
EN40: Dynamics and Vibrations 
 

Homework 1:  
Mupad and MATLAB practice 

Due 12:00 noon Friday February 1 (online submission) 
   

School of Engineering 
   Brown University 
 
• Your solution to this homework should consist of two files: 

1. A commented MATLAB Live Script stored as a .mlx file 
2. A commented MATLAB function stored as a .m file  

• Please submit the assignment electronically on the EN40 canvas website. You can log into canvas at 
http://brown.edu/it/canvas/ (the login link is near the top right of the page).  You can find some instructions on 
Canvas use (from CIT) at https://ithelp.brown.edu/kb/articles/canvas-for-students  

 
Part 1: Write a Matlab ‘Live Script’ to solve the following problems.   
 
1. Find all the solutions to the simultaneous equations 
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2. Plot the function   
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(log denotes a natural log) in the range 0.01 3x< < , for 0.1, 0.5, 1σ σ σ= = =  (on the same plot).  (P is 
the ‘log-Cauchy’ distribution function  - it is used in modeling statistics associated with HIV infections 
and population statistics.    A few points of credit are awarded for making the plot look nice. 

 
3. Evaluate the integral  
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Assume that 0σ >  and σ  is real. 

 

4. Find the value of x that maximizes ( , 0.5)P x σ =  (you can find potential maxima by differentiating P 
with respect to x; then solving / 0dP dx =  .  MATLAB will give you two solutions.  Your plots in 
problem 3 should help you see whether the solutions correspond to maxima, minima, or inflections). 

 

5. Find the maximum value of ( , 0.5)P x σ =  (use your answer to 4 and the ‘subs’ function)   

 

 

 

http://brown.edu/it/canvas/
https://ithelp.brown.edu/kb/articles/canvas-for-students
http://www.sciencedirect.com/science/article/pii/S0304380004005587?via%3Dihub
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6. The differential equation 
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( )1 ( ) 1 ( )dN c N t cN N t V N t

dt L L L
   = − − −   
   

 

estimates the total number of cars on a length of (one way) road.   0N  is the number of cars per second 
arriving to enter the road; 0V  is the speed limit; L is the length of the road, and c is the average length of a 
car (the first term is the number of cars entering the road; the second is the number leaving the road) . 

6.1 Use the ‘dsolve’ function to solve the differential equation for N as a function of time.   Use 
the initial condition ( ) 0 0N t t= =   

6.2 Plot graphs (on the same figure) of ( )N t  for L=500m; c=3m, 1
0 1/10N s−=  for (i) 

0 0 011 / 20 / 45 /V m s V m s V m s= = =  , for a time interval of 0<t<300 sec. 

 
Part 2: Please solve the remaining problems using MATLAB (write your code in a matlab .m file). 
You should make your MATLAB (.m) file a function, so that when the file is executed, it will solve all 
the homework problems.   For example: 

function EN40_Homework1_2019 
       code that will solve problems 7-11 
end 
function B = update_matrix(A) 
… Code 
end 

 (You might find the solutions to homework 1, 2009-2018 helpful, if you get stuck – you could use the 
2018 HW as a template, if you like.) 

 
 
7. Using a loop, or dot notation, or the ‘linspace’ function, create a vector t of 501 equally spaced points 
between π−   and π   

 

8. Using the solution to problem 8, create two vectors x and y that contain values of the function 

( ) ( )x C t y S t tπ π= = − < <  

where C and S are the ‘Fresnel integrals’.   You don’t need to do the integrals yourself - C and S are hard-
coded in MATLAB as the functions fresnelc() and fresnels(); you can use them just like sin() and cos(). 

Hence, plot a graph of y-v-x.    (The curve is called the ‘Cornu Spiral’.  You will get a few points for 
making your plot look nice!) 

 

http://mathworld.wolfram.com/FresnelIntegrals.html


 

9. A grayscale image in MATLAB is stored as a matrix M.    Each entry in 
the matrix specifies the color of a pixel in the image: if M(i,j)=1 the pixel 
is white; if M(i,j)=0 the pixel is black, and if 0<M(i,j)<1 the pixel is gray.  
The indices i,j identify the position of the pixel, so for example M(1,1) is 
the pixel at the top left corner of the image.  M(10,1) is the pixel 10 rows 
down on the left hand side of the image; and M(1,10) is the pixel 10 
columns to the right at the top of the image.  

