Homework 7: Rigid Body Dynamics
Due Friday April 24th

Problem 1: A thin disk of radius $L / 4$ and mass m is rigidly attached to a slender rod of length L and mass m. The system is attached via a torsional spring (constant k), which has a restoring moment in the clockwise direction when perturbed by an angle θ. The center of mass of the system is denoted by point G.

1.1. What is I_{A}, the mass moment of inertia about point A ?
1.2. Draw a FBD and write out the appropriate linear and rotational equations of motions (in terms of I_{A}).
1.3. Now assuming small values of θ, what is the natural frequency of the system?

Problem 2: The masses of the slender bar and the crate are 9 kg and 36 kg respectively. The crate sits on a frictionless surface. The system is stationary at the instant shown and a counterclockwise moment of 300 Nm is applied to the bar.

2.1. What is the resulting acceleration vector of the plate?
2.2. Now assume a friction coefficient of 0.2 between the crate and the surface. What is the acceleration of the crate?

Problem 3: The thin disk of mass m and radius R rolls without slipping and is connected to a linear spring (constant k). The unstretched length of the spring is $2 R$.

3.1. Starting from rest as shown, what is the angular velocity of the disk when the center has moved a horizontal distance $2 R$.

Problem 4: Bar AB has a mass of 5 kg , and bar BC has a mass of 3 kg . If the system is released from rest in the position shown, what are the angular velocities of the two bars at the instant point B hits the floor? Assume point C slides frictionlessly.

Problem 5: The thin disk brake drum is rotating at an angular speed of $10 \mathrm{rad} / \mathrm{s}$ at $\mathrm{t}=0$. A force is applied to the thin rigid bar to stop the drum from rotating. How much work must be done on the drum in order to stop its rotation completely?

