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1. The vibration isolation system shown in the figure has  

• m=20kg,  
• 19.8 /k kN m=   
• 1.259 /c kNs m=   

 
If the base vibrates harmonically with an amplitude of 1mm and 
frequency of 100Hz, what is the steady-state amplitude of vibration of the platform (i.e. the mass m)? 
 
 

We just need to find the right formulas to use and substitute numbers.  We have that 
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2. Both systems in the figure are subjected to a  
force with amplitude 1 kN and frequency equal to 
the undamped natural frequency of the spring-mass 
system ( nω ω=  ).     
 
The vibration amplitude of system B is measured 
to be 1mm.     
 
What is the vibration amplitude of system A? 
 
 

The formula for amplitude is 0 0( / , )nX KM Fω ω ζ=  .   
When nω ω=  the magnification 1 / (2 )M ζ=   where 2 / (2 )c kmζ =  .   
Removing a dashpot does not change the undamped natural frequency and halves ζ  .   
The amplitude will double. 

 
[3 POINTS] 

 
 
 

 
3. In this (hard!) problem we will analyze the 
behavior of the ‘anti-resonant’ vibration 
isolation system introduced in Homework 5.   
The system is illustrated in the figure.   Assume 
that the base vibrates vertically with a 
displacement 0( ) siny t Y tω=  .   Our goal is to 
calculate a formula for the steady-state vertical 
motion ( )x t  of the platform, and to compare the 
behavior of this system with the standard base 
excited spring-mass-damper design for an 
isolation system. 
 
 
 
 
3.1 Draw free body diagrams 
showing the forces acting on the 
mass 1m  and the pendulum 
assembly (see the figure). 
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3.2 Using geometry, find an expression for the acceleration of mass 2m  in terms of θ  , y and their time 
derivatives (as well as relevant geometric constants) (e.g. by writing down a formula for the position 
vector relative to a fixed origin and differentiating it).   Show that if θ  and its time derivatives are small 
the result can be approximated by 
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Show also that  
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The position vector of 2m  is  

2 2cos ( / 2 sin )L y L Lθ θ= + + +r i j  
Differentiate twice with respect to time to get  
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Using the approximations cos 1 sinθ θ θ≈ ≈   and neglecting squared or higher order products 
of θ  and its time derivatives we get the result stated. 
 
Similarly 
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Differentiate this twice 
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Use the same approximation to get the stated result. 
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3.3 For the pendulum, write down m=F a  and 0=M  about the center of mass, in terms of reaction 
forces shown in your FBD.   Use the approximation in 3.2 for the acceleration. 
 
For 2m  we have 
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3.4 Write down m=F a  for mass 1m  , and hence use 3.3 and the second of 3.2 to show that (if if θ  and 
its time derivatives are small) then 
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F=ma gives 
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 We can solve (3.3) for T to get 
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Hence substitute for T  and rearrange to get 
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3.5  Show that the equation can be re-arranged into the form 
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We can re-write the equation as 
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3.6 Suppose that the base is subjected to harmonic excitation 0 siny Y tω=  .     Show (using calculus and 
the double-angle formula cos sin sin cos sin( )t t tψ ω ψ ω ω ψ+ = + ) that 
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Hence use the ‘Case IV’ solution to differential equations to show that the steady state solution for x has 
the form 

0 0 0( ) sin( ) ( / , , )nx t X t X M Yω φ ω ω ζ λ= + =  
and give a formula for the magnification factor  M. 
 
 

Substituting for y and evaluating the derivatives shows 
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We can re-write this as  
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Defining  
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We can use the double angle formula cos sin sin cos sin( )t t tψ ω ψ ω ω ψ+ = +  to get the answer 
stated. 
 
We can regard the equation  
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As a case IV EOM with  
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The solution follows from the formula sheet, and the magnification is 
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3.7.   Plot a graph of M as a function of 0 / 6nω ω< <  for 0λ =  ,for values of 0.02,0.05,0.1,0.2ζ =  (on 
the same plot).  This graph shows the magnification for the ‘standard’ vibration isolation system, since 

0λ =  corresponds to a pendulum with zero mass – it should look the same as the ‘Case V’ magnification 
graph discussed in class. For comparison, plot a second graph of M as a function of / nω ω  for 0.6λ =  
(an anti-resonant isolator),for values of 0.02,0.05,0.1,0.2ζ =  
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3.8  What is the frequency corresponding to the anti-resonance (the minimum value of M), in terms of 

, nλ ω  (give an approximate solution for 1ζ <<  ) ?    What is (approximately) the smallest vibration 
amplitude (in terms of ,λ ζ )? 

 The minimum will occur when 
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If λ  is not close to 1, then 
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3.9 For what range of frequency (in terms of λ , nω  ) does the pendulum system give better performance 
than the simpler spring-mass-damper system? 
 

The magnification for the anti-resonant isolator is equal to that of the conventional system when 
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The anti-resonant system is better than the conventional system for ω  below this value.   It only 
isolates vibations if / 2nω ω >  , however. 
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3.10  What sort of application would be best suited for an anti-resonant vibration isolator? 
 

The isolator is only useful if the excitation is close to a harmonic motion at a fixed frequency ω  - 
if the base will move with a range of frequencies, the isolator will block the ones close to the anti-
resonance, but not the others.   Antiresonant isolators are often used between the rotor blade 
assembly of a helicopter and the helicopter body, for example (because the excitation frequency 
is set by the rotor angular speed)  
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4 An unbalanced wind-turbine is idealized as a rotor-excited spring-
mass system as shown in the figure.  The mass m represents the 
tower, and 0m  represents the combined mass of the three rotor 
blades. The spring and damper represent the stiffness and energy 
dissipation in the tower.  The rotor is ‘unbalanced’ because its center 
of mass is a small distance 0Y  away from the axle.  The total mass 

0( )m m+  of the system is 25000kg.   
 
The figure shows the results of a free vibration experiment on the turbine. 
 
4.1 Use the data provided to determine the following quantities: 
 

(a) The vibration period 
 

The period is 0.5 sec 
 

[1 POINT] 
(b) The log decrement 

 

The log decrement is 1 0.25log 1.26
2 0.02

  = 
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(c) The undamped natural frequency 

 

The undamped natural frequency is 
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(d) The damping factor 
 

The damping factor is 
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(e) The spring stiffness 
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(f) The dashpot coefficient 
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4.2 The figure shows the measured displacement of the system during operation.  The blades have a 
radius of 40m, and the total mass of the system 0( )m m+  is 25000kg .   Assuming that the rotor can be 
balanced by adding mass to the tip of one blade, estimate the mass that must be added to balance the 
rotor. 
 

We know that the vibration amplitude of the unbalanced rotor is  
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We can use the vibration measurement to estimate the product 0 0m Y  : 



From the graph, we see that the period is about 6 sec so 1ω ≈  rad/s, so using the numbers from 
4.1 

2
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Since the measured amplitude is about 6mm, we conclude that 0 0 25000m Y kgm≈  .   We want to 
move the COM back to the center of the rotor – recall that the COM is (1 / ) i iM m∑r  so the 
required mass at the blade tip is 25000/40 = 625 kg. 
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