Homework 6: Rigid Body Kinematics
 Due Friday April 22nd

Problem 1 [$\mathbf{6} \mathbf{p t s}]$: For the I-beam shape of constant density ρ shown below, calculate a) $I_{G x}$ b) $I_{G y}$ and c) $I_{G z}$ [2 pts each]

Problem 2 [$6 \mathbf{p t s}]$: The rigid body pendulum shown is composed of a slender bar of length s and mass m_{1} and a thin disk of radius $R=s / 4$ and mass m_{2}.

a) $[1 \mathrm{pt}]$ Calculate an expression for L, the distance from O to G.
b) $[3 \mathrm{pts}]$ Calculate an expression for I_{G} in terms of s, L, m_{1} and m_{2}.
c) [2 pts] Assuming small oscillations, what is the natural frequency of the rigid body pendulum? Write your answer in terms of L, I_{G}, m_{1} and m_{2}.

Problem 3 [$\mathbf{1 0} \mathbf{p t s}$]: In the planetary gear set below the rigid arm 1 (attached at points O and B) rotates at an angular velocity ω_{1} and each of the gears rotates at an angular velocity of ω_{2} through ω_{6}, with a corresponding radius R_{2} through R_{6}.

a) $[1 \mathrm{pt}]$ What is the gear ratio ω_{4} / ω_{6} ?
b) $[3 \mathrm{pts}]$ Assuming all gears are rotating, what is the relationship between ω_{1}, ω_{2} and ω_{3} ?
c) [3 pts] Assuming gear 6 is held fixed, what is the gear ratio ω_{1} / ω_{2} ? (which direction is gear 3 rotating?)
d) [3 pts] Assuming gear 2 is held fixed (gear 6 is rotating), what is the gear ratio ω_{1} / ω_{4} ? (which direction is gear 3 rotating?)

Problem 4 [6 pts]: In the slider crank mechanism below, arm OA has an angular velocity of $4 \mathrm{rad} / \mathrm{s}$ and an angular acceleration of $2 \mathrm{rad} / \mathrm{s}^{2}$. What is the velocity and acceleration of the piston [3 pts each]?

Problem 5 [$\mathbf{1 0}$ points]: A hydrofoil can be used as a tidal hydrokinetic turbine to generate power by heaving up and down and rotating the foil about its center with specific kinematics. An example is shown in the video: https: //drive.google.com/file/d/0B__1KXx8i5W70UtfYzNfajc4ZkE/view?usp=sharing This problem will begin to analyze a portion of the kinematics shown in the diagram below. Point B rotates at a constant angular velocity ω, with $\theta=0$ at $t=0$. The position of fixed point D with respect to fixed point A is $D x \mathbf{i}-D y \mathbf{j}$. The length of AB is denoted by R, the length of BC is denoted by L_{1}, the length of CD is denoted by L_{2}, and the length of DF is denoted by L_{3}. The angles θ and β are defined relative to the vertical, and ϕ is defined relative to the horizontal.

a) [2 pts] Write an expression for $\mathbf{v}_{\mathbf{B}}$ in terms of R, ω, and t
b) $[2 \mathrm{pts}]$ Write an expression for $\mathbf{v}_{\mathbf{C}}$ in terms of $\mathbf{v}_{\mathbf{B}}, \omega_{B C}, \beta$ and L_{1}
c) [2 pts] Write an expression for $\mathbf{v}_{\mathbf{C}}$ in terms of $\omega_{C D}, \phi$ and L_{2}
d) [2 pts] Write a vector equation consisting of unknown quantities $\omega_{B C}, \omega_{C D}, \beta$, and ϕ. Note you will have 2 equations (1 vector equation) and 4 unknowns.
e) [2 pts] Write a vector equation relating the geometric variables β, and ϕ in order to close the system of equations. (Note you do not have to solve).

