
                  EN 4 
                  Dynamics and Vibrations 

 
 Homework 6:  Damped and Forced Vibrations 
 

 
 

1. More MATLAB 
Generalize the MATLAB code created last week to include an additional 

sinusoidal forcing function.  Using the system parameters from last week, generate and 
plot numerical solutions for the Magnification Factor as a function of the ratio of (forcing 
frequency)/(natural frequency) over a range covering the resonance condition. 
 
2. Design of an Ocean Wave Energy-Harvesting Device 
 The idea of extracting energy from naturally occurring fluctuations in the earth’s 
dynamics is increasing, with wind energy and wave energy the most popular.  Here, you 
will design a basic wave energy harvester to extract energy from ocean waves.  A pretty 
picture of such a system is: 
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The picture shows a magnetic shaft surrounded by an electric coil.  The shaft is 
attached to a cable fixed to the ocean bottom, while the coil is attached to the buoy.  As 
the buoy bobs up and down due to the ocean waves, the coil passes back and forth across 
the magnetic shaft and generates an electric current (you will learn about this in EN 52).  
That current is captured by various electronics and sent back to shore.  Thus, mechanical 
energy in the wave is converted into electrical energy. 
 We would like to design the buoy (dimensions, density, damping of the electrical 
system) to extract the maximum amount of electrical energy possible, given knowledge 
of the most typical wave behavior in the chosen location.  We model the system above as 
a mass suspended in the water and connected to two viscous dampers, one representing 
the damping due to the ocean water, cw, and the second one representing the damping due 
to the electrical system, cc.  It is the energy dissipated in cc that we are interested in, since 
that is the electrical energy created.  A sketch of the engineering model is shown above.  



The cross-sectional area of the buoy is A, the length is L, the density of the buoy material 
is ρb, and the density of water is ρw. 
 The forces on the buoy are gravity, the forces due to the viscous damping, and the 
buoyancy force.  The buoyancy force is an upward force equal to the weight of the 
volume of water displaced by the buoy. 
 Define the position of the top of the buoy as x, and the height of the water relative 
to flat water, as y, as shown in the figure above. 

a.  Draw the free body diagram for the forces acting on the buoy.  Express the 
buoyancy force in terms of x, y, and buoy and water properties.  Express the 
force of gravity in terms of the buoy properties. 

b. Determine the general equation of motion for the buoy position x when the 
water height is y.   

c. Determine the static position of the buoy xo in terms of the buoy dimensions 
and the buoy and water densities. 

d. Define a new buoy height variable as z=x-xo and obtain the equation of 
motion for z.   

e. Write down the function y(t) for a wave having frequency ω and wave 
amplitude ymax.  

f. Combining d. and e., put the equation of motion in the “standard form” for a 
forced vibrational system, and express the natural frequency, the viscous 
damping coefficient, and the magnitude of the driving force Fo, in terms of the 
material, system, and wave parameters of this problem. 

g. The steady-state solution can be written as ( ) sin( )z t Z tω φ= + .  Write down 
the equation for the steady-state amplitude Z of the buoy motion in terms of 
the parameters. 

h. Assuming the viscous damping factor ς is small, determine the natural 
frequency for the buoy that will maximize the steady-state amplitude of the 
buoy motion, and then determine the combination of buoy dimensions and 
density that can achieve this natural frequency. 

i. Express the maximum amplitude maxZ  in terms of ς . 
j. Express the power dissipated by the electrical system (i.e. by cc) in terms of 

the maxZ  and other system parameters.  Then compute the average power 
dissipated per period of the vibration in terms of the parameters. 

k. Using the result of i. in j., and considering cw to be fixed, find the value of cc 
that will maximize the power dissipated, and thus maximize the electrical 
power generated, in terms of any other parameters of the buoy and water. 
 
You now have the design parameters for an optimal wave energy conversion 
device, within the limits of the simple design and approximations considered 
in this problem. 

  
 

 
 
 



3.  That Unbalanced Washing Machine over in Perkins 
  
A 35kg washing machine, including wet 
clothing, sits on four supporting springs, which 
have a static displacement of 0.01m.  What is 
the amplitude of vibrations if a wet 0.5kg clump 
of clothes is stuck to the inside of the washer 
shown, when the washer is in the “spin” cycle 
rotating at 275 RPM (revolutions per minute)?  
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4.  Electrical Circuit Theory (getting a jump on EN 52) 
 In electrical circuits, the electrical charge movers through various components 
according to various laws of physics. 

• For a capacitor of capacitance C (units of Farads) under a voltage V, the 
charge on the plates of the capacitor is q=VC. 

• For a resistor of resistance R (units of Ohms), the voltage and current are 
related by Ohm’s Law V=IR, where I=dq/dt. 

• For an inductor (a coil) of inductance L (units of Henrys), the voltage 
across it is V=L dI/dt. 
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A basic “RLC Circuit” consists of an inductor, 
capacitor, and resistor all in series with an AC 
voltage source ( ) sin( )oV t V tω= .  The sum of the 
voltages around the circuit must be equal to that of 
the voltage source, so that the equation governing 
the system is 

 1 sin( )o
dIL RI q V
dt C

tω+ + =  

a. Write down the “equation of motion” for the charge q as a function of time, q(t). 
 

b. What is the natural frequency nω  of charge oscillations in terms of R, L, C, Vo, 
and/or ω ? 
 

c. What is the approximate steady-state amplitude of the steady-state current I(t) 
when nω ω= , in terms of R, L, C, and/or Vo ?  



