Homework 7: Rigid Body Dynamics
Due Friday April 29nd

Problem 1 [$\mathbf{1 0} \mathbf{~ p t s] : ~ A ~ c r a t e ~ o f ~ m a s s ~} m$ is pulled up a slope with angle θ by an inextensible cable that is wrapped around a pulley. The contact between the crate and slope has friction coefficient μ. The pulley has mass m and radius R and mass moment of inertia $m R^{2} / 2$. It is rotated counterclockwise by a motor attached to an axle at its center, which exerts a moment (torque) with magnitude Q on the pulley. The bearings supporting the axle of the pulley are frictionless. The goal of this problem is to find a formula for the angular acceleration α of the pulley.

Friction coefficient μ

a) $[1 \mathrm{pt}]$ Draw the FBD of the pulley.
b) $[1 \mathrm{pt}]$ Draw the FBD of the crate.
c) $[2 \mathrm{pts}]$ Write out suitable expressions for $\mathbf{F}=m \mathbf{a}$ for the crate, in the (\mathbf{n}, \mathbf{t}) coordinate basis.
d) $[2 \mathrm{pts}]$ Write out suitable expressions for $M=I_{G} \alpha$ for the pulley.
e) [2 pts] Write the kinematics relationship between α and the acceleration of the crate.
f) $[2 \mathrm{pts}]$ Show that $\alpha=\frac{2}{3}\left(\frac{Q}{m R^{2}}-\frac{g}{R}(\sin \theta+\mu \cos \theta)\right)$

Problem 2 [8 pts]: Professor Franck's children are playing on a see-saw in the backyard. To protect their identity we will call them "Thing 1 " and "Thing 2". Thing 1 is older and larger, with a mass of m_{1}, whereas Thing 2 has a mass of m_{2}. The mass ratio is $m_{1} / m_{2}=6 / 5$. We will assume the see-saw bar is massless, that there is no friction in the bearings or elsewhere, and approximate that Thing 1 and Thing 2 are particles. Thing 1 has positioned herself on the seesaw a distance d from the pivot point and refuses to move.
a) $[1 \mathrm{pt}]$ Draw a FBD of the see-saw
b) $[1 \mathrm{pt}]$ Find an expression for the distance x at which Thing 2 must position herself for the see-saw to begin moving.
c) $[2 \mathrm{pts}]$ What is the mass moment of Inertia about the pivot point, I_{o} ?
d) [4 pts] Thing 2 suddenly moves a distance $2 d$ from the pivot point. What is the initial linear acceleration experienced by Thing 1 ?

Thing 1
m_{1}

Problem 3 [8 pts]: The mass of a homogeneous cylindrical disk is m and its radius R. The disk is stationary when a constant clockwise moment (torque) M is applied to it. The disk rolls without slipping. Determine the velocity after it has travelled a horizontal distance b by:
a) [4 pts] Drawing a FBD, writing out 3 equations of motion, and calculate the velocity using kinematics.
b) [4 pts] Using energy methods.

Problem 4 [12 pts]: Consider the slider crank mechanism below, that has a torsional spring that produces a moment $M=-k \theta$ at the fixed point O. Slender bar OA has a mass m_{1} and length L_{1}, and slender bar AB has a mass m_{2} and a length L_{2}. The system is released from rest from a position θ_{0}.

a) [2 pts] Using position vectors or geometric arguments, calculate an expression for β in terms of θ, L_{1} and L_{2}.
b) [4 pts] Write an energy balance between the initial release position and the position in which $\theta=0$. Keep your answer in terms of $g, k, \omega_{O A}, \omega_{A B}, L_{1}, L_{2}, m_{1}, m_{2}, V_{G}$ and θ.
c) [2 pts] Write an expression for the vector V_{B} as a function of $\omega_{O A}, \omega_{A B}, L_{1}, L_{2}$ and θ. What is the constraint on V_{B} ? Find a relationship between $\omega_{O A}$ and $\omega_{A B}$.
d) [2 pts] Write a vector equation relating the V_{G} (the velocity of the center of bar AB) to V_{B}. What is V_{G} when $\theta=0$?
e) [2 pts] Let $m_{2}=2 m_{1}$ and $L_{2}=2 L_{1}$. Find an expression for the angular velocity $\omega_{O A}$ in terms of the initial angle θ_{0}, g, k, L_{1}, m_{1}.

Problem 5 [6 points]: A flywheel attached to an electric motor is initially at rest. At $t=0$ the motor exerts a torque $M=200 e^{-0.1 t} \mathrm{Nm}$ on the flywheel. The moment of inertia of the flywheel is $10 \mathrm{kgm}^{2}$.
a) [1 pt] Plot or sketch the torque as a function of time.
b) [2 pts] What is the flywheel's angular velocity at $t=10$ seconds.
c) $[2 \mathrm{pts}]$ Plot or sketch the angular velocity as a function of time (over a time interval of 100 seconds).
d) $[1 \mathrm{pt}]$ What is the maximum angular velocity the flywheel will attain?