You can display a matrix using the ‘imshow’ command, e.g. 
imshow(M,'Initialmagnification',200) 

 (The ‘Initialmagnification’ is optional, it just makes the figure larger) 

9.1 Create a 101x101 matrix that will produce the image shown in the 
picture and display it.   The black rectangle is 10 pixels high and 25 pixels 
long.  The following commands will be useful: 

(a) M = ones(100) creates a 100x100 matrix with 1 in every entry 
of the matrix 
(b) M(1:10,1:10)  = 0 (eg) will set the top 10x10 block of a matrix 
to zero (try it and see what happens!) 
(c) M(:,1) = 0 will set the first column of a matrix to zero (the : is 
shorthand for all the rows) 

 

9.2 Using your solution to 9.1, create a new image that is a mirror image of 
the first one about the diagonal (you need to switch rows and columns of 
the matrix – remember there is a matlab command that does this) 

9.3 Create and display a new image that rotates the first one 
counterclockwise by 90 degrees. Write your code so it will rotate any 
image, rather than just changing the entries in the matrix by hand.  (Hint: 
the pixel at (i,j) in the first image will be located at (102-j,i) in the new one.  
You can create the new matrix by using two nested loops) 

 

 

 

 

 

 

 

 

Rotated Image

Mirrored image



10. The goal of this problem is to code a simple version of a two-
dimensional ‘Potts model,’ which is used in physics and engineering to 
predict how the structure of various different kinds of material evolve with 
time.  Applications range from studies of ferromagnetism, to motion of 
interfaces in polycrystals.   

One version of the model idealizes a material as a rectangular grid of cells, 
which can each adopt one of two possible states (in magnetism, eg, these 
represent positive or negative spin).  These are stored in an nxn matrix A 
with elements  A(i,j) either -1 or +1.   The simulation starts with a random 
distribution of +/-1 in the cells, which then flip their states so as to lower 
the total energy of the system, as described below.  By repeatedly flipping the states of the cells, the 
simulation predicts how magnetic domains or microstructures form in the material.     

10.1 Write a MATLAB function of the form B=update_matrix(A) that takes as input a square nxn matrix 
A with elements A(i,j) either -1 or +1; and returns a second matrix B (with the same size as A).  B should 
be calculated inside your function using the following steps:  

(i) Set B=A 
(ii) Find the number of rows n and columns m of A (use the ‘size’ function) 
(iii) Repeat the following calculation n2 times (use a loop): 

(a) Generate two random numbers i and j between 2 and n-1 .   You can do this with (eg for i 
, use something similar for j)  
i = randi(n-2)+1; 

(b)  For the current value of i,j, calculate 
11
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(you could use the matlab ‘sum’ function to calculate E – but read the manual to be sure 
how it works, it doesn’t work the way you would expect. Or you could use two nested 
loops over the values of k and l (this is a bit slower but works fine), or if you hate loops 
just type in all 9 terms in the double sum by hand).   In the physics of the Potts model, E 
represents the energy of the cell located at i,j – it has a low energy if all the neighbors 
have the same sign as the one at i,j, and a high energy if they all have a different sign.   

(c) Calculate B(i,j) from the following formula (use a conditional statement) 
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10.2 Test your code using the following lines of script (which should be in your main homework 
function).  You should see an animation of the microstructure forming a set of domains.  You can 
compare your predictions with these images of magnetic domains. 

M = 2*randi(2,101)-3; 
M(:,1) = 0; 
M(1,:) = 0; 
M(101,:) = 0; 
M(:,101) = 0; 
figure 
for step=1:100 
   M = update_matrix(M); 
   imshow((M+1)./2,'Initialmagnification',200) 
   pause(0.1)   
end 

https://journals.aps.org/rmp/pdf/10.1103/RevModPhys.54.235
https://www.aps.org/units/dmp/gallery/magnetic.cfm


11. The ‘Higgins-Selkov’ equations are a simple model of the chemical reactions involved in glycolysis 
(the metabolic pathway that generates energy from glucose).   The equations were intended to explain 
experimental observations of repetitive fluctuations in the concentrations of the metabolites.  They 
assume that the concentrations of fructose-6-phosphate S and ADP P are given by 
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where 0v  is the rate of production of S (fructose-6 phosphate); 1k  is a reaction constant that specifies the 
rate of the autocatalytic reaction of S and P to produce more P (ADP), and 2k  is a reaction constant that 
controls the rate of reaction of ADP in the next step of the glycolysis reaction. 
 
 
11.1Write a MATLAB function of the form dwdt = glycolysis(t,w,v0,k1,k2) function that 
computes the vector of time derivatives / [ / ; / ]d dt dS dt dP dt=w  given a value of t and the current 
values of [ ; ]S P=w  and the values of the constants 0 1 2, ,v k k  . 

 
11.2 Hence, use the MATLAB ode45 function to calculate and plot the variation of S(t), P(t)  with time. 

Use the following parameters:  
• Initial conditions 1, 0.8S P= =  (mols/cc) at time t=0; 
• Time interval 0<t<100 min 
• Plot P and S as a function of time for 0 1v =  mols/cc/min, 1 1k =  mols/cc/min, 2 1.01k =  1/min, 

for a time interval 0<t<100 min.  You should see the concentrations fluctuating. 
• On a separate figure,  Plot P and S for 2 1.075k =  1/min.   For this reaction rate there are no 

fluctuations. 
 

http://www.medicine.mcgill.ca/physio/mackeylab/courses_mackey/pdf_files/selkov-68.pdf
https://johncarlosbaez.wordpress.com/2016/01/18/glycolysis-part-2/
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