Homework 6: Rigid Body Kinematics Due Friday April 22nd

Problem 1 [6 pts]: For the I-beam shape of constant density ρ shown below, calculate a) I_{Gx} b) I_{Gy} and c) I_{Gz} [2 pts each]

Problem 2 [6 pts]: The rigid body pendulum shown is composed of a slender bar of length s and mass m_1 and a thin disk of radius R = s/4 and mass m_2 .

a) [1 pt] Calculate an expression for L, the distance from O to G.

b) [3 pts] Calculate an expression for I_G in terms of s, L, m_1 and m_2 .

c) [2 pts] Assuming small oscillations, what is the natural frequency of the rigid body pendulum? Write your answer in terms of L, I_G , m_1 and m_2 .

Problem 3 [10 pts]: In the planetary gear set below the rigid arm 1 (attached at points O and B) rotates at an angular velocity ω_1 and each of the gears rotates at an angular velocity of ω_2 through ω_6 , with a corresponding radius R_2 through R_6 .

a) [1 pt] What is the gear ratio ω_4/ω_6 ?

b) [3 pts] Assuming all gears are rotating, what is the relationship between ω_1, ω_2 and ω_3 ?

c) [3 pts] Assuming gear 6 is held fixed, what is the gear ratio ω_1/ω_2 ? (which direction is gear 3 rotating?)

d) [3 pts] Assuming gear 2 is held fixed (gear 6 is rotating), what is the gear ratio ω_1/ω_4 ? (which direction is gear 3 rotating?)

Problem 4 [6 pts]: In the slider crank mechanism below, arm OA has an angular velocity of 4 rad/s and an angular acceleration of 2 rad/s^2 . What is the velocity and acceleration of the piston [3 pts each]?

Problem 5 [10 points]: A hydrofoil can be used as a tidal hydrokinetic turbine to generate power by heaving up and down and rotating the foil about its center with specific kinematics. An example is shown in the video: https: //drive.google.com/file/d/OB__1KXx8i5W70UtfYzNfajc4ZkE/view?usp=sharing. This problem will begin to analyze a portion of the kinematics shown in the diagram below. Point B rotates at a constant angular velocity ω , with $\theta = 0$ at t = 0. The position of fixed point D with respect to fixed point A is Dxi - Dyj. The length of AB is denoted by R, the length of BC is denoted by L_1 , the length of CD is denoted by L_2 , and the length of DF is denoted by L_3 . The angles θ and β are defined relative to the vertical, and ϕ is defined relative to the horizontal.

a) [2 pts] Write an expression for $\mathbf{v}_{\mathbf{B}}$ in terms of R, ω , and t

b) [2 pts] Write an expression for $\mathbf{v}_{\mathbf{C}}$ in terms of $\mathbf{v}_{\mathbf{B}}$, ω_{BC} , β and L_1

c) [2 pts] Write an expression for $\mathbf{v}_{\mathbf{C}}$ in terms of ω_{CD} , ϕ and L_2

d) [2 pts] Write a vector equation consisting of unknown quantities ω_{BC} , ω_{CD} , β , and ϕ . Note you will have 2 equations (1 vector equation) and 4 unknowns.

e) [2 pts] Write a vector equation relating the geometric variables β , and ϕ in order to close the system of equations. (Note you do not have to solve).