSDS 
      double precision, dimension(NTENS) :: SIGold 
       
       
      integer :: j 
 
       KE = PROPS(1) 
       GE = PROPS(2) 
       KMe = PROPS(3) 
       GMe = PROPS(4) 
       GV = PROPS(5) 
       !KV = PROPS(6) infinity 
         
       !lambda1 = (-GE/GV+KE/KV)/3.d0 
       lambda1 = (-GE/GV+0.d0)/3.d0 
       lambda2 = (-GE/GMe+KE/KMe)/3.d0 
       mu1 = GE/(2.d0*GV) 
       mu2 = (1.d0+GE/GMe)/2.d0 
       phi1 = -1.d0/(6.d0*GV)!+1.d0/(9.d0*KV) 
       phi2 = -1.d0/(6.d0*GMe) + 1.d0/(9.d0*KMe) 
       psi1 = 1.d0/(4.d0*GV) 
       psi2 = 1.d0/(4.d0*GMe) 
       !omega1 = KE/KV 
       omega1 = 0.d0 
       omega2 = 1.d0 + KE/KMe 
       !zeta1 = 1.d0/(3.d0*KV) 
       zeta1 = 0.d0 
       zeta2 = 1.d0/(3.d0*KMe) 
        
       !ABCDFGH 



       A = lambda1*DTIME + lambda2 
       B = 2.d0*(mu1*DTIME + mu2) 
        
       D = phi1*DTIME + phi2 
       F = 2.d0*(psi1*DTIME + psi2) 
       G = zeta1*DTIME + zeta2 
       H = omega1*DTIME + omega2 
        
       !Initialize 
       DDSDDE = 0.d0 
       DDSDE = 0.d0 
       DDSDS = 0.d0 
       SIGold = 0.d0 
       ones = 0.d0 
       diag = 0.d0 
        
       !Define Tensor coefficients 
       ones(1:NTENS,1:NTENS) = 1.d0 
       diag(1:NTENS,1:NTENS) = 0.d0 
       forall(K1=1:NTENS) diag(K1,K1) = 1.d0 
        
       !Define DDSDDE, DDSDE, DDSDS related to Normal Stress 
       DDSDDE(1:NDI,1:NDI) = (A-D*H/G)/F*ones(1:NDI,1:NDI)  
     !                             + B/F*diag(1:NDI,1:NDI) 
        
       DDSDE(1:NDI,1:NDI) = DTIME/F*(lambda1-omega1*D/G)* 
     !           ones(1:NDI,1:NDI) + 2.d0*DTIME*mu1/F*diag(1:NDI,1:NDI) 
        
       DDSDS(1:NDI,1:NDI) = -DTIME*(-phi1+D*zeta1/G)/F* 
     !           ones(1:NDI,1:NDI) - 2.d0*DTIME*psi1/F*diag(1:NDI,1:NDI) 
        
       !Define DDSDDE, DDSDE, DDSDS related to Shear Stress 
       DDSDDE(NDI+1:NTENS,NDI+1:NTENS) = B/2.d0/F 
     !                                *diag(NDI+1:NTENS,NDI+1:NTENS) 
       DDSDE(NDI+1:NTENS,NDI+1:NTENS) = DTIME*mu1/F 
     !                                *diag(NDI+1:NTENS,NDI+1:NTENS) 
       DDSDS(NDI+1:NTENS,NDI+1:NTENS) = -2.d0*DTIME*psi1/F 
     !                                *diag(NDI+1:NTENS,NDI+1:NTENS) 
 
       !Store present stress state ub array SIGold 
       do i = 1,ntens 
           SIGold(i) = stress(i) 
       end do 
        
       !Update stresses 
       do i = 1,ntens 
       do j = 1,ntens 
          stress(i) = stress(i) + DDSDDE(i,j)*(DSTRAN(j)) 
     !                          + DDSDE(i,j)*(STRAN(j)) 
     !                          + DDSDS(i,j)*(SIGold(j)) 
 
       end do 
       end do 
       return 
 
      RETURN 
      END SUBROUTINE UMAT 



For	input	files,	I	edited	the	one	we	used	in	HW6	for	porous	elastic	material,	and	play	with	the	
loading	conditions:	
	
1. For	displacement	loading,	I	used:	
	
%%%%%%%%%%%%%%%%%%%%%%%%%%%% BOUNDARY CONDITIONS %%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%     The BOUNDARY conditions key starts definition of BCs 
      BOUNDARY CONDITIONS 
 
%       The HISTORY key defines a time history that can be applied to DOFs or distributed 
loads 
        HISTORY, dof_history 
          0.d0, 0.d0                  % Each line gives a time value and then a function 
value 
         10.d0, 0.1d0 
        END HISTORY 
 
        HISTORY, dload_history 
          0.d0, 0.d0 
         1.d0, 500.d0 
        END HISTORY 
 
%       The NODESET key defines a list of nodes 
        NODESET, node1 
           1 
         END NODESET 
        NODESET, left 
           1, 4, 5, 8 
        END NODESET 
        NODESET, right 
           9, 10, 12, 11 
        END NODESET 
        NODESET, side 
           1, 2, 5, 6, 11, 9 
        END NODESET 
 
%      The ELEMENTSET key defines a list of elements 
       ELEMENTSET, end_element 
           2 
       END ELEMENTSET 
 
%       The DEGREE OF FREEDOM key assigns values to nodal DOFs 
%       The syntax is node set name, DOF number, and either a value or a history name. 
%      
        DEGREES OF FREEDOM 
           1, 3, VALUE, 0.d0 
           side, 2, VALUE, 0.d0 
           left, 1, VALUE, 0.d0 
           right, 1, HISTORY, dof_history 
        END DEGREES OF FREEDOM 
	
……	
	
	



2. For	force	loading,	I	used:	
	
%%%%%%%%%%%%%%%%%%%%%%%%%%%% BOUNDARY CONDITIONS %%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%     The BOUNDARY conditions key starts definition of BCs 
      BOUNDARY CONDITIONS 
 
%       The HISTORY key defines a time history that can be applied to DOFs or distributed 
loads 
        HISTORY, dof_history 
          0.d0, 0.d0                  % Each line gives a time value and then a function 
value 
         10.d0, 0.1d0 
        END HISTORY 
 
        HISTORY, dload_history 
          0.d0, 0.d0 
         1.d0, 500.d0 
        END HISTORY 
 
%       The NODESET key defines a list of nodes 
        NODESET, node1 
           1 
         END NODESET 
        NODESET, left 
           1, 4, 5, 8 
        END NODESET 
        NODESET, right 
           9, 10, 12, 11 
        END NODESET 
        NODESET, side 
           1, 2, 5, 6, 11, 9 
        END NODESET 
 
%      The ELEMENTSET key defines a list of elements 
       ELEMENTSET, end_element 
           2 
       END ELEMENTSET 
 
%       The DEGREE OF FREEDOM key assigns values to nodal DOFs 
%       The syntax is node set name, DOF number, and either a value or a history name. 
%      
        DEGREES OF FREEDOM 
           1, 3, VALUE, 0.d0 
           side, 2, VALUE, 0.d0 
           left, 1, VALUE, 0.d0 
        END DEGREES OF FREEDOM 
 
 
        DISTRIBUTED LOADS 
          end_element, 4, NORMAL,dload_history 
        END DISTRIBUTED LOADS 
	
……	
	


