EN40: Dynamics and Vibrations

Homework 8: Rigid Body Dynamics

1. CALCULATE THE MASS MOMENT OF INERTIA

You may use the mass moment of inertia tables in the slides provided online.

1A. A thin disk of radius R and mass m_{d} connected to a slender rod of length L and mass m_{r}. It rotates around the z axis.

1B. An I-beam is composed of 3 sections of equal thickness
 t, density ρ, and length L. It is rotating around the y-axis.

1C. A hollow cylinder of length L, outer radius R, inner radius r , and density ρ. It is rotating around the x -axis.

2. ELLIPSOID PENDULUM

A rigid body pendulum is composed of an ellipsoid
 whose length is b and whose width and height are a. The ratio $b / a=10$. The ellipsoid is free to pivot about a fixed point at the origin (point O) in the $x-y$ plane. It has a mass of m.

2A. What is the mass moment of inertia, I_{o} in terms of m and b ?

2B. Draw a FBD.
2C. Write 3 appropriate equations of motion and identify the unknowns.
2D. By eliminating the extra unknown variables, write a single equation of motion for the rigid body pendulum in terms of b, m, g, I_{G}, and θ.

2E. For small oscillations (about the negative y-axis), what is the natural freqency in terms of b, m, g, I_{G}, and θ ?

3. PASSENGER WITH NO HEADREST

The figure shows a passenger in a vehicle with no headrests. The car is initially at rest, and is hit from behind by another vehicle, giving the car and the passenger's torso a forward acceleration of $\mathbf{a}=\mathrm{a}_{\mathrm{N}} \mathbf{i}$. The acceleration bends the passenger's neck through an angle θ as shown in the figure.

- Assume the head is a sphere with radius R, mass m, and mass moment of inertia of $\mathrm{I}_{\mathrm{G}}=2 \mathrm{mR}^{2} / 5$.
- There is a moment applied by neck on the head. Assume the next acts as a torsional spring with spring constant k.
3.1 Draw a FBD of the head.

3.2 Show that the equation of motion is

$$
\frac{7}{5} R^{2} m \alpha+k \theta-R m g \sin (\theta)-R m a_{N} \cos (\theta)=0
$$

4. ROLLING RING

Consider a ring of radius mass M and radius R , initially released from rest on an incline of 20 degrees. The coefficient of kinetic friction is μ_{k}, and the coefficient of static friction is μ_{s}.
4.1 Assuming a thickness t that is much smaller than R, derive an expression for the mass moment of inertia in terms of M and R.
4.2 Let's first assume the ring rolls without slipping. Derive an expression for the linear acceleration of the center, plus the angular acceleration soon after it begins to roll.
4.3 If $\mathrm{R}=0.5 \mathrm{~m}, \mu_{\mathrm{k}}=0.12$, and $\mu_{\mathrm{s}}=0.15$, does our assumption of rolling without slip hold? Why or why not?
4.4 For the given values in 4.3 , how long will it take the ring to travel 5 meters down the incline?
4.5 Now let's assume it is rolling without slip. Using energy methods, calculate the rotational velocity after it has travelled 5 meters.
4.6 In problem 4.5, is there work done by friction? Why/Why Not?

5. Spring Collar Wheel System

In the mechanism shown, each of the two wheels (mass $=m_{w}$, radius $=R$) is connected to a collar via a slender bar (length $=\mathrm{L}$, mass $=\mathrm{m}_{\mathrm{b}}$). The collar slides (mass $=\mathrm{m}_{\mathrm{c}}$) frictionlessly on a vertical shaft, and hits a spring (spring constant $=\mathrm{k}$) when the bars are in a horizontal configuration. The wheels roll without slipping.

If the collar is released from rest at $\theta=45$ deg:
5.1 Calculate the velocity of the collar as it first hits the spring.
5.2. Calculate the maximum deformation of the spring.

