Homework 6: Rigid Body Kinematics
Due Friday April 17th

Problem 1: Consider the linkage system below. At the instance shown, point C moves downward at $1 \mathrm{~m} / \mathrm{s}$ and has a downward acceleration of $3 \mathrm{~m} / \mathrm{s}^{2}$. Pay attention to the reference axis shown in the diagram, and be sure to denote the proper vector notation on all answers.

1.1. Write down the position vector of point B with respect to point A.
1.2. Write down the position vector of point C with respect to point B .
1.3 Write down the position vector of point C with respect to point A .
1.4. Write down a vector equation relationship between the linear velocity at point C and the linear velocity at point A. Using this equation, determine $\omega_{A B}$ and $\omega_{B C}$, the rotational velocities of the two links. Be sure to properly denote the vector direction of the rotational velocity.
1.5. Write down a vector equation relationship between the linear acceleration at point C and the linear acceleration at point A. Using this equation, determine $\alpha_{A B}$ and $\alpha_{B C}$, the rotational accelerations of the two links. Be sure to properly denote the vector directions.

Problem 2: In the figure below, gears B and C are a compound gear, meaning they are rigidly attached to one another. Instead of a gear radii, the gear ratio of the system can be calculated based on the number of teeth in each gear, given by the table below.

GEAR A	GEAR B	GEAR C	GEAR D
120 T	40 T	80 T	20 T

2.1. If gear A rotates clockwise at 30 rpm , what is the direction and angular velocity of gear D ?
2.2. In 10 minutes time, how many complete rotations does each gear make?
2.3. Now assume the gears are at rest at $t=0$, and an angular acceleration of $5 \mathrm{~m} / \mathrm{s}^{2}$ in the clockwise direction is applied to gear D for 2 seconds. From 2 seconds to 8 seconds there is no angular acceleration applied. Then from 8 seconds to 10 seconds there is a counterclockwise angular acceleration of $5 \mathrm{~m} / \mathrm{s}^{2}$ applied to gear D. How many revolutions does gear D undergo during the 10 second period? How many revolutions does gear A undergo during the 10 second period?

Problem 3: The disk ($\mathrm{R}=0.5 \mathrm{~m}$) rolls without slipping on the plane surface. The velocity of point A is $6 \mathrm{~m} / \mathrm{s}$ to the right, and the acceleration of A is $20 \mathrm{~m} / \mathrm{s}^{2}$ to the right.

3.1. What is the angular acceleration vector of the disk?
3.2. Determine the accelerations of points B, C, and D.

Problem 4: A cylinder of length L and radius R is welded to a rectangular prism of length B and cross section $A \times A$. The density, ρ, of the two bodies is the same and uniform.

4.1. Determine the mass moment of interia about the x -axis.
4.2. Determine the mass moment of interia about the y-axis.

Problem 5: Consider the pulley system below where $m_{1}=10 \mathrm{~kg}, m_{2}=8 \mathrm{~kg}$, and $m_{3}=m_{\text {pulley }}=4 \mathrm{~kg}$.

5.1. In terms of R, g, ω and α, what is the acceleration of mass 2 ?
5.2. What is the acceleration of mass 2 of a massless pulley? Which has the greater angular acceleration (with mass or massless) and why?

