
                  EN 4 
                  Dynamics and Vibrations 

 
 Homework 7:  Damped and Forced Vibrations 
 

 
 

 
1.  Spinal Pendulum  (revisited) 
 In HW #3, you analyzed via MATLAB the motion of a pendulum with a section 
of the spinal column at the pivot.  Return to that problem, and examine the equation of 
motion you derived.  From the EOM, predict the damped natural period and the damping 
coefficient analytically.  Using your numerical solution as “data”, extract the damping 
coefficient from the logarithmic decrement, and compare to the analytical result. 
 
2.  Engine Test Stand (revisited) 
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 The engine test stand of HW #5 is 
revamped to include a shock absorber to 
minimize recoil and vibrations when the 
thrust is turned on or off.  Consider the 
system to be running with constant thrust 
T=10,000 lbs, and then to have the thrust 
turned off abruptly.   

Design a system (i.e. choose values 
for k and c) so that the engine + test stand 
(total weight = 1500 lbs) has a deflection of 
less than 1 ft. and returns to equilibrium as 
fast as possible when the thrust is turned off. 
 
3.  Design of a Seismograph 
 “Low Frequency Earthquake” tremors occur 
in the 1-5 Hz frequency range along the San 
Andreas fault.  A simple seismograph consists of a 
mass/spring/dashpot system attached to a rigid 
frame, with the frame attached firmly to the ground.  
Background vibrations over a wide range of higher 
frequencies occur with typical amplitudes of 
0.1mm, and so tremor amplitudes comparable to or 
smaller than this cannot be detected.  Design the 
system (values for m, k, c) to reliably detect 
vibrations at a frequency of 3 Hz and having earth 



motion amplitudes of 0.01mm or larger, but also so that the maximum amplitude will not 
exceed 30 mm for earth motion amplitudes of 1.0 mm.  Note that the device measures 
motions relative to the base, not relative to a fixed point in space. 
 
4. Jet Engine Diagnostics (again) 

The jet engine from HW #6 is mounted on an aircraft wing as shown in the figure, 
and is being checked for vibration levels during maintenance. To investigate the problem, 
the wing, engine and mounting are to be modelled as a single degree of freedom system, 
as shown in figure (b), with vertical motion only and assuming the wing is fixed.  You 
have already determined the system parameters for free, damped vibrations in HW #6.  
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(a) Aircraft Engine   (b) Simplified Model 
 

     With the wing kept fixed, the engine is run at 6000 r.p.m. which is its typical 
operating speed at aircraft cruise conditions. At this speed, the maximum displacement 
amplitude of the engine’s vibrational motion is found to be 20 microns ( 620 10−×  
meters).  
a.  If the total mass of the engine is M=450 kg, use the model of figure (b) to find the 
effective imbalance, “Δme”, in the engine (in units of kg-m). Note “Δme” is the effective 
mass imbalance, Δm, multiplied by its effective eccentricity, e. 
b. At 6000 r.p.m., what would be the maximum force transmitted to the wing? 
c.  If the engine mounting could somehow be modified to double the damping constant c, 
without changing the spring constant k, would this increase or decrease the force 
transmitted to the wing when the engine is operated at this speed? 
d. If the engine was run at the natural frequency of the engine/mount system, instead of 
6000 r.p.m., what is the force transmitted to the wing?  
 
 
 
 



5.  The Two-Story Building (revisited) 
 Recall the equations of motion you obtained for the two-story building in 
Example 3 of Sec. 3.3.3. of the notes (discussed in sections).  Here, we will determine the 
vibration frequencies analytically and then verify the resonance numerically using the 
already-existing MATLAB code. 
a.  In your EOM, discard the driving force caused by motion of the ground.  This is not 
relevant for obtaining the natural frequencies of the building itself.  Next, discard any 
constant terms.  These correspond to shifts in the static positions of the two floors relative 
to whatever you called “zero” for these positions initially.  They are also not relevant for 
obtaining the natural frequencies.   
b.  Put the equations in the form of a matrix equation 
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where y1, y2 are the position vectors and are coefficients in the EOM. ,.....12,11 MM

c.  Obtain the Eigenvalues of the matrix M.  This corresponds to the values of   that 
satisfy 
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d.  Compute the natural frequencies of vibration, λω =n , in terms of the building 

parameters m and k given in the earlier HW.   Use your prior MATLAB code with the 
earth motion to predict the positions versus time for each story of the building when the 
earthquake frequency equals each of the natural frequencies computed here, using the 
parameters from Example 3 of Sec. 3.3.3. of the notes. 
 
 


