Homework 7: Rigid Body Kinematics
 Due Friday April 11th

Problem 1: In the 2-link system shown below, link $O B$ has a constant angular velocity ω. For the instant in time shown:

1.1. Determine the linear velocity vectors at points A and B.
1.2. Determine the linear acceleration vectors at points A and B.

Problem 2: The rod $O B$ slides through the collar pivoted to the rotating link at A. Link CA is rotating at a constant angular velocity of $3 \mathrm{rad} / \mathrm{s}$ in the clockwise direction when $\theta=45 \mathrm{deg}$. Link CA has a length of 0.2 m .

2.1. What is the velocity and acceleration of the collar A?
2.2. What is the angular velocity and acceleration of link $O B$?

Problem 3: A V-belt speed reduction drive is shown where pully A drives the two integral pulleys B which in turn drive pulley C. If A starts at rest at time $t=0$, and is given a constant acceleration α_{1}, then:
3.1. Derive an expression for the angular velocity of C at time t.
3.2. What is the (magnitude of) acceleration of the point " P " at time t ?

Problem 4: The wheel below has a radius $R=0.5 \mathrm{~m}$ and is connected to a rigid link of length $2 R$. The system is at rest at $t=0$, and subsequently is subjected to constant angular acceleration $\alpha=2 \mathrm{rad} / \mathrm{s}^{2}$. At time $t=t_{o}$ the wheel has turned 90 degrees. The wheel rolls without slipping.

4.1. Determine the value of t_{o} and the value of ω at t_{o}.
4.2. Determine the velocity and acceleration of point "O" at $t=t_{o}$.
4.3. Determine the velocity and acceleration of point " B " at $t=t_{o}$.

