
EN40: Dynamics and Vibrations 
 

Homework 3: Kinematics and Dynamics of Particles 
Due Friday June 11, 2021 

                           
School of Engineering 
    Brown University 
 
Please submit your solutions to the MATLAB coding problems 5, 6 by uploading a single file, with a 
.m extension, to Canvas. 
 
 
1. Polar Coordinates: The trajectory of a particle is 
specified in polar coordinates as a function of time as 

1 log 1
2 2

V Vr t tθ  = + = + 
 

 

where V is a constant 
1.1 Find formulas for the velocity and acceleration of 
the particle as a function of V and t using the ,r θe e   
coordinate system.   Find a formula for the speed of 
the particle in terms of V 
 
1.2 Hence, find the normal and tangential 
components of acceleration of the particle  

 
1.3 Hence, find a formula for the radius of curvature 
of the path, as a function of t and V (or r) 
 
 
2. Simple Newton’s law problem.  A vibrating 
conveyor has a horizontal platform that moves 
along a straight line at an angle α  to the 
horizontal.   The position vector of an arbitrary 
point on the platform can therefore be expressed as 

0 0 0 0( cos sin ) ( sin sin )X L t Y L tα α= + Ω + + Ωr i j
 

where 0 0 0, , ,X Y L Ω  are constants ( 0 ,L Ω  are the 
amplitude and angular frequency of the oscillatory 
motion of the platform, respectively). 
 
2.1 Find a formula for the acceleration vector of the platform 
 
2.2 Draw a free body diagram showing the forces acting on the object on the platform.   Assume no slip 
(so T Nµ≠  ).   Hence, find a formula for the critical value of Ω  that is required for an object of mass m 
to slip on the platform (You will need to calculate the reaction forces T,N at the contact.  The mass will 
slip if T Nµ>  at any time during a cycle 0 2 /t π< < Ω  ).    
 
2.3 Find a formula for the value of α  that minimizes the critical value of  Ω  from part 2.2 
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https://www.thomasnet.com/articles/materials-handling/all-about-vibrating-conveyors/
https://www.thomasnet.com/articles/materials-handling/all-about-vibrating-conveyors/


3. The figure shows a proposed mechanism to 
generate artificial gravity inside a space capsule.    
The capsule is attached to a counterweight by a 
tether with length L, and the assembly rotates around 
its center of mass (located midway between the 
capsule and counterweight) with angular speed 
d
dt
θ ω=  .   You can take the center of mass to be 

stationary. 
 
 
3.1 Assume that the angular speed of the tether is 
constant, with 0.1ω =  rad/sec.    Use the circular 
motion formulas to find the cable length L that causes the capsule to have an acceleration with magnitude 
2.5ms-2.    
 
3.2 Because of a medical emergency, it becomes necessary to increase the acceleration of the capsule.   
This will be accomplished by shortening the tether from its initial length 0L   to a new length 1L  .  After 
the cable reaches its new length, the tether will rotate with a higher angular speed 1ω  , hence increasing 
the capsule’s acceleration. 

Suppose that the tether length is reduced at constant rate 
dL
dt

β=  , where 0β <  is a constant. 

Write down a formula for the acceleration of the capsule as the cable length is being reduced, using the 
polar coordinate system shown in the figure, in terms of L, β  ,ω  and  /d dtω  .  Do not assume that ω  
is constant. 
 
3.3 Draw a free body diagram showing the forces acting on the capsule. (There is no gravity – the 
capsule is in space!) 
 
3.4 Use your solutions to 3.2 and 3.3 to show that the angular acceleration of the tether as the cable length 
is being reduced is 

2d
dt L
ω ωβ= −  

 
3.5 Hence, show that the angular speed is related to the tether length by 

2d
dL L
ω ω
= −  

 
3.6 Assume that at time t=0 the cable has length 0L  and spins with angular speed 0ω  . By separating 
variables in the differential equation given in 3.5 and integrating  find a formula for the value of ω  after 
the cable has been reduced to its new length 1L   
 
3.7 Finally, use a value of 0 0.1ω =  rad/sec for the initial angular speed, and assume that the initial cable 
length 0L  has the value you calculated in 3.1.  Find the length 1L  of the cable that will raise the 
magnitude of the acceleration to 10 ms-2, and the corresponding new (constant) value of the angular speed 
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4. A small droplet with mass density ρ  and radius R is 
launched horizontally with a speed 0V  from a height H 
above the ground (eg by a sneeze).  It is subjected to the 
force of gravity and an air drag force 

{ }06 ( )D x yR U v vπ η= − −F i j  

where 0U  is the (horizontal) wind speed, η  is the 
viscosity of air, and x yv v= +v i j  is the velocity vector 
of the droplet.   The goal of this problem is to calculate 
the horizontal distance traveled by the droplet before it 
hits the ground. 
 
