Homework 7: Rigid Body Dynamics Due Friday April 29nd

Problem 1 [10 pts]: A crate of mass m is pulled up a slope with angle θ by an inextensible cable that is wrapped around a pulley. The contact between the crate and slope has friction coefficient μ . The pulley has mass m and radius R and mass moment of inertia $mR^2/2$. It is rotated counterclockwise by a motor attached to an axle at its center, which exerts a moment (torque) with magnitude Q on the pulley. The bearings supporting the axle of the pulley are frictionless. The goal of this problem is to find a formula for the angular acceleration α of the pulley.

Friction coefficient μ

- a) [1 pt] Draw the FBD of the pulley.
- b) [1 pt] Draw the FBD of the crate.
- c) [2 pts] Write out suitable expressions for $\mathbf{F} = m\mathbf{a}$ for the crate, in the (\mathbf{n}, \mathbf{t}) coordinate basis.
- d) [2 pts] Write out suitable expressions for $M = I_G \alpha$ for the pulley.
- e) [2 pts] Write the kinematics relationship between α and the acceleration of the crate.
- f) [2 pts] Show that $\alpha = \frac{2}{3} \left(\frac{Q}{mR^2} \frac{g}{R} (\sin\theta + \mu \cos\theta) \right)$

Problem 2 [8 pts]: Professor Franck's children are playing on a see-saw in the backyard. To protect their identity we will call them "Thing 1" and "Thing 2". Thing 1 is older and larger, with a mass of m_1 , whereas Thing 2 has a mass of m_2 . The mass ratio is $m_1/m_2 = 6/5$. We will assume the see-saw bar is massless, that there is no friction in the bearings or elsewhere, and approximate that Thing 1 and Thing 2 are particles. Thing 1 has positioned herself on the seesaw a distance d from the pivot point and refuses to move.

a) [1 pt] Draw a FBD of the see-saw

b) [1 pt] Find an expression for the distance x at which Thing 2 must position herself for the see-saw to begin moving.

c) [2 pts] What is the mass moment of Inertia about the pivot point, I_o ?

d) [4 pts] Thing 2 suddenly moves a distance 2d from the pivot point. What is the initial linear acceleration experienced by Thing 1?

Problem 3 [8 pts]: The mass of a homogeneous cylindrical disk is m and its radius R. The disk is stationary when a constant clockwise moment (torque) M is applied to it. The disk rolls without slipping. Determine the velocity after it has travelled a horizontal distance b by:

- a) [4 pts] Drawing a FBD, writing out 3 equations of motion, and calculate the velocity using kinematics.
- b) [4 pts] Using energy methods.

Problem 4 [12 pts]: Consider the slider crank mechanism below, that has a torsional spring that produces a moment $M = -k\theta$ at the fixed point O. Slender bar OA has a mass m_1 and length L_1 , and slender bar AB has a mass m_2 and a length L_2 . The system is released from rest from a position θ_0 .

a) [2 pts] Using position vectors or geometric arguments, calculate an expression for β in terms of θ , L_1 and L_2 .

b) [4 pts] Write an energy balance between the initial release position and the position in which $\theta = 0$. Keep your answer in terms of g, k, ω_{OA} , ω_{AB} , L_1 , L_2 , m_1 , m_2 , V_G and θ .

c) [2 pts] Write an expression for the vector V_B as a function of ω_{OA} , ω_{AB} , L_1 , L_2 and θ . What is the constraint on V_B ? Find a relationship between ω_{OA} and ω_{AB} .

d) [2 pts] Write a vector equation relating the V_G (the velocity of the center of bar AB) to V_B . What is V_G when $\theta = 0$?

e) [2 pts] Let $m_2 = 2m_1$ and $L_2 = 2L_1$. Find an expression for the angular velocity ω_{OA} in terms of the initial angle θ_0 , g, k, L_1, m_1 .

Problem 5 [6 points]: A flywheel attached to an electric motor is initially at rest. At t = 0 the motor exerts a torque $M = 200e^{-0.1t} Nm$ on the flywheel. The moment of inertia of the flywheel is $10 \ kgm^2$.

- a) [1 pt] Plot or sketch the torque as a function of time.
- b) [2 pts] What is the flywheel's angular velocity at t = 10 seconds.
- c) [2 pts] Plot or sketch the angular velocity as a function of time (over a time interval of 100 seconds).
- d) [1 pt] What is the maximum angular velocity the flywheel will attain?