

EN40: Dynamics and Vibrations

Homework 1: Introduction to MATLAB Due 12:00 noon Friday February 4th

- YOUR SOLUTION TO THIS HOMEWORK SHOULD CONSIST OF A COMMENTED MATLAB .m FILE
- THE ASSIGNMENT SHOULD BE SUBMITTED ELECTONICALLY BY EMAILING THE FILE AS AN ATTACHMENT TO <u>Stephanie_gesualdi@brown.edu</u>
- PLEASE PUT en4_hw1 IN THE SUBJECT OF YOUR EMAIL
- PLEASE NAME THE ATTACHED FILE *lastname_firstname.m*

You should make your file a function, so that when the file is executed, it will solve all the homework problems. For example:

```
function my_amazing_homework
        Solutions to problems 1-6
        Functions for the differential equations in problems 5&6
end
function rms = compute_rms(vector)
...
end
```

If you get stuck, you might find the solutions to homework 1, 2009 and 2010 helpful.

- 1. Using a loop, create a vector called x that contains 401 equally spaced points, starting at -6 and ending at +6.
- 2. Using the solution to problem 1, plot a graph of $y = \sin(8x)\exp(-x^2)$, for -6 < x < 6. You can create the vector y using a loop, or else use the dot notation. See Section 9 of the Matlab tutorial for a discussion of both approaches.
- 3. By using a loop and a conditional ('if...end') statement to create the arrays v,w, create a plot of

$$w = \begin{cases} 0.7071 & \sin(v) \ge 0.707\\ \sin v & -0.707 < \sin(v) < 0.707\\ -0.7071 & -0.7071 \ge \sin(v) \end{cases}$$

as a function of v for $0 \le v \le 2\pi$. See Section 13 of the MATLAB tutorial for an example using a conditional statement.

4. Write a MATLAB function that will compute the root mean square value of all the elements in a vector. The root mean square is

$$\rho = \sqrt{\frac{1}{n} \sum_{i=1}^{n} v_i^2} = \sqrt{\frac{v_1^2 + v_2^2 + \dots}{n}}$$

Your function should look something like this:

```
function rms = compute_rms(vector)
% Function to compute the rms of a vector
```

enter your calculation here (Hint: use the function length(vector) to compute the number of elements in v) end

and should appear at the end of your file. Use your function to compute the rms value of the vector w calculated in problem 3.

5. The differential equation

$$\frac{dC}{dt} = \frac{\beta (C / K)^n}{\left[1 + (C / K)^n\right]} - \alpha C$$

is used in systems biology to calculate the concentration of an auto-repressing transcription factor protein produced by a cell. In this equation, C is the concentration of the protein (which varies with time), K is a constant called the 'activation coefficient' for the reaction; β is a second constant, known as the 'maximal expression rate,' and α is a constant that determines the rate of degredation or dilution of the protein, and n is also a constant.

Following the method in Section 15.1 of the Matlab tutorial, write a function in your M-file that will calculate dC / dt given values of t, C.

Then use the MATLAB ode solver to compute, and plot the variation of C with time (as usual, the MATLAB solver won't give you a function for C, but instead will return two vectors, one containing values of time, and the other containing values of C. You can plot these.) Use the following parameters: $\beta = 0.8 \text{ mol/m}^3 \text{s}$ $\alpha = 0.6 \text{ s}^{-1} \text{ } \text{K} = 0.25 \text{ mol/m}^3 \text{ } n = 4.$

Plot (on the same graph) the solutions for C = 0.1 at time t=0 and C = 0.2 at time t=0, for the interval 0 < t < 15 sec.

Notice that there are two possible stable steady-state values for the protein concentration, depending on the initial value of *C*. Will this behavior still occur if n=1? Why?

6. The differential equations

$$\frac{dx}{dt} = 10(y-x) \qquad \frac{dy}{dt} = x(\rho-z) - y \qquad \frac{dz}{dt} = xy - \frac{8}{3}z$$

describe a 'Lorenz oscillator.' They were originally developed to model the earth's climate, but they have since been found to describe other systems, including lasers 10.1016/0375-9601(75)90353-9. They are famous because they led to the discovery of chaos. The three variables (x,y,z) are functions of time. In the case of a laser, x represents the amplitude of the electric field intensity; y is the polarization; and z is the 'inversion,' which quantifies the energy states of electrons in the laser responsible for emitting photons. The parameter ρ is a constant (in the laser application, it is a characteristic dimension).

Write a MATLAB 'equation of motion' function that will compute the value of the vector dwdt = [dx/dt, dy/dt, dz/dt] given the value of the vector w = [x,y,z] at some time t.

Then, use the MATLAB ode solver to plot x,y,z as functions of time for 0 < t < 20. Try the following cases: $6.1 \ \rho = 99.96 \ (x = -0.2706 \ y = -3.3019 \ z = 70.3189)$ at t = 0 (this gives a periodic solution) $6.2 \ \rho = 28 \ (x = -0.2706 \ y = -3.3019 \ z = 70.3189)$ at t = 0 (this gives chaotic behavior) Plot your solutions on separate graphs. You might also like to plot *trajectories* of the solution (a 3D plot of (x,y,z) as a path). The trajectory for 6.2 shows the 'Strange Attractor' for the Lorenz equations.