4.1 Show that the horizontal and vertical components of velocity satisfy differential equations 

( )02 2
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η η
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= − = − −  

 
4.2 Find formulas for the velocity and position vectors of the droplet as a function of time (you can do the 
integrals by hand or use MATLAB). 
 
4.3 Plot a graph showing the horizontal distance traveled by a droplet (at the point where it hits the 
ground) as a function of its radius, using the range 0.025 0.3R mm< < .  (There will be 3 curves on your 
graph, one for each value of 0U  ; distance traveled is the vertical axis, and radius is the horizontal axis) 
Use the following values for parameters (references: [1] [2]) 
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Which travel furthest – small or large droplets? 
 
Note: Doing the plot in MATLAB is a bit tricky.   It’s easiest to create a vector of R values, then (using a 
loop), for each value of R in the vector, calculate the horizontal distance x (and store the results in another 
vector). Then you can use plot(R,x) to display the graph.   For each value of R, you will need to calculate 
the time for the droplet to fall to the ground, by solving the equation y=0 for t .   If you do the calculation 
using a ‘Live Script’ you can use the ‘vpasolve’ function to do this, eg using 
  tval = vpasolve(y==0,t,20); 
Here, the variable y is a symbolic formula for the height of the droplet as a function of time t.   It’s 
important to give ‘vpasolve’ a large value for the initial guess for t , otherwise it will return a negative 
time.  Alternatively, if you do the calculation in an ‘m’ file, you can use fzero, (see the MATLAB tutorial 
for more details) eg 
    t = fzero(@(t) height(t,H,R,rho,eta,g),[0.05,30]) 
Here, ‘height’ is a function that calculates the height of the droplet.   Again, it’s important to specify a 
sensible range 0.05<t<30  for the region to search for the solution t, otherwise fzero will return an 
unphysical number (or fail altogether).  
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3785820/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3613375/


5. This publication describes various proposed methods for damping the 
swinging motion of a payload suspended from a drone.    One proposal is to 
vary the length of the cable at twice the natural frequency of the pendulum (as 
this problem will show, this will work, but needs to be done rather carefully).  
 
The figure shows the problem to be solved.   The length of the pendulum is  

0 0sin(2 ) /L L L t g L= + ∆ Ω Ω =  
At time t=0, 0θ =  and the pendulum is set swinging by giving the mass an 
initial horizontal velocity 0V   
 
5.1 Find the acceleration vector of the mass at B, in terms of the angle θ  and its time derivatives, 0L , 

L∆  and Ω .  Express your answer using the polar coordinate basis vectors shown in the figure. 
 
5.2 Draw a free body diagram showing the forces acting on the mass at B. 
 
5.3 Using Newton’s law, show that the equation of motion for the angle θ  is 

( )
2

0 2sin 2 4 cos 2 sin 0d dL L t L t g
dtdt

θ θ θ+ ∆ Ω + ∆ Ω Ω + =  

5.4 Rearrange the equation of motion into a form that MATLAB can solve. 
 
5.5 Write a MATLAB script that will solve the equations derived in part 5.4. Plot graphs showing the 

variation of the angle θ  with time, for a time interval 0<t<7 sec, initial conditions 
0 / 0.1d dtθ θ= =  and 0 1L m= , 0/g LΩ =  for  0, 0.1, 0.15L L L∆ = ∆ = ∆ =  .   These plots 

should show that, in principle, changing the pendulum length will successfully damp vibrations (at 
least for a short time). 

 
5.6 Repeat the simulation with initial conditions 0 / 0.1d dtθ θ= =  and 0 1L m= , 0.1L∆ = , but this 

time run the simulation for 0<t<30 sec.    Your prediction should show that this approach has a big 
problem! 

 
5.7 The authors of this paper suggest that the problem can be fixed by making the length of the pendulum 

equal to ( )0 0sin ( )L L t t+ ∆ Ω −  where 0t  is the most recent time that 0θ = .   To test this, modify 
your MATLAB code for parts 5.5 and 5.6 to add an ‘event’ function called ‘stop_pendulum’ that will 
terminate the calculation at the instant that 0θ = .   Then add the lines of code shown below to your 
‘driver’ matlab function (you will need to study the code a bit to understand how this implements the 
modified design, and may need to modify the lines with ‘odeset’ and ‘ode45’ on them to make them 
consistent with the rest of your solution).  Re-run the simulation in part 5.6 to see if the problem is 
fixed. 
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options = odeset('Events',@(t,w) stop_pendulum(t,w)); 
sols = []; 
times = []; 
for cycle=1:30 
  [time_cycle,sol_cycle] = ode45(@(t,w) pendulum(t,w,g,L0,dL),... 
                                       [0,15],initial_w,options); 
  initial_w = [0,sol_cycle(end,2)]; 
  if (isempty(times)) 
      times = time_cycle; 
  else 
     times = [times;times(end)+time_cycle]; 
  end 
  sols = [sols;sol_cycle]; 
end 
  
figure 
plot(times,sols(:,1)) 

 
 
6. If a fluid droplet hits the surface of a pool, it can bounce back off.   If 
the surface of the pool is in continuous wave motion, the droplets can 
continue bouncing forever.   Under the right circumstances the droplet 
will bounce from one wave trough to the neighboring one, and 
consequently drifts over the pool’s surface.   If two or more droplets 
bounce near each other, they interact, because each droplet radiates waves 
that influence its neighbors.   Arrays of droplets can self-organize into 
fascinating patterns.  The goal of this problem is to predict the trajectories 
of two such interacting fluid droplets.  
 
