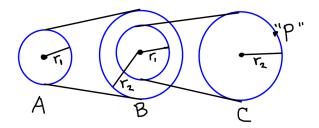

Homework 7: Rigid Body Kinematics Due Friday April 11th

Problem 1: In the 2-link system shown below, link OB has a constant angular velocity ω . For the instant in time shown:

- 1.1. Determine the linear velocity vectors at points A and B.
- 1.2. Determine the linear acceleration vectors at points A and B.


Problem 2: The rod OB slides through the collar pivoted to the rotating link at A. Link CA is rotating at a constant angular velocity of 3 rad/s in the clockwise direction when $\theta = 45$ deg. Link CA has a length of 0.2 m.


- 2.1. What is the velocity and acceleration of the collar A?
- 2.2. What is the angular velocity and acceleration of link OB?

Problem 3: A V-belt speed reduction drive is shown where pully A drives the two integral pulleys B which in turn drive pulley C. If A starts at rest at time t = 0, and is given a constant acceleration α_1 , then:

- 3.1. Derive an expression for the angular velocity of C at time t.
- 3.2. What is the (magnitude of) acceleration of the point "P" at time t?

Problem 4: The wheel below has a radius R = 0.5 m and is connected to a rigid link of length 2*R*. The system is at rest at t = 0, and subsequently is subjected to constant angular acceleration $\alpha = 2 rad/s^2$. At time $t = t_o$ the wheel has turned 90 degrees. The wheel rolls without slipping.

- 4.1. Determine the value of t_o and the value of ω at t_o .
- 4.2. Determine the velocity and acceleration of point "O" at $t = t_o$.
- 4.3. Determine the velocity and acceleration of point "B" at $t = t_o$.