5.  Greenhouse Gases 
 Molecules are groups of atoms connected through (conservative) interatomic 
potential functions.  Since the atoms have mass, the molecules have natural frequencies 
and associated modes of vibration.  For molecules having charged atoms (+ and -), an 
applied electromagnetic field can act has a driving force on the molecule, and energy can 
be absorbed into the molecule.  The absorption is particularly high at resonance – when 
the frequency of the electromagnetic field (which, depending on the frequency, we might 
call a microwave, a radio wave, an infrared wave, visible light wave, or ultraviolet wave).  
Greenhouse gases are molecules that absorb infrared radiation generated by the heat of 
the earth.  Carbon dioxide (CO2) is a Greenhouse Gas because it has vibrational 
frequencies that are in the range of the radiation frequencies emitted by the earth. 

For an introduction, and lots more, on Greenhouse Gases and CO2 see:  
http://books.google.com/books?id=ZfoUIfhX3YIC

 
Carbon dioxide (CO2) is a “linear” molecular 
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For models of vibrations in CO2, see http://www.chemtube3d.com/vibrationsCO2.htm. 
Of particular interest are the vibrations at 1373 cm-1, 2438 cm-1.  These values are the 
wavenumber = λπ /2 , where λ  is the wavelength.  The frequency is λπω /2 c=  where c 
is the speed of light. 
 In HW 6, you showed that a model for atomic bonding between C and O yields an 
effective spring constant for vibrations and, using the average of the C and O masses, an 
estimated natural frequency of vibration.  This week, we will examine the vibrations of 
CO2 in more detail and elucidate its role as a Greenhouse Gas. 
 

a. Consider linear motion, along the axis of the O-C-O bonds only, of the atoms.  
Use the equilibrium position of each atom as an origin for that atom.  Sketch the 
atoms in some non-equilbrium state with positive positions x1, x2, x3 from their 
origins. 

b. Treating the molecule as three equal masses connected by two springs of stiffness 
k (see last week), determine the equations of motion for each atom. 

c. The forces in the EOMs in b. should only involved differences between the atom 
positions (the absolute position of the molecule in space has no relation to its 
vibrations).  So, define two new variables y and z corresponding to the distances 
between the two pairs of atoms (O-C and C-O) and, by combining the previous 
EOMs, write down the two EOMs for y and z. 

http://books.google.com/books?id=ZfoUIfhX3YIC
http://www.chemtube3d.com/vibrationsCO2.htm


d. Considering all possible directions of motion, how many total degrees of freedom 
are there for Carbon Dioxide motion? 
If we constrain the molecule to motion along the linear axis, how many degrees of 
freedom are there? 
If one of the linear d.o.f.’s corresponds to rigid motion (relative positions of all 
three atoms held fixed) along the line of the molecule axis, how many vibrational 
modes are there for vibrations of the atoms along the linear axis? 

 Is the number of d.o.f.s consistent with the number of EOMs in part c? 
e. Now determine the natural frequencies for this molecule.  To do this, follow the 

strategy discussed in class – write the equations of motion in matrix form and find 
the Eigenvalues of the stiffness matrix.  This will yield the two vibrational 
frequencies and modes of the CO2 molecule corresponding to vibrations along the 
O-C-O axis of the molecule in terms of m (we did not distinguish the masses in 
this problem) and k (which is related to D and α ; see last week’s HW). 

f. Using values found last week and results in e., compute the wavenumbers 
corresponding to these vibrational frequencies and compare to the experimental 
values above.  Convert to a wavelength, and determine what range these 
vibrations are in (Infrared? Visible? Ultraviolet? Microwave?) by consulting 
references on the electromagnetic spectrum. 

g. Thinking about the possible motions physically, sketch the type of atomic motions 
corresponding to each of the two natural frequencies determined in f. above.  That 
is, determine the “modes” of vibration for each of the frequencies, i.e. the relative 
motions of the atoms at each frequency.  See ChemTube3d if you have trouble 
with this. 

h. Now consider an electromagnetic field impinging on the CO2 molecule.  The 
electromagnetic field is a sinusoidal field of the form )sin( tEE o ω

rr
= .  Let the 

polarization (direction) of oE
r

 be parallel to the O-C-O line of the molecule.  The 
C and O atoms each have an electric charge (the molecule forms by transferring 
electrons from the C to the O atoms).  Take the charges to be +2e on the C and –e 
on each O, with e the charge of an electron.  The forces acting on the individual 
atoms are then qE where q is the charge and E is the magnitude of the electric 
field.  Draw a F.B.D. for the molecule showing the applied forces due to the 
electric field acting on each atom.  Determine which type of vibration motion is 
consistent with the electromagnetic forces exerted on the atoms. 

i. What frequency of electromagnetic radiation ω will cause resonance of the 
molecule?  This resonance corresponds to absorption of energy from the 
electromagnetic field into the molecule. 

j. Based on the above analysis, why are oxygen and nitrogen, O2 and N2, not 
“Greenhouse Gases”?  What about methane, CH4? 

 