Protiere et al give the following equations of motion governing the 
horizontal position and average in-plane velocity1 of two identical 
interacting droplets with mass m bouncing in-phase on a fluid surface 
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where 1 1 1 2 2 2x y x y= + = +r i j r i j  are the position vectors of the two particles; 2 1d = −r r   is the 

distance between them, 1 1 2 2/ /d dt d dt= =v r v r  are their velocities, 1 1 2 2,V V= =v v  are their 

speeds, and   0 0 0, , ,F U Lη  are constants ( 0U  can be controlled by changing the frequency of the waves 
on the fluid surface, η  is the air viscosity, and 0L  is the wavelength of the surface waves). 
 
 
 
 
 
 
                                                           
1 The bouncing motion is averaged out 

https://www.youtube.com/watch?v=nmC0ygr08tE
https://www.youtube.com/watch?v=MP-NZ5EoTm4


6.1 Show that steady circular motion (with the two particles 
at diametrically opposed points on the circle) is one 
possible trajectory that satisfies the equations of motion.  
To do this: 

(i) Assume that both particles move around a circle 
with radius R with the same speed V.   Write down 
their position, velocity and acceleration vectors (in 
terms of R,V) in normal-tangential coordinates, using 
basis vectors 1 1 2 2{ , }, { , }n t n t  for particles (1) and 
(2), respectively. 
 
(ii)  By substituting the position, velocity and 
acceleration from part (i) into the given equation of 
motion, show that both equations of motion are 
satisfied by a speed V and radius R that obey the 
relations 

2
1

0 0 0 0 0

4 2sin sinV R mVV
U F L L F

η π −  
= = − 

 
 

These equations make four useful predictions: (a) steady motion is possible only if 0 0 /U F η<  
(otherwise the first equation only has the trivial solution V=0), (b) The droplets drift speed is in the range 

00 /V F η< < , (c) If a particular speed V is desired, it is straightforward to calculate the necessary value 
of 0U , and (d) the droplets may follow circular paths with a large number of possible discrete radii.   Our 
goal in the next sections of this problem will be to check the stability of these paths. 
 
 
6.2 Write down differential equations for the unknowns 1 1 2 2 1 1 2 2[ , , , , , , , ]x y x yx y x y v v v v=w  in a form that 
can be coded in the MATLAB ‘ode45’ differential equation solver.  This just means re-writing the 
equations of motion given in the problem in a form that MATLAB can solve (substitute for the position, 
velocity and acceleration vector in {i,j} coordinates and re-arrange the (i,j) components into the required 
equation.   For example the equation 1 1 1 1 1 1/ / , /x yd dt dx dt v dy dt v= ⇒ = =v r  gives the equations we 

need for the time derivatives of 1 1,x y ; 
2

1 1 1 2
0 1 0 1 0 0 02 2

1

sin( / ) sin(2 / )dm F V U L F d L
dt V d

η π−
= − +

r v r rv   

can be rearranged to give equations for the time derivatives of 1 1,x yv v , and so on) 
 
 
6.3 Write a MATLAB script that uses ‘ode45’ to integrate the equations of motion in 6.2.   Use your code 
to calculate and plot the trajectory for the following values of parameters: 610m kg−=  , 6

0 10F N−=  ,  
610 /Ns mη −= , 0 5L mm=  and choose 0U  to give V=2.5mm/s (to do this plug in the numbers in the 

first formula in part (ii) of 6.1 and solve for 0U ).    To start the droplets in a circular orbit, chose their 
initial velocities to be 1 2V V= − =v i v i  , and run simulations for the following initial positions: 
(a) 1 0 2 0( / 4) ( / 4)L L= = −r j r j   (this should give a stable circular orbit) Run this for 2.5 sec 
(b) 1 0 2 0( / 2) ( / 2)L L= = −r j r j  (this will give an unstable orbit) Run this for 0.5 sec 
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(c) 1 0 2 0(3 / 4) (3 / 4)L L= = −r j r j (another stable orbit) Run this for 5 sec 
(d) 1 0 2 0(2.6 ) (2.6 )L L= = −r j r j  (close to,  but not exactly on the stable orbit) Run this for 30 sec 
 
You can put all the trajectories on the same plot. 
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