EN40: Dynamics and Vibrations

Homework 1: Introduction to MATLAB Due 12:00 noon Friday February 4th

School of Engineering
Brown University

- YOUR SOLUTION TO THIS HOMEWORK SHOULD CONSIST OF A COMMENTED MATLAB .m FILE
- THE ASSIGNMENT SHOULD BE SUBMITTED ELECTONICALLY BY EMAILING THE FILE AS AN ATTACHMENT TO Stephanie gesualdi @ brown.edu
- PLEASE PUT en4_hw1 IN THE SUBJECT OF YOUR EMAIL
- PLEASE NAME THE ATTACHED FILE lastname_firstname.m

You should make your file a function, so that when the file is executed, it will solve all the homework problems. For example:

```
function my_amazing_homework
    Solutions to problems 1-6
    Functions for the differential equations in problems 5&6
end
function rms = compute_rms(vector)
end
```

If you get stuck, you might find the solutions to homework 1, 2009 and 2010 helpful.

1. Using a loop, create a vector called x that contains 401 equally spaced points, starting at -6 and ending at +6 .
2. Using the solution to problem 1, plot a graph of $y=\sin (8 x) \exp \left(-x^{2}\right)$, for $-6<x<6$. You can create the vector y using a loop, or else use the dot notation. See Section 9 of the Matlab tutorial for a discussion of both approaches.
3. By using a loop and a conditional ('if...end') statement to create the arrays v, w, create a plot of

$$
w=\left\{\begin{array}{lr}
0.7071 & \sin (v) \geq 0.707 \\
\sin v & -0.707<\sin (v)<0.707 \\
-0.7071 & -0.7071
\end{array}\right.
$$

as a function of v for $0 \leq v \leq 2 \pi$. See Section 13 of the MATLAB tutorial for an example using a conditional statement.
4. Write a MATLAB function that will compute the root mean square value of all the elements in a vector. The root mean square is

$$
\rho=\sqrt{\frac{1}{n} \sum_{i=1}^{n} v_{i}^{2}}=\sqrt{\frac{v_{1}^{2}+v_{2}^{2}+\ldots}{n}}
$$

Your function should look something like this:

```
function rms = compute_rms(vector)
% Function to compute the rms of a vector
```

```
    enter your calculation here (Hint: use the function
length(vector) to compute the number of elements in v )
end
```

and should appear at the end of your file. Use your function to compute the rms value of the vector w calculated in problem 3 .
5. The differential equation

$$
\frac{d C}{d t}=\frac{\beta(C / K)^{n}}{\left[1+(C / K)^{n}\right]}-\alpha C
$$

is used in systems biology to calculate the concentration of an auto-repressing transcription factor protein produced by a cell. In this equation, C is the concentration of the protein (which varies with time), K is a constant called the 'activation coefficient' for the reaction; β is a second constant, known as the 'maximal expression rate,' and α is a constant that determines the rate of degredation or dilution of the protein, and n is also a constant.

Following the method in Section 15.1 of the Matlab tutorial, write a function in your M-file that will calculate $d C / d t$ given values of t, C.

Then use the MATLAB ode solver to compute, and plot the variation of C with time (as usual, the MATLAB solver won't give you a function for C , but instead will return two vectors, one containing values of time, and the other containing values of C . You can plot these.) Use the following parameters: $\beta=0.8 \mathrm{~mol} / \mathrm{m}^{3} \mathrm{~s} \quad \alpha=0.6 \mathrm{~s}^{-1} \quad K=0.25 \mathrm{~mol} / \mathrm{m}^{3} \quad n=4$.

Plot (on the same graph) the solutions for $C=0.1$ at time $t=0$ and $C=0.2$ at time $t=0$, for the interval $0<t<15$ sec.

Notice that there are two possible stable steady-state values for the protein concentration, depending on the initial value of C. Will this behavior still occur if $n=1$? Why?
6. The differential equations

$$
\frac{d x}{d t}=10(y-x) \quad \frac{d y}{d t}=x(\rho-z)-y \quad \frac{d z}{d t}=x y-\frac{8}{3} z
$$

describe a 'Lorenz oscillator.' They were originally developed to model the earth's climate, but they have since been found to describe other systems, including lasers $10.1016 / 0375-9601(75) 90353-9$. They are famous because they led to the discovery of chaos. The three variables (x, y, z) are functions of time. In the case of a laser, x represents the amplitude of the electric field intensity; y is the polarization; and z is the 'inversion,' which quantifies the energy states of electrons in the laser responsible for emitting photons. The parameter ρ is a constant (in the laser application, it is a characteristic dimension).

Write a MATLAB 'equation of motion' function that will compute the value of the vector $\mathrm{dwdt}=[d x / d t$, $d y / d t, d z / d t]$ given the value of the vector $\mathrm{w}=[x, y, z]$ at some time t.

Then, use the MATLAB ode solver to plot $\mathrm{x}, \mathrm{y}, \mathrm{z}$ as functions of time for $0<\mathrm{t}<20$. Try the following cases: $6.1 \rho=99.96 \quad(x=-0.2706 \quad y=-3.3019 \quad z=70.3189)$ at $t=0$ (this gives a periodic solution) $6.2 \rho=28 \quad(x=-0.2706 \quad y=-3.3019 \quad z=70.3189)$ at $t=0$ (this gives chaotic behavior) Plot your solutions on separate graphs. You might also like to plot trajectories of the solution (a 3D plot of (x, y, z) as a path). The trajectory for 6.2 shows the 'Strange Attractor' for the Lorenz equations